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Abstract. In this paper we prove a comparison result between semicontinuous viscosity subsolutions
and supersolutions to Hamilton-Jacobi equations of the form ut + H(x,Du) = 0 in IRn × (0, T ) where
the Hamiltonian H may be noncoercive in the gradient Du. As a consequence of the comparison result
and the Perron’s method we get the existence of a continuous solution of this equation.
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Introduction

In this paper we are interested in first order equations

{
ut +H(x,Du) = 0 in IRN × (0, T )
u(x, 0) = h(x) in IRN ,

(0.1)

where the solution u is a real-valued function defined in IRN × [0, T ), Du denotes its gradient and h is a
given initial condition, the Hamiltonian H : IR2N → IR is a continuous function. We will prove comparison and
existence results under the following structure conditions on the Hamiltonian H :

(H1)
H(x, p) = Φ(H0(x, p)) (0.2)

where H0 : IR2N → IR is a continuous function such that for all R > 0 there is a constant LR > 0 such that

|H0(x, p) −H0(y, p)| ≤ LR|x− y| (0.3)

for all |x|, |y| ≤ R, |p| ≤ 1;

p→ H0(x, p) is convex, H0(x, p) ≥ 0, H0(x, λp) = |λ|H0(x, p), (0.4)
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for all x, p ∈ IRN and for all λ ∈ IR. Concerning the function Φ: [0,+∞) → [0,+∞) we assume that

Φ is convex, non decreasing, Φ(0) = 0. (0.5)

(H2) There is C > 0 such that
H0(x, p) ≤ CH1(x, p),

where H1 : IR2N → IR is a continuous function satisfying (0.3), (0.4) and such that, for every y ∈ IRN , the
stationary eikonal-type equation

H1(x,Dd) = 1 x ∈ IRN \ {y} d(y) = 0 (0.6)

has a continuous viscosity solution dy(x) = d(x; y) ≥ 0 verifying

lim
|x−y|→+∞

d(x; y) = +∞, (0.7)

d(x; y) + d(y; z) ≥ d(x; z) for all x, y, z ∈ IRN , (0.8)
and

d(x; y) ≤ K|x− y|α for all x, y ∈ IRN , |x− y| ≤ R, (0.9)
for some K,R > 0, α ∈ (0, 1].

Before proceeding, let us mention that Capuzzo Dolcetta and Ishii (see [14–16]) provide a Hopf-type repre-
sentation formula for a solution of (0.1) assuming (H1) and that (0.6) is verified by H0 (that is for the particular
choice H1 = H0 and C = 1). The comparison principle we prove here, states that the Hopf-type formula is in
fact the unique solution of (0.1), in the case where H1 = H0.

We would like to premise some comments on the hypothesis (H2), in particular on the condition (0.6). To
this purpose we consider the following model case

H(x, p) =
1
β
|bT (x)p|β , (0.10)

where β > 1 and b is a real N ×M matrix-valued locally Lipschitz continuous function. We note that the case
β = 2 arises in the study of deterministic unbounded control problems. The hypothesis (H1) obviously holds
true in this case; we list below some sufficient conditions on b(x) guaranteeing the validity of the condition (0.6).

(i) The matrix b is bounded: this case has already been treated in several papers (see e.g. [18] and the
references therein) and corresponds to the choice H0(x, p) = |bT (x)p|, H1(x, p) = |p|. In this situation the
solution of (0.6) is d(x; y) = |x− y|.

(ii) The matrix b(x)bT (x) is uniformly elliptic: in this situation, we can choose H1 = H0 and the solution
d(x) is the Riemannian distance associated to b(x)bT (x), see e.g. [3].

(iii) The matrix b is degenerate and possibly unbounded: the main example is when bT (x) is a
C∞ function satisfying the Hörmander rank condition, namely for all x ∈ IRN the Lie algebra generated by
Xi =

∑N
j=1 b

T
ij(x)

∂
∂xj

, (i = 1, . . . ,M) satisfies:

rank Lie (X1, . . . , XM )(x) = N ;

and the following one

(A1)
∣∣∣∣ For some constant L > 0 : (b(x)w − b(y)w) · (x − y) ≤ L|x− y|2
∀x, y ∈ IRN , ∀w ∈ B(0, 1).

In this situation, one can choose H1 = H0 and d(x; y) is the intrinsic distance defined in the next section, which
is finite in the whole space, satisfies (0.7), (0.8) and (0.9) with α = 1

m , m being the maximal length of the
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commutators needed to span the tangent bundle T (IRN ) at each point x ∈ IRN . We remark that the condition
bT ∈ C∞ can be relaxed owing to the “generalized Chow theory” for non smooth vector fields, developed by
Rampazzo and Sussmann in [29]. With this regard we propose the following

Example 0.1. We consider the Lipschitz continuous matrix

bT (x) =
(

1 0 f(x1)
0 1 f(x1)

)

with f(x1) = −2x1χ(−∞,0) − x1χ(0,+∞), where χE stands for the characteristic function of the set E. In this
case, the “generalized Lie bracket” between the vectors constructed with the rows of bT at the point x ∈ IR3 is
the vector

(0, 0,−2) if x1 < 0, (0, 0,−1) if x1 > 0,
the multivalued vector function (0, 0, [−2,−1]) if x1 = 0.

Hence the two rows of bT , together with the Lie bracket they generate, span the tangent bundle T (IR3) at each
point x ∈ IR3. Indeed, if x1 �= 0, this obviously holds true. At the points (0, x2, x3) ∈ IR3, the Lie bracket is
given by (0, 0, p), with p ∈ [−2,−1]. Thus bT is a matrix which satisfies the generalized Hörmander-Chow rank
condition of order two and this implies the existence of the solution of (0.6) satisfying (0.7)–(0.9).

Finally we remark that in the model case (0.10) a sufficient condition for (H2) to hold is the existence of
a locally Lipschitz continuous matrix σ(x) verifying (A1), such that σ(x)σT (x) satisfies the Hörmander rank
condition, and moreover, for some constant C > 0

Cσ(x)σT (x) − b(x)bT (x) ≥ 0 for all x ∈ IRN . (0.11)

In this case, one can choose H1(x, p) = |σT (x)p|. It is worth observing that condition (0.11) is always satisfied
with C = 1, by choosing

σ(x)σT (x) = diag(λ1(x) + 1, . . . , λN (x) + 1),
where λi(x) for i = 1, . . . , N denote the non negative eigenvalues of the symmetric matrix b(x)bT (x).

The main goal of this paper is to prove a comparison result between unbounded semicontinuous viscosity
subsolutions and supersolutions to the problem (0.1). Such a result is beyond the classical results for viscosity
solutions (see e.g. [3, 5]) because of the unboundedness both of the solutions and the Hamiltonians. In fact,
most of the comparison and uniqueness results in the literature require that either the solutions are uniformly
continuous or the Hamiltonian is uniformly continuous with respect to the gradient uniformly in x, (see e.g. [6,7]).
We recall that uniqueness and existence results of unbounded solutions to a class of first order Hamilton Jacobi
equations (corresponding to unbounded control problems which include the case of quadratic Hamiltonians),
have been addressed by several authors, see, e.g. the book of Bensoussan [9], the papers of Alvarez [1], Bardi
and Da Lio [4], Cannarsa and Da Prato [13], Rampazzo and Sartori [28] in the case of convex operators, and
the papers of Da Lio and McEneaney [19] and Ishii [23] for more general operators. However most of these last
results have been obtained under assumptions implying the coercivity of the Hamiltonian with respect to the
gradient uniformly in the state variable, namely H(x, p) → +∞ as |p| → +∞ for all x ∈ IRN . With this regard
we refer the reader to Barles [5] for the role of the coercivity condition in the unbounded case. Let us only recall
that it allows in general to prove the Lipschitz continuity of the subsolutions of (0.1). In the particular case of
equation (0.10) the typical assumptions on the matrix b is that either it is bounded or b(x)bT (x) is not singular.

The main contribution of this note is that we get a comparison result by removing the coercivity condition.
Somehow this condition is replaced by assuming that (0.6) has a solution d satisfying (0.7)–(0.9).

The method we use in proving the Comparison Theorem is similar in the spirit to the one applied by
Ishii in [23] for first order Hamilton Jacobi equations and then developed by Da Lio and Ley in the case of
second order equations. Roughly speaking such a method consists in three main steps: (1) one computes the
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equation satisfied by wµ = µu − v (u, v being respectively the sub and supersolution of the original pde and
0 < µ < 1 a parameter); (2) one constructs a viscosity supersolution of the “linearized” equation χµ(x, t) such
that χµ(x, t) → 0 as µ → 1; (3) one shows that wµ(x, t) ≤ χµ(x, t) and then one concludes by letting µ → 1.
We stress that it is just the condition (0.6) that allows us to build χµ. This allows us to construct a strict
supersolution to a concave equation associated to (0.1), on which H1 remains bounded.

Let us point out that in [18] the coercivity of H with respect to p ∈ IRN , uniformly in x or, in the noncoercive
case, the boundedness of H with respect to x, uniformly in p, allows the authors to take H1(x, p) = |p|,
d(x; 0) = |x| and the fact that in this case d2 is a C2 function plays a key role in the proof of the comparison
principle between semicontinuous subsolutions and supersolutions growing at most quadratically in the state
variable. Unfortunately such a regularity property is not in general true in this framework. Because of the quite
weak conditions on H we are able to get the comparison result in the convex case under conditions on the initial
data h and supersolutions v which are stronger than the ones imposed in [18]. Precisely we require that h, v
satisfy for some K > 0

h(x), v(x, t) ≥ −K(1 + f(d(x))), (0.12)

where d(x) = d(x; 0) is the solution of (0.6) and f : IR+ → IR+ is a continuous, non decreasing function satisfying

lim
t→+∞

f(t)
Φ∗(t)

= 0; lim
t→+∞

f(Ct)
f(t)

= LC > 0 for every constant C > 0;

lim sup
|x−y|→+∞

f(d(x; y))
|x− y|γ < 1 for some γ > 1,

(0.13)

where Φ∗ denotes the Legendre-Fenchel transform of Φ defined in (H1). It still remains open the case when
f(t) = O(Φ∗(t)) as t→ +∞, and it will be the aim of future investigation.

By following the same procedure, we can prove a comparison result for the concave problem obtained replacing
the HamiltonianH with −H . In this case we should require that the initial data and the subsolutions are bounded
from above by K(1 + f(d(x))).

In our framework the key hypothesis is the existence of the viscosity solution d of the equation (0.6) (the
“intrinsic distance”), which is finite for every x ∈ IRN and is coercive at infinity so that the closed “balls”
associated to d are compact subsets of IRN . We note that this hypothesis prescribes in general a growth condition
ofH1, with respect to x. Indeed, if we takeH1(x, p) = (1+|x|2)|p|, then d(x; 0) = arctan |x| does not verifies (0.7).
A sufficient condition for (0.7) is that H1 grows at most linearly with respect to x. Observe that in the case
H1(x, p) = (1 + |x|)|p|, then d(x; 0) = log (1 + |x|). Nevertheless, some suitable structural conditions on H1

could replace the growth condition in order to ensure (0.7). More precisely, if we take H1(x, p) = |σT (x)p| where
σT is the C∞ matrix defining vector fields Xi =

∑N
j=1 σ

T
i,j(x)

∂
∂xj

, which are 1-homogeneous with respect to
a family of dilation δλ and left invariant with respect to a group action ◦, on a nilpotent stratified Lie group
G = (IRN , ◦), then σT (δλx) = λσT (x) and the linear growth (A1) of σ is no more needed. Indeed in this case
the solution d of (0.6) is a sub-Riemannian metric of Carnot-Caratheodory type, it is 1-homogeneous w.r.t. δλ
and left invariant with respect to ◦. Hence it satisfies d(x; y) = d(y−1 ◦ x; 0) and d(δλx; 0) = λd(x, 0), moreover
it is finite in the whole space IRN being finite in a neighborhood of x = 0, in view of the Hörmander condition,
guaranteed by the stratification of the group (see e.g. [26, 27] or the paper by Gromov in [8]). Thus letting
λ→ ∞, (choosing x bounded) we immediately get (0.7).

As a consequence of the comparison principle and the Perron’s method we get the existence of a continuous
solution to the problem (0.1) satisfying the growth condition (0.12).

As far as the issue of the existence is concerned we mention that Capuzzo-Dolcetta and Ishii in [16], see also
[14, 15], provide the following Hopf-type representation formula for the solution of (0.1)

u(x, t) = inf
y∈IRN

[
h(y) + tΦ∗

(
d(x; y)
t

)]
, (0.14)
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under the stronger assumption that (0.6) is verified by H0 and the initial datum is bounded from below by a
function of linear growth with respect to d(x) = d(x; 0), associated to H0. Our result characterizes (0.14) as the
unique solution of (0.1) in the set of functions satisfying (0.12).

An analogous uniqueness result for bounded solutions of problem (0.1) with H0(x, p) = |σT (x)p| where σT

is the matrix defining the Heisenberg vector fields has been proved by Manfredi and Stroffolini in [25]. In this
paper the authors give a definition of viscosity sub and supersolutions which is linked to the particular structure
of the Hamiltonian and thus they prove a uniqueness result in a smaller class of functions. In this regard our
result extends the one in [25] since not only it is related to the classical notion of viscosity solution but also it
holds in the set of possibly unbounded solutions satisfying (0.12).

We finally mention that recently Birindelli and Wigniolle [10] and Stroffolini [30] studied the homogenization
of Hamilton-Jacobi equations respectively on the Heisenberg group and on more general Carnot groups.

The paper is organized as follows. In Section 2 we will premise some basic facts regarding sub-Riemannian
metrics and subelliptic operators. In Section 3 we prove a comparison result both in the particular case when
the Hamiltonian is quadratic in the gradient and in the more general case when H is given by (0.2). In Section 4
we show the existence of a continuous solution as a consequence of the Comparison Theorem and the Perron’s
method both in the convex and in the concave case.

1. Subelliptic metrics and eikonal equations

As we observed in the introduction, the most important hypothesis we make is the existence of a viscosity
solution of (0.6) which is finite in the whole space and satisfies (0.7). An important model example where this
condition holds true is the case where H1(x, p) = |σT (x)p| and σT is the matrix associated to a subelliptic
operator. For the sake of completeness we recall some basic definitions and important properties of the metrics
associated to subelliptic operators. For more details, we refer the reader to [8, 17, 20, 24, 27].

We need to introduce some notations. For all integersN,M ≥ 1 we denote by MN,M(IR) (respectively SN (IR),
S+

N (IR)) the set of realN×M matrices (respectively real symmetric matrices, real symmetric nonnegative N×N
matrices). The standard Euclidean inner product in IRN is written 〈·, ·〉.

Let A ∈ C2(IRN ,S+
N (IR)) and let L denote the operator

L := div(A(x)∇).

It is a well-known fact that the symmetric matrix A, can be factorized as A(x) = σ(x)σT (x) with σ ∈
C0,1

loc (IRN ,MN,M(IR)). Thus the operator L can be written as

L =
M∑
i=1

X∗
i Xi (1.1)

with Xi =
N∑

j=1

σT
ij

∂

∂xj
and X∗

i denotes the formal adjoint of Xi in L2.

As in the case of the uniformly elliptic operators, it is possible to associate to L an intrinsic distance, denoted
here by d, defined as the minimal time function for a suitable control system.

We recall that v ∈ IRN is a subunit vector with respect to L at the point x if

|v · η|2 ≤ A(x)η · η, ∀η ∈ IRN . (1.2)

We observe that since A(x) = σ(x)σT (x), (1.2) is equivalent to

|v · η| ≤ |σT (x)η|, ∀η ∈ IRN . (1.3)

Moreover the set of subunit vectors at a point x w.r.t. L is a convex set.
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The intrinsic distance d associated with L is defined as follows

Definition 1.1. For every x, y ∈ IRN

d(x; y) = inf{T > 0 : ∃γ : [0,∞) → IRN Lipschitz continuous such that γ(0) = x,
γ(T ) = y and γ̇(t) is subunit at γ(t) for a.e. t ∈ (0, T )}. (1.4)

In the case L = ∆ the intrinsic distance coincides with the Euclidean distance and more generally if L is
uniformly elliptic, d provides a distance which is equivalent to the Euclidean one.

The following characterization of subunit vectors allows to consider d(x; y) as the minimal time function for
a control system associated with L.

Proposition 1.1. A vector v ∈ IRN is a subunit vector at x ∈ IRN with respect to the operator L if and only
if there exists w ∈ IRM with |w| ≤ 1 such that v = σ(x)w.

Proof. We give the proof of the “only if” part just for the reader’s convenience. Let us denote by Bx the set
of subunit vectors at x ∈ IRN with respect to the operator L and by Cx := {σ(x)w : w ∈ IRM , |w| ≤ 1}. We
observe that Cx is a closed and convex subset of IRN . We suppose by contradiction that there is v ∈ Bx \ Cx.
By Hahn-Banach Theorem there are b ∈ IRN and α > 0 such that 〈v, b〉 ≥ α and 〈σ(x)w, b〉 < α for all |w| ≤ 1.
Let us take w = σT (x)b

|σT (x)b| · With this choice of w we have the following estimate

α ≤ |〈v, b〉| ≤ |σT (x)b| = 〈σT (x)w, b〉 < α, (1.5)

which is a contradiction and we conclude. �
The previous proposition allows to define d(x; y) as the minimal time function associated to the following

symmetric control system: {
ẏ(t, u) = σ(y(t, u))u(t), u(t) ∈ IRM , |u(t)| ≤ 1
y(0, u) = x

(1.6)

where the control u ∈ U := {u : [0,∞) → IRM , u measurable } and the target T = {y}. Indeed, the Dynamic
Programming Principle (see e.g. [3, 5]) allows to prove that dy(x) = d(x; y) satisfies, in the viscosity sense, the
equation (0.6), with

H1(x, p) = sup
|u|≤1

{−σ(x)u · p} = sup
|u|≤1

{−u · σT (x)p}

Hence, being the sup attained at u = − σT (x)p
|σT (x)p| if σT (x)p �= 0 and at u = 0 in the other case, we get H1(x, p) =

|σT (x)p|.
Let us mention that the symmetric control systems (1.6) play an important role for robotic applications to

wheeled vehicles, to object manipulation and for the study of nonholonomic systems (see e.g. [12]).
Assume L satisfies the following hypothesis:

(A2)

∣∣∣∣∣∣
there exists m ∈ IN such that the Lie algebra spanned by the vector fields
Xi for i = 1, . . . ,M by means of commutators of length ≤ m has
rank N at all points x ∈ IRN .

Observe that the hypothesis (A2) is equivalent to the subelliptic estimate

‖u‖Hε ≤ ‖u‖L2 + ‖Lu‖L2 (1.7)

with ε =
1
m

(see [21]) and therefore it characterizes the subelliptic operators.
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In [20] Fefferman and Phong proved that (1.7) is equivalent to

∃C > 0 such that B(x,R) ⊆ BL(x,CR
1
m ) ⊆ B(x,R

1
m ) ∀R < R0; ∀x ∈ IRN (1.8)

where BL denotes the ball associated to the intrinsic distance d, and B denotes the euclidean ball. Thus the
topology induced by d is equivalent to the euclidean topology. We observe that the condition (1.8) can be
considered as a controllability property for the control system (1.6). Indeed, it ensures that the reachable set at
time t,

R(t) = {z ∈ IRN : there exists u ∈ U such that y(0, u) = z and y(τ, u) = y for some τ ≤ t}

contains an euclidean ball, for all t > 0 small enough. This property is known in the literature as small time
local controllability (in short STLC) property (see [31]).

Finally let us assume that the matrix σ(x) which defines the operator L satisfies the additional assump-
tion (A1). Then the following result holds (see e.g. [3, 16]).

Theorem 1.1. Assume that σ ∈ C0,1
loc (IRN ,MN,M(IR)) and satisfies (A1) and (A2). Then d(x; y) is the unique

nonnegative viscosity solution of the problem (0.6), with H1(x, p) = |σT (x)p|. Moreover, it satisfies d(x; y) < +∞
for every x, y ∈ IRN , lim|x−y|→+∞ d(x; y) = +∞, the inequality (0.8), and the local Hölder continuity (0.9) of

exponent α =
1
m

with m defined in (A2).

Remark 1.1. The hypothesis (A1), which is relative to the behavior of σ for |x| large, ensures in particular the
existence and uniqueness of a global solution of (1.6) for fixed u ∈ U . In particular (A2) holds true if x→ σ(x)
is Lipschitz continuous in IRN , which is the case if the matrix A(x) = σ(x)σT (x) satisfies Aij ∈ C2(IRN , IR)
with |∇2Aij(x)| ≤M for a suitable M > 0.

In the framework of the subelliptic operators, the sublaplacians on nilpotent stratified Lie groups play a
fundamental role. These operators are left invariant with respect to the action ◦ of a group and are homogeneous
with respect to a family of dilations in a nilpotent stratified Lie group G.

In this case (1.8) holds true with R0 = +∞ and the distance d(x; 0) is homogeneous of degree one with
respect to an intrinsic dilation δλ of the group, namely it satisfies

d(δλ(y); 0) = λd(y; 0).

Moreover, d(x; y) can be defined through the group law ◦ by putting d(x, y) = d(y−1 ◦ x, 0) where y−1 is the
inverse of y with respect to ◦, i.e. y−1 = −y.

Thus d(x; y) is finite for every x, y ∈ G and it goes to infinity as |x − y| → +∞. For this reason, in this
particular case, hypothesis (A1) is no more needed to ensure the previous properties. Furthermore, in this case,
d(x; y) ≤ C|x − y| as |x− y| → ∞.

The most important example of sublaplacian on a nilpotent stratified Lie group is the Heisenberg Laplacian
described in the following example.
Example 1. Take the Heisenberg group G = Hn = (IR2n+1, ◦) where the group action ◦ is defined as

x ◦ y =

(
x1 + y1, . . . , x2n + y2n, x2n+1 + y2n+1 + 2

n∑
i=1

(xn+iyi − xiyn+i)

)
,

and the dilation is given by
δλ(y) = (λy1, . . . , λy2n, λ

2y2n+1).
The fields Xi defining the Heisenberg Laplacian are given in this case by

Xi =
∂

∂xi
+ 2xi+n

∂

∂x2n+1
, Xi+n =

∂

∂xi+n
− 2xi

∂

∂x2n+1
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for i = 1, . . . , n. Moreover, the eikonal equation (0.6) is

H1(x, p) =

(
n∑

i=1

(pi + 2xi+np2n+1)2 + (pi+n − 2xip2n+1)2
) 1

2

= 1.

Let us mention that H1 in this case is the Hamiltonian associated, by the Dynamic Programming Principle, to
the famous Brockett system (1.6), which can be viewed as the prototype for first bracket controllable systems
involved to model nonholonomic effects, see [11, 12].

2. Comparison result

The aim of this section is to prove a comparison result between unbounded semicontinuous viscosity subso-
lutions and supersolutions of the following Cauchy problem{

ut +H(x,Du) = 0 in IRN × (0, T )
u(x, 0) = h(x) in IRN .

(2.1)

We assume that the Hamiltonian H : IR2N → IR satisfies (H1) and (H2).
We will start by considering the model case (0.10) and then the more general case.
Next we recall a known result for convex Hamiltonians that we will use in the sequel (see e.g. [3, 5]).

Theorem 2.1. Let Ω ⊆ IRN be an open set and let F : Ω × IR × IRN → IR be a continuous function such that

p→ F (x, r, p) is convex (2.2)

and
|F (x, r, p) − F (y, r, p)| ≤ mR(|x− y|(1 + |p|))

for all |x|, |y| ≤ R, p ∈ IRN and |r| ≤ R and for some modulus of continuity mR. Then u ∈ C(IRN ) is a viscosity
solution of the first order equation

F (x, u,Du) = 0 in Ω (2.3)
if and only if

F (x, u(x), p) = 0, for all x ∈ Ω, p ∈ D−u(x).

If σ is a matrix satisfying the hypotheses of Theorem 1.1 then Theorems 1.1 and 2.1 yield that for every
x0 ∈ IRN \ {0} and p ∈ D−d(x0)

|σT (x0)p| = 1. (2.4)
Given T > 0, we denote by USC(IRN × [0, T ]) the set of upper semicontinuous functions in IRN × [0, T ] and by
LSC(IRN × [0, T ]) the set of lower semicontinuous functions in IRN × [0, T ].

2.1. The quadratic case

In this section we are going to prove the Comparison Principle in the particular case when the Hamiltonian
is given by (0.10) with β = 2 and b satisfying (0.11). On the initial data h and the supersolution v, we assume
that for some K > 0,

h(x), v(x, t) ≥ −K(1 + d(x))
where d(x) = d(x; 0) is defined in (0.6) with H1(x, p) = |σT (x)p|. This corresponds to the case f ≡ I in (0.12)
and (0.13). Moreover we suppose that (0.13) is verified with γ = 2, namely

lim sup
|x−y|→+∞

d(x; y)
|x− y|2 < 1. (2.5)
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The extension of the result to more general Hamiltonians and growth conditions on the solutions and initial
data will be provided in the next section.

More precisely we consider the following Cauchy problem

{
ut(x, t) +

1
2
|bT (x)Du|2 = 0 in IRN × (0, T )

u(x, 0) = h(x) in IRN
(2.6)

under the following basic hypotheses on the data:
(Q1) (Assumption on b): b ∈ C(IRN ;MN,M (IR)) is locally Lipschitz continuous and verifies

Cσ(x)σT (x) − b(x)bT (x) ≥ 0 for all x ∈ IRN ,

for some constant C > 0 and for some matrix σ satisfying the hypotheses of Theorem 1.1.
(Q2) (Assumption on the initial condition h): h ∈ C(IRN ; IR) and h(x) ≥ −K(1+ d(x)) for some K > 0, where
d(x) = d(x; 0) is defined in (0.6).

Theorem 2.2. Assume (Q1)–(Q2). Let u ∈ USC(IRN × [0, T ]) and v ∈ LSC(IRN × [0, T ]) be respectively a
viscosity subsolution and supersolution of the problem (2.6). Assume that for some K > 0 we have v(x, t) ≥
−K(1 + d(x)). Then u(x, t) ≤ v(x, t) in IRN × [0, T ].

Before proving the theorem, let us observe that without loss of generality, we may suppose that u is bounded
from above, otherwise we replace u with ũ(x, t) = g(u(x, t)) where g is a C1 approximation of the function

gγ(r) = r ∧ γ

satisfying g(0) = 0 and 0 < g′(x) ≤ 1. Indeed, ũ satisfies

ũt +
1
2
|bT (x)Dũ|2 ≤ g′(u)[ut +

1
2
|bT (x)Du|2] ≤ 0

and ũ(x, 0) = g(u(x, 0)) ≤ g(h(x)) ≤ h(x). Hence, ũ is a subsolution of (2.6) and if we prove that

gγ(u) ≤ v ∀γ,

we obtain the result by letting γ → +∞.
Hence we will prove the theorem by assuming that u is bounded from above.

Proof of Theorem 2.2. We divide the proof in several steps by following the strategy of proof of Theorem 1.1
in [18].
Step 1. Let µ ∈ (0, 1) and set w(x, t) = µu(x, t) − v(x, t). Then w is an USC viscosity subsolution of

⎧⎨
⎩ wt(x, t) −

1
2(1 − µ)

|bT (x)Dw(x, t)|2 = 0 in IRN × (0, T )

w(x, 0) = (1 − µ)K(1 + d(x)) in IRN .
(2.7)

Indeed we have
w(x, 0) = µu(x, 0) − v(x, 0) ≤ (µ− 1)h(x) ≤ (1 − µ)K(1 + d(x)). (2.8)

Now let φ ∈ C1(IRN × [0, T ]) and (x̄, t̄) ∈ IRN × (0, T ] be a strict maximum of w − φ in B(x̄, r) × [t̄− r, t̄+ r]
for some r > 0. For all ε > 0 we set

ψε(x, y, t) = φ(x, t) +
|x− y|2
ε2
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and consider
Mε := max

x,y∈B(x̄,r),t∈[t̄−r,t̄+r]
{µu(x, t) − v(y, t) − ψε(x, y, t)}.

This maximum is achieved at a point (xε, yε, tε) and, since (x̄, t̄) is a strict maximum of w − φ, standard
arguments show that as ε→ 0, we have

|xε − yε|2
ε2

→ 0 (2.9)

and
Mε = µu(xε, tε) − v(yε, tε) − ψε(xε, yε, tε) −→ µu(x̄, t̄) − v(x̄, t̄) − φ(x̄, t̄) = w(x̄, t̄) − φ(x̄, t̄).

It means that, at the limit ε → 0, we obtain some information on w − φ at (x̄, t̄) which will provide the new
equation for w. Before that we can take ψε as a test function to use the fact that µu is a subsolution and v is a
supersolution. Indeed (x, t) ∈ B(x̄, r) × [t̄− r, t̄+ r] �→ µu(x, t) − v(yε, t)− ψε(x, yε, t) achieves its maximum at
(xε, tε) and (y, t) ∈ B(x̄, r) × [t̄− r, t̄+ r] �→ −µu(xε, t) + v(y, t) + ψε(xε, y, t) achieves its minimum at (yε, tε).

Thus there exist a1, a2 ∈ IR such that if pε =
2(xε − yε)

ε2
we have

(a1, pε +Dxφε(xε, yε, tε)) ∈ D+µu(xε, tε);
(a2, pε) ∈ D−v(yε, tε);

a1 − a2 =
∂

∂t
ψε(xε, yε, tε) =

∂

∂t
φ(xε, tε);

(2.10)

a1 +
1
2µ

|bT (xε)pε + bT (xε)Dxφ(xε, tε)|2 ≤ 0 (2.11)

and

a2 +
1
2
|bT (yε)pε|2 ≥ 0. (2.12)

By subtracting (2.12) to (2.11) we get

a1 − a2 +
1
2µ

|bT (xε)pε + bT (xε)Dxφ(xε, tε)|2 −
1
2
|bT (yε)pε|2 ≤ 0.

The convexity of p→ |p|2 implies the following inequality

µ|p|2 − |µp− q|2 ≥ − 1
1 − µ

|q|2 for µ ∈ (0, 1). (2.13)

Using the above inequality with

p = bT (xε)
pε

µ
+ bT (xε)

Dxφ(xε, tε)
µ

and q = (bT (xε) − bT (yε))pε + bT (xε)Dxφ(xε, tε)

and taking into account that for some L > 0, |(bT (xε)− bT (yε))pε| ≤ L |xε−yε|2
ε2 = oε(1) as ε→ 0 (b being locally

Lipschitz) we get

0 ≥ φt(xε, tε) −
1

2(1 − µ)
|bT (xε)Dxφ(xε, tε) + (bT (xε) − bT (yε))pε|2

= φt(xε, tε) −
1

2(1 − µ)
|bT (xε)Dxφ(xε, tε) + oε(1)|2.

Now by letting ε→ 0 we obtain that w is a viscosity subsolution of (2.7).
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On the other hand (0.11) implies that

|bT (x)p|2 ≤ C|σT (x)p|2

for every p ∈ IRN . Thus, w is a viscosity subsolution also of⎧⎨
⎩ wt(x, t) −

1
2(1 − µ)

|σT (x)Dw(x, t)|2 = 0 in IRN × (0, T )

w(x, 0) = (1 − µ)K(1 + d(x)) in IRN .
(2.14)

Step 2. Now we are going to construct a viscosity supersolution of the equation (2.14) in IRN × [0, τ ] for some
τ ∈ (0, T ) and then we proceed by using a bootstrap argument on the parameter τ . To this purpose let us set
for δ ∈ (0, 1) and K ′ > 2K,

χδ(x, t) = (1 − µ)K ′ 1 + [(d(x) − δ)+]2

1 − 4Mt
(2.15)

where M > 0 will be determined later and d(x) = d(x; 0) is the solution of (0.6) with H1(x, p) = |σT (x)p|. �

Lemma 2.1. The function defined in (2.15) is a viscosity supersolution of (2.14) in IRN × [0, τ ] for some

0 < τ <
1

4M
·

Proof of Lemma 2.1. We first observe that, being K ′ > 2K, we have

χδ(x, 0) ≥ (1 − µ)K(1 + d(x)).

Moreover the following estimates hold

∂

∂t
χδ(x, t) = (1 − µ)4MK ′ 1 + [(d(x) − δ)+]2

(1 − 4Mt)2

and for every p ∈ D−χδ(x, t) there is q ∈ D−d(x) such that

|σT (x)p| =
2K ′(1 − µ)(d(x) − δ)+

(1 − 4Mt)
|σT (x)q|. (2.16)

By Theorem 2.1 we have |σT (x)q| = 1 for all q ∈ D−d(x). Thus for all p ∈ D−χδ(x, t) and for all t <
1

4M
we

have
∂

∂t
χδ(x, t) −

1
2(1 − µ)

|σT (x)p|2 ≥ (1 − µ)
[

4MK ′

(1 − 4Mt)2
+ 2K ′(2M −K ′)

[(d(x) − δ)+]2

(1 − 4Mt)2

]
.

Hence, if we chooseM >
K ′

2
and τ <

1
4M

, then for all t ∈ (0, τ ] the last term in the previous inequality is strictly

bigger than zero. Therefore χδ is a viscosity supersolution of the equation (2.14) and we can conclude. �
We continue the proof of Theorem 2.2. We notice that for fixed δ > 0, χδ = O(d2(x)) as |x| → +∞. Thus we

have
lim

|x|→+∞
w(x, t) − χδ(x, t) = −∞.

Hence, M = max
IRN×[0,τ ]

[w(x, t) − χδ(x, t)] is attained at a point (x0, t0) with d(x0) ≤ R0, for some R0 > 0.

We assume by contradiction that M > 0 and t0 > 0. Then for η > 0 small enough we still have Mη =
max

IRN×[0,τ ])
[w(x, t) − χδ(x, t) − ηt] > 0.
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For all ε > 0 we introduce the auxiliary function

Φε,η(x, y, t) = w(x, t) − χδ(y, t) − ηt− |x− y|2
2ε

· (2.17)

We claim that the max
IRN×IRN×[0,τ ]

Φε,η(x, y, t) is achieved at a point (xε, yε, tε), lying in a compact set independent

of ε. Indeed by using the triangular inequality (0.8) satisfied by d, for some C > 0 and for ε small we get

Φε,η(x, y, t) ≤ C(1 + d(x) − d2(y) − |x− y|2)
≤ C(1 + d(x; y) + d(y) − d2(y) − |x− y|2).

If |x− y| → +∞, as |x|, |y| → +∞, then because of (2.5) we have d(x; y)−|x− y|2 → −∞. On the other hand if
|x− y| → � < +∞ as |x|, |y| → +∞, then d(x; y)−|x− y|2 remains bounded since d is locally Hölder continuous
in IRN . Thus

lim sup
|x|,|y|→+∞

Φε,η(x, y, t) = −∞,

and we prove the claim.
Moreover standard arguments show that (up to subsequences) as ε→ 0

|xε − yε|2
2ε

→ 0, tε → t̄ > 0

Φε(xε, yε, tε) →Mη.

Thus there are a1, a2 ∈ IR such that such that if pε =
(xε − yε)

ε

(a1, pε) ∈ D+w(xε, tε);
(a2, pε) ∈ D−χδ(yε, tε);
a1 − a2 = η;

(2.18)

a1 −
1

2(1 − µ)
|σT (xε)pε)|2 ≤ 0 (2.19)

and

a2 −
1

2(1 − µ)
|σT (yε)pε|2 ≥ 0. (2.20)

By subtracting (2.20) to (2.19) we get

η − 1
2(1 − µ)

|σT (xε)pε)|2 +
1

2(1 − µ)
|σT (yε)pε|2 ≤ 0.

Now we recall that for every matrix B(x) and every vector ξ ∈ IRN ,we have

|B(x)ξ|2 − |B(y)ξ|2 = 〈(B(x) −B(y))ξ, (B(x) + B(y))ξ〉.

Moreover from (2.16) we have |σT (yε)pε| ≤ 2K′(1−µ)[d(yε)−δ]+

(1−4Mt) ·
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Thus since σ is locally Lipschitz we find

0 < η <
1

2(1 − µ)

〈(
σT (xε) − σT (yε)

)(xε − yε

ε

)
, (σT (xε) + σT (yε))

(
xε − yε

ε

)〉

≤ 1
2(1 − µ)

∣∣σT (xε) − σT (yε)
∣∣ ∣∣∣∣xε − yε

ε

∣∣∣∣
∣∣∣∣(σT (xε) + σT (yε))

(
xε − yε

ε

)∣∣∣∣
≤ 1

2(1 − µ)
L
|xε − yε|2

ε

[∣∣∣∣σT (yε)
(xε − yε)

ε

∣∣∣∣+
∣∣∣∣(σT (xε) − σT (yε) + σT (yε))

(xε − yε)
ε

∣∣∣∣
]

≤ 1
2(1 − µ)

L
|xε − yε|2

ε

(
L
|xε − yε|2

ε
+ 2

2K ′(1 − µ)[d(yε) − δ]+

(1 − 4Mτ)

)
·

Now letting ε → 0 we get 0 < η ≤ 0 which is a contradiction. Therefore, either the maximum M of w(x, t) −
χδ(x, t) vanishes or it is achieved at time t0 = 0. Since by construction we have w(x0, 0) − χδ(x0, 0) ≤ 0 then
for all (x, t) ∈ IRN × [0, τ ] we obtain w(x, t) − χδ(x, t) ≤ 0. Thus

w(x, t) ≤ (1 − µ)K ′ 1 + [(d(x) − δ)+]2

1 − 4Mt
·

Finally letting µ→ 1 we get the claim u(x, t) ≤ v(x, t) and we conclude by a boostrap argument.

2.2. The general case

In this section we prove the comparison result to the more general Cauchy problem (0.1) where the Hamil-
tonian H satisfies the hypotheses (H1) and (H2).

Let f : IR+ → IR+ be a continuous function satisfying (0.12) and (0.13).
We will use the following assumption on h.

(Q2bis) (Assumption on the initial condition h): h ∈ C(IRN ) and h(x) ≥ −K(1 + f(d(x))) for some K > 0,
where d(x) = d(x; 0) is defined in (0.6).

Theorem 2.3. Assume (H1), (H2) and (Q2bis). Let u ∈ USC(IRN × [0, T )) and v ∈ LSC(IRN × [0, T ))
be respectively a viscosity subsolution and supersolution to the problem (0.1). Assume that v(x, t) ≥ −K(1 +
f(d(x))). Then u(x, t) ≤ v(x, t) in IRN × [0, T ].

Proof. The strategy of proof is the same of that of Theorem 2.2 and we will reproduce only the key points.
As in Theorem 2.2 we may assume without loss of generality that u is bounded from above. We first suppose
Φ∗ is a C1,1 strictly increasing function in IR and then we show how to reduce to this case by using standard
approximation arguments.
Step 1. Suppose that Φ∗ is C1,1(IR). In this case the following reciprocity formula, which is standard in convex
analysis, holds true (see e.g. [2]):

−Φ∗(z) + zΦ∗′ (z) = Φ(Φ∗′(z)). (2.21)
Let us consider, for µ ∈ (0, 1) the function w = µu− v. Then w satisfies in the viscosity sense

{
wt − (1 − µ)Φ

(
1

1−µH0(x,Dw)
)
≤ 0 in IRN × (0, T ]

w(x, 0) ≤ (1 − µ)K (1 + f(d(x))) in IRN .
(2.22)

The initial condition is trivially satisfied. As far as the equation is concerned, we take φ ∈ C1(IRN × [0, T ]) and
(x̄, t̄) ∈ IRN × (0, T ] a strict maximum of w − φ in B(x̄, r) × [t̄− r, t̄+ r] for some r > 0. For all ε > 0 we set

ψε(x, y, t) = φ(x, t) +
|x− y|2
ε2
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and consider

Mε := max
x,y∈B(x̄,r),t∈[t̄−r,t̄+r]

{µu(x, t) − v(y, t) − ψε(x, y, t)}.

This maximum is achieved at a point (xε, yε, tε) and, since (x̄, t̄) is a strict maximum of w − φ, standard
arguments show that as ε→ 0,

|xε − yε|2
ε2

→ 0 (2.23)

and

Mε = µu(xε, tε) − v(yε, tε) − ψε(xε, yε, tε) −→ µu(x̄, t̄) − v(x̄, t̄) − φ(x̄, t̄) = w(x̄, t̄) − φ(x̄, t̄).

Moreover there are a1, a2 ∈ IR such that if pε =
2(xε − yε)

ε2

(a1, pε +Dxφ(xε, tε)) ∈ D+µu(xε, tε);
(a2, pε) ∈ D−v(yε, tε);

a1 − a2 =
∂

∂t
ψε(xε, yε, tε) =

∂

∂t
φ(xε, tε);

(2.24)

a1 + µΦ(
1
µ
H0(xε, pε +Dxφ(xε, tε)) ≤ 0 (2.25)

and

a2 + Φ(H0(yε, pε)) ≥ 0. (2.26)

Thus by subtracting (2.26) to (2.25), using the convexity of Φ and H0, the homogeneity of H0 and taking into
account that Φ is non decreasing and that

|H0(xε, pε) −H0(yε, pε)| ≤ Lr|pε||xε − yε| = oε(1)

as ε→ 0 (by (H1) and (2.23)), we get

0 ≥ φt(xε, tε) + µΦ
(

1
µ
H0(xε, pε +Dxφ(xε, tε)

)
− Φ(H0(yε, pε))

≥ φt(xε, tε) − (1 − µ)Φ
(
H0(yε, pε) −H0(xε, pε +Dxφ(xε, tε))

1 − µ

)

≥ φt(xε, tε) − (1 − µ)Φ
(
H0(yε, pε) +H0(xε, Dxφ(xε, tε)) −H0(xε, pε)

1 − µ

)

≥ φt(xε, tε) − (1 − µ)Φ
(
H0(xε, Dxφ(xε, tε)) + oε(1)

1 − µ

)
. (2.27)

By letting ε→ 0 in (2.27) we get

φt(x̄, t̄) − (1 − µ)Φ
(

1
1 − µ

H0(x̄, Dxφ(x̄, t̄)
)

≤ 0.

Since H0 ≤ CH1, we obtain that w is a subsolution also of

wt − (1 − µ)Φ
(

C

1 − µ
H1(x,Dxw)

)
≤ 0. (2.28)
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Now we find a viscosity supersolution χδ(x, t) of (2.28) satisfying χδ(x, 0) ≥ (1 − µ)K(1 + f(d(x))). To this
purpose we consider the function

χδ(x, t) = (1 − µ)
[

K ′

1 − 4Mt
+ Φ∗

(
(d(x) − δ)+

C(1 − 4Mt)

)
(1 − 4Mt)

]

where K ′,M are positive constants to be chosen later and d(x) = d(x; 0) is the viscosity solution of (0.6). The
following estimates hold

∂

∂t
χδ = (1 − µ)

[
4MK ′

(1 − 4Mt)2
− 4MΦ∗

(
(d(x) − δ)+

C(1 − 4Mt)

)
+ Φ∗′

(
(d(x) − δ)+

C(1 − 4Mt)

)
4M(d(x) − δ)+

C(1 − 4Mt)

]

and, being H1 homogeneous of degree 1 with respect to p,

Φ
(

C

1 − µ
H1(x,D−

x χδ)
)

= Φ
(

Φ∗′
(

(d(x) − δ)+

C(1 − 4Mt)

)
H1(x,D−d(x))

)
.

Moreover, since d is a solution of the convex equation (0.6), we have by Theorem 2.1 that H1(x,D−d(x)) = 1.
Therefore, putting

z =
(d(x) − δ)+

C(1 − 4Mt)
,

we obtain

∂

∂t
χδ − (1 − µ)Φ

(
C

1 − µ
H1(x,D−

x χδ)
)

=
(1 − µ)4MK ′

(1 − 4Mt)2
+ 4M(1 − µ)(zΦ∗′(z) − Φ∗(z))

−(1 − µ)Φ(Φ∗′(z))

= (1 − µ)
[

4MK ′

(1 − 4Mt)2
+ (4M − 1)Φ(Φ∗′ (z))

]
,

where we use in the last equality the formula (2.21). Thus if M > 1
4 and t < 1

4M we get

∂

∂t
χδ − (1 − µ)Φ

(
C

1 − µ
H1(x,D−

x χδ)
)
> 0

and we prove the claim.
We have

χδ(x, 0)) = (1 − µ)
[
K ′ + Φ∗

(
(d(x) − δ)+

C

)]
.

Since Φ∗ is nondecreasing,
Φ∗(d(x))
f(d(x))

→ +∞ and f(1−δ
C d(x)) ∼ Lf(d(x)), as d(x) → ∞, we can find K ′ large

enough so that
χδ(x, 0) ≥ (1 − µ)K(1 + f(d(x))). (2.29)

Next for all ε > 0 , we introduce the auxiliary function

Φε,η(x, y, t) = w(x, t) − χδ(y, t) − ηt− |x− y|γ
γε

,

γ being the constant appearing in (0.13). By arguing as in the proof of Theorem 2.2, one can show that
max

IRN×IRN×[0,τ ]
Φε,η(x, y, t) is achieved at a point (xε, yε, tε), lying in a compact set independent of ε such that
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(up to subsequences) as ε→ 0

|xε − yε|γ
γε

→ 0, tε → t̄ > 0

Φε(xε, yε, tε) →Mη.

Thus there are a1, a2 ∈ IR such that such that if pε = |xε − yε|γ−2 (xε−yε)
ε

(a1, pε) ∈ D+w(xε, tε);
(a2, pε) ∈ D−χδ(yε, tε);
a1 − a2 = η;

(2.30)

a1 − (1 − µ)Φ(
C

1 − µ
H1(xε, pε)) ≤ 0 (2.31)

and

a2 − (1 − µ)Φ(
C

1 − µ
H1(yε, pε)) ≥ 0. (2.32)

We first observe that |xε − yε||pε| → 0 as ε → 0. Moreover, since pε ∈ D−χδ(yε, tε), by Theorem 2.1, for some
qε ∈ D−d(yε) and for some C′ > 0 we have

H1(yε, pε) =
(1 − µ)
C

Φ∗′
(

(d(yε) − δ)+

C(1 − 4Mtε)

)
H1(yε, qε) ≤ C′.

Hence, from (0.3) satisfied by H1, we have that |H1(xε, pε)| is bounded as well and moreover,

|H1(xε, pε) −H1(yε, pε)| = oε(1) as ε→ 0.

Thus, in view of the continuity of Φ we get∣∣∣∣Φ
(

C

1 − µ
H1(xε, pε)

)
− Φ

(
C

1 − µ
H1(yε, pε)

)∣∣∣∣ = oε(1),

as ε→ 0. Thus by subtracting (2.31) to (2.32) we get

0 < η ≤ (1 − µ)Φ
(

C

1 − µ
H1(xε, pε)

)
− (1 − µ)Φ

(
C

1 − µ
H1(yε, pε)

)
= oε(1).

By letting ε→ 0 we get a contradiction and we conclude.
Step 2. In the general case we introduce for all λ > 0 the function

Φλ(s) = Φ(s) +
s2

2λ
·

We observe that

Φλ(s) =
|s|2
2λ

−
(

Φ(s) +
s2

2λ

)∗
,

where Φλ(s) denotes the inf-convolution of Φ. It is well-known that Φλ(s) is in C1,1(IR), being Φ a convex
function (see e.g. Attouch [2]). Thus Φλ(s) is in C1,1(IR) as well and moreover

(
Φλ
)∗ is strictly increasing,

see [16].
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Now it is sufficient to notice that the function w = µu− v satisfies in the viscosity sense also the equation

wt − (1 − µ)Φλ

(
1

1 − µ
H0(x,Dw)

)
≤ 0. (2.33)

The conclusion follows by applying Step 1. �
We remark that since (0.4) impliesH(x,−p) = H(x, p), then from Theorem 2.3 it follows directly the following

comparison principle for concave Hamiltonians.

Theorem 2.4. Assume (H1), (H2) and that h ∈ C(IRN ; IR) satisfies h ≤ K(1 + f(d(x))) for some K > 0,
where d(x) = d(x; 0) is defined in (0.6). Let u ∈ USC(IRN × [0, T )) and v ∈ LSC(IRN × [0, T )) be respectively
a viscosity sub- and super-solution of the problem{

ut(x, t) −H(x,Du) = 0 in IRN × (0, T )
u(x, 0) = h(x) in IRN .

(2.34)

Assume that u(x, t) ≤ K(1 + f(d(x))). Then u(x, t) ≤ v(x, t) in IRN × [0, T ].

Remark 2.1. In the case where Φ(t) = tβ, for some β > 1, then we can choose f(t) = tα with 0 < α < β
β−1

provided that the solution d of (0.6) satisfies d(x; y) = o(|x− y|
γ
α ) for |x− y| → +∞, for some γ > 1. This holds

true in particular for the distances associated to Suplaplacians, which behaves at infinity as |x− y|.
It will be the aim of future investigation, the limit case f(d(x; y)) = O(Φ∗(d(x; y))). At this purpose, let us

observe that if Φ(t) = t log (1 + t) and d(x; y) ∼ |x − y| at infinity, then Φ∗(t) ≥ t
α

α−1 for all α > 1, so that we
cannot find functions f satisfying both the conditions: f(|x− y|) − |x− y|γ → −∞ as |x− y| → +∞, for some
γ > 1 and f(d) = O(Φ∗(d)). Indeed, choosing α < γ

γ−1 , we get

f(d)
Φ∗(d)

=
f(d)

|x− y|γ
|x− y|γ
Φ∗(d)

≤ |x− y|γ
Φ∗(d)

≤ |x− y|γ

|x− y| α
α−1

→ 0.

3. Existence results

In the framework of viscosity solutions, the existence is usually obtained as a consequence of the comparison
principle by means of Perron’s method of Ishii [22] as soon as we can build a sub- and a supersolution to the
problem (0.1) which are bounded from below by a function growing at most as f(d(x)), f(t) being the function
appearing in (0.13).

As mentioned in the introduction, if H0 satisfies (0.6) (so that we can choose H1 = H0) the existence of
a solution of (0.1) has been proved by Capuzzo Dolcetta and Ishii in [16], (see also [14, 15]). Moreover, they
provide the following Hopf–type representation formula for the solution of (0.1) with t ∈ [0,+∞):

u(x, t) = inf
y∈IRN

[
h(y) + tΦ∗

(
d(x; y)
t

)]
, (3.1)

where d(x; y) is the distance associated to H0. The following Theorem provides an existence result in the case
where H0 does not satisfies (0.6) and therefore the result of [16] does not apply.

Theorem 3.1 (existence convex case). Assume (H1), (H2) and suppose that h(x) ≥ −K(1 + f(d(x))) for
some K > 0, where d(x) = d(x; 0) is defined in (0.6). Then there is a unique viscosity continuous solution u(x, t)
of (0.1) such that u(x, t) ≥ −K(1 + f(d(x))) for all (x, t) ∈ IRN × [0, T ].

Proof. The function

u(x, t) = inf
y∈IRN

[
h(y) + tΦ∗

(
d(x; y)
Ct

)]
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is a viscosity subsolution of (0.1) since Φ(H0(x, p)) ≤ Φ(CH1(x, p)) and u is a viscosity solution of (0.1) with
H(x, p) = Φ(CH1(x, p)) as it is proved in [16]. Moreover, for all M > 0, the function u(x, t) = Mt + h(x) is
a viscosity supersolution as it is immediate to check simply by observing that H(x, p) ≥ 0 for all x, p. Since
u(x, t) ≤ u(x, t), by the Perron method (see [22]), there exists a continuous solution of (0.1) in between u and
u and we conclude. �

Since H(x,−p) = H(x, p), from Theorem 3.1 it follows directly an existence result for the concave prob-
lem (2.34). More precisely,

Theorem 3.2 (existence concave case). Assume (H1), (H2) and suppose that h(x) ≤ K(1+f(d(x))) for some
K > 0, where d(x) = d(x; 0) is defined in (0.6). Then there is a unique continuous viscosity solution u(x, t)
of (2.34) such that u(x, t) ≤ K(1 + f(d(x))) for all (x, t) ∈ IRN × [0, T ].

We observe that Theorem 3.2 can be proved independently from Theorem 3.1 by using as barriers the
functions u(x, t) = −Mt+ h(x) which is a subsolution of (2.34) for M > 0 large enough and

u(x, t) = K + 3T
(

1 − t

2T

)
Φ∗
(

(d(x) − δ)+

3CT (1 − t
2T )

)

which is supersolutions of (2.34) if δ ∈ (0, 1), K > 0 is large enough, and C > 0 is the constant defined in (H2).
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