
1 

Comparison and integration of 

deleteriousness prediction methods for 

nonsynonymous SNVs in whole exome 

sequencing studies 

Chengliang Dong1,2,*, Peng Wei4,6,*, Xueqiu Jian5, Richard Gibbs7, Eric Boerwinkle4,5,7, Kai Wang1,2,3 and 

Xiaoming Liu4,5 

 

1Zilkha Neurogenetic Institute, 2Biostatistics Division, Department of Preventive Medicine, 3Department of 

Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA  90033, USA; 4Human 

Genetics Center, 5Division of Epidemiology, Human Genetics and Environmental Sciences and 6Division of 

Biostatistics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 

Texas, 77030, USA; 7Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, 

USA. 

Correspond to: 

Xiaoming Liu, Human Genetics Center, University of Texas at Houston, PO Box 20186, Houston, Texas 77225; 

E-mail: Xiaoming.Liu@uth.tmc.edu; Fax: (713)500-0900 

And 

Kai Wang, 1501 San Pablo Street, ZNI 221, Keck School of Medicine, University of Southern California, Los 

Angeles, CA 90089; E-mail: Kaiwang@usc.edu; Fax: (323)442-2145 

 

*Contributed equally. The authors wish it to be known that, in their opinion, the first 2 authors should be 

regarded as joint First Authors. 

 

  

mailto:Xiaoming.Liu@uth.tmc.edu
mailto:Kaiwang@usc.edu


2 

Abstract 

Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing 

pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. 

Although many deleteriousness prediction methods have been developed, their prediction results are 

sometimes inconsistent with each other and their relative merits are still unclear in practical 

applications. To address these issues, we comprehensively evaluated the predictive performance of 

eighteen current deleteriousness-scoring methods, including eleven function prediction scores 

(PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, 

SNPs&GO, and MutPred), three conservation scores (GERP++, SiPhy and PhyloP) and four ensemble 

scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest 

discriminative power among independent scores and ensemble scores, respectively. Moreover, to 

ensure unbiased performance evaluation of these prediction scores, we manually collected three 

distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed 

two new ensemble scores that integrate nine independent scores and allele frequency. Our scores 

achieved the highest discriminative power compared with all the deleteriousness prediction scores 

tested and showed low false positive prediction rate for benign yet rare nonsynonymous variants, 

which demonstrated the value of combining information from multiple orthologous approaches. 

Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores 

for 87,347,044 possible variants in the whole-exome and made them publicly available through the 

ANNOVAR software and the dbNSFP database.  

 

Introduction 

 One of the greatest challenges in whole exome sequencing (WES) studies is the ability to distinguish 

pathogenic mutations from a large number of background variations. A common strategy is to filter for novel 

nonsynonymous single nucleotide variants (nsSNVs) that are found in patients and computationally 

predicted to be deleterious, which relies on the accuracy of the prediction methods (1). Multiple algorithms 

were developed for predicting such deleteriousness based on different information of the variant, such as its 

sequence homology (2), protein structure (3, 4) and evolutionary conservation (5). These methods 

demonstrated themselves to be useful, however, they are not directly comparable with each other due to the 

difference in information and algorithms they used for predicting deleteriousness. Therefore, it is still unclear 

which one(s) to use for prioritizing nsSNVs in WES-based studies of human diseases to minimize both false 

positive and false negative prediction rates. While a few comparison studies have been done (6-10), the range 

of methods under comparison and/or the size of benchmark dataset often limited their scope and 

generalizability for WES studies. 

One of the keys to a fair comparison lies in unbiased testing datasets. To ensure such fair comparison, 

we manually curated three distinct testing datasets, on which no prediction methods compared were tuned 
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(Table 1). On these three testing datasets, we performed a comprehensive comparative study of eighteen 

deleteriousness prediction scoring methods, including eleven function prediction scores (PolyPhen-2 (v2.2.2, 

released in Feb, 2013) (11), SIFT (Human_db_37_ensembl_63, released in August, 2011) (12), MutationTaster 

(data retrieved in 2013) (8), Mutation Assessor (release 2) (2), FATHMM (v2.3) (13), LRT (November, 2009) 

(6), PANTHER (version 6.1) (14), PhD-SNP (version 2.0.6) (15), SNAP (version 1.0.8)(16), SNPs&GO (17), and 

MutPred (version 1.0) (18)), four ensemble scores (CADD (19), PON-P (20), KGGSeq (version 0.2) (21) and 

CONDEL (22)), and three conservation scores (GERP++ (23), SiPhy (24, 25) and PhyloP 

(phyloP46way_placental) (26, 27)) (Table 2) on their performance to prioritize nsSNVs in WES studies. Here 

function prediction scores refer to scores that predict the likelihood of a given nsSNV causing deleterious 

functional change of the protein; conservation scores refer to scores that measure the conservativeness of a 

given nucleotide site across multiple species; and ensemble scores refer to scores that combine information 

of multiple component scores. To facilitate more accurate variant prediction, we also developed and 

evaluated two ensemble-based approaches, Support Vector Machine (SVM) (28) and Logistic Regression (LR) 

(29), that integrate multiple scoring methods for which whole-exome data are available.  

 

Results 

Curation of training and testing data sets 

To compare the performance of the prediction methods, we constructed four datasets; one for 

training our SVM and LR model and three for testing their performance against all the deleteriousness 

prediction methods. Quality of machine learning models, such as SVM and LR, can be influenced by selection 

of component scores as well as the selection of parameters. To optimize the selection of component scores 

and parameters for our SVM and LR model, we collected training dataset, on which we performed feature 

selection and parameter tuning for our models. Training dataset is composed of 14,191 deleterious mutations 

as True Positive (TP) observations and 22,001 neutral mutations as True Negative (TN) observations, all 

based on the Uniprot database (30, 31). Note that the TN observations contain both common (maximum 

Minor Allele Frequency (MMAF)>1% in diverse populations of the 1000 Genomes project (32)) and rare 

(MMAF <=1%) variants to ensure the generalizability of our model. To reduce potential bias in our 



4 

comparison, we manually collected testing datasets from three distinct contexts. Testing dataset I consists of 

120 TP observations that are deleterious variants recently reported to cause Mendelian diseases, diseases 

caused by single-gene defects, with experimental support in 57 recent publications (after January 1st, 2011) 

from the journal Nature Genetics and 124 TN observations that are common neutral variants (MMAF >1%) 

newly discovered from participants free of Mendelian disease from the Atherosclerosis Risk in Communities 

Study (ARIC) study32 via the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

sequencing project (33, 34). Testing dataset II is derived from the VariBench (35) dataset II, a benchmark 

dataset used for performance evaluation of nsSNV scoring methods. Because VariBench dataset II contains 

mutations that overlap our training dataset, we removed these mutations and curated 6,279 deleterious 

variants as our TP observations and 13,240 common neutral variants (MMAF >1%) as our TN observations. 

As rare variants may have different features compared with common variants in the populations (36), a 

prediction method that puts too much weight on those features may not perform well in separating rare 

deleterious variants from rare neutral variants. In order to evaluate the performance of prediction methods 

on rare variants, we also prepared testing dataset III that contains 10,164 rare neutral mutations (singletons) 

from 824 European Americans from the cohort random samples of the ARIC study32 via the CHARGE 

sequencing project (33, 34)). Note that as testing dataset I and III were collected from recently available 

projects and publications and that testing dataset II was used solely for benchmark in performance 

comparison studies, they are unlikely to be used for tuning current prediction methods evaluated in our 

study. Even though prediction methods, such as FATHMM, applied Varibench datasets (from which our 

testing dataset II was derived), they only used the data for performance evaluation purpose, not for model 

tuning (10). Therefore, to our knowledge, our testing datasets are unbiased benchmark datasets to ensure a 

fair comparison between different prediction methods. A summary of the datasets is presented in Table 1, 

and the complete datasets are available in Table S8. 

Prediction scores 

We obtained nine deleteriousness prediction scores, including six function prediction scores (PolyPhen-

2, SIFT, MutationTaster, Mutation Assessor, FATHMM and LRT) and three conservation scores (GERP++, 

SiPhy and PhyloP), for all variants in all datasets. Additionally, we obtained nine more deleteriousness 
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prediction scores (PANTHER, PhD-SNP, SNAP, SNPs&GO, MutPred, PON-P, KGGSeq, CONDEL and CADD) for 

testing dataset I and three more scores for testing dataset II and III (KGGSeq, CONDEL and CADD) (Table 2). 

Note that we were not able to harvest all eighteen deleteriousness prediction scores for all four datasets, 

mostly due to the accessibility of most of scores from web interface and the speed of obtaining these scores 

for relatively large datasets. Nevertheless, we still successfully obtained nine deleteriousness prediction 

scores for all datasets that we used, which is already the largest in scale for similar comparison studies.  

To construct our own ensemble scores, we used these nine scores (SIFT, PolyPhen-2, GERP++, 

MutationTaster, Mutation Assessor, FATHMM, LRT, SiPhy and PhyloP) for all potential human nsSNVs 

collected in the dbNSFP database, along with the MMAF observed in diverse populations of the 1000 

Genomes project (32), as our component scores. After imputing missing values for observations in training 

dataset, we employed SVM and LR algorithms for computing these two ensemble scores and evaluated three 

kernel functions (linear, radial and polynomial kernel) for the SVM approach, all based on default parameters 

(Table 3).  

From univariate analysis of nine deleteriousness prediction scores and MMAF of training dataset, we 

found that all of the ten predictors showed significant difference in median scores between TP groups and TN 

groups, suggesting that all ten predictors work well in separating TP observation from TN observations 

(P<0.01, Wilcox rank sum test with Bonferroni adjustment) (Table S1, Fig. S1). Moreover, all deleteriousness 

prediction scores showed positive association with deleteriousness while MMAF showed negative association 

with deleteriousness (Table S1). This is consistent with previous findings. Higher prediction score from 

deleteriousness prediction tools indicates higher risk of deleteriousness, while higher MMAF means that the 

mutation is common and therefore is oftentimes less likely to be deleterious. 

We next evaluated the extent of collinearity in the training data, because high levels of collinearity may 

affect the stability of prediction models and inflate variance of parameter estimation. From the results, only 

PolyPhen-2 HVAR and PolyPhen-2 HDIV, two scores from PolyPhen-2 trained on different datasets, raised our 

concern, because they have the highest collinearity and therefore may affect the stability of our prediction 

models (Pearson Correlation Coefficient=0.946). To further examine their effect on model stability, we 

applied stepwise model selection. Results suggested that we include both PolyPhen-2 HVAR and HDIV into 
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final prediction models. As for LR model, reduced model generated from the model selection procedure 

included both scores (Table S6). As for SVM model, to increase stability of our final models, we applied 

regularization on linear, radial and polynomial SVM models. From five-fold cross validation results, we chose 

parameter cost=1 to penalize L2 norm of weights of all predictors to ensure robustness of our final models 

(Fig. S5).  

Comparison of quantitative predictions  

We compared the quantitative predictions of the deleteriousness prediction methods from five different 

aspects. First, to estimate the relative contribution of each prediction score in our SVM and LR model, we 

applied multiple LR on these nine prediction scores and MMAF. Results showed that when evaluated by the 

estimated coefficients in our LR model, all deleteriousness prediction scores (except for SIFT and 

MutationTaster), conservation scores and MMAF were statistically significant predictors for estimating 

deleteriousness of the mutation in our training dataset at α = 0.05 significance level, after adjusting for 

remaining scores in the multiple LR model. This suggests that although most of the function prediction scores 

have already taken certain conservation measures into account, independent conservation scores can still 

bring additional information to the ensemble score. Among all significant deleteriousness prediction scores, 

FATHMM contributed the most to estimating deleteriousness. The adjusted odds of a mutation being 

deleterious is 4.6 times higher than being neutral for 0.1 increase of FATHMM score when remaining scores 

in the multiple LR model remain constant (P < 0.001, Wald-test) (Table S2).  

Second, we compared the predictive performance of individual deleteriousness prediction scores 

altogether, including function prediction scores and conservation scores, using Area Under the Curve (AUC) 

score from Receiver Operating Characteristic (ROC) plots and True Negative Rate (TNR, or specificity) as 

measurements. We found that FATHMM performed the best in all three testing datasets, as expected. The 

probability of a TP observation having a higher predicted deleterious score than a TN observation is the 

highest for FATHMM. In testing dataset I, the probability of a TP observation having a higher predicted 

FATHMM score than a TN observation is 0.87 (AUC = 0.87, 95% confidence interval (CI): 0.82-0.92), which 

was statistically significantly better than the worst performing prediction score, PANTHER (AUC = 0.65, 95% 

CI: 0.58-0.72). FATHMM also achieved the highest performance in testing dataset II (AUC = 0.91 for FATHMM, 
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95% CI: 0.9-0.91) (Fig. 1). In testing dataset III that contains only rare neutral variants, normalized FATHMM 

median score is the second lowest, indicating a relatively high tendency of correctly classifying TN variants. 

Note that even though PolyPhen-2 HVAR has a lower normalized median score, it did not achieve as high 

specificity as FATHMM (shown below). Therefore, FATHMM demonstrated itself to be consistently the best 

performing individual deleteriousness prediction method for separating deleterious variants from neutral 

variants in its quantitative predictions.  

Third, within all individual deleteriousness prediction methods, we compared function prediction 

methods with conservation methods. We found that function prediction methods tend to perform better than 

conservation scores, especially in separating common neutral mutations from deleterious mutations. From 

ROC plots that grouped function prediction scores and conservation scores, we found that the average 

probability of a TP variant having a higher predicted deleterious score than a TN variant is statistically 

significantly higher for function prediction scores than for conservation scores. Indeed, the average 

probability of a TP variant having a higher predicted deleterious score than a TN variant is 0.73 for function 

prediction scores (AUC = 0.73, 95% CI: 0.72-0.75) in testing dataset I and is 0.71 (AUC = 0.71, 95% CI: 0.7-

0.71) in testing dataset II, while for conservation prediction scores the probabilities are only 0.66 (AUC = 

0.66, 95% CI: 0.62-0.71) and 0.6 (AUC = 0.6, 95% CI: 0.6-0.61) in these two datasets (Fig. S3).  

Fourth, we compared existing ensemble methods, both with themselves and with their individual 

component scores. We found that KGGSeq performed the best and it was the only existing ensemble scores 

that outperformed all of its component scores. The probability of a TP variant having a higher KGGSeq score 

than a TN variant is 0.85 in testing dataset I (AUC = 0.85, 95% CI: 0.81-0.90) and is 0.89 in testing dataset II 

(AUC = 0.89, 95% CI: 0.89-0.90). Not only did it achieve the highest performance among all existing ensemble 

scores, it also outperformed all its component scores (SIFT, PolyPhen-2, LRT, MutationTaster and PhyloP) for 

separating deleterious variants from common neutral variants. For example, in testing dataset II, the 

probability of a TP variant having a higher predicted deleterious score than a TN variant is 0.89 (AUC = 0.89, 

95% CI: 0.89-0.90) for KGGSeq, which is statistically significantly higher than all its component scores (AUC = 

0.78, 95% CI: 0.77-0.79 for SIFT; AUC = 0.76, 95% CI: 0.76-0.77 for PolyPhen-2 HDIV; AUC = 0.77, 95% CI: 

0.78-0.8 for PolyPhen-2 HVAR; AUC = 0.67, 95% CI: 0.66-0.67 for LRT; AUC = 0.71, 95% CI: 0.7-0.71 for 
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MutationTaster and AUC = 0.67, 95% CI: 0.66-0.68 for PhyloP). In testing dataset I, KGGSeq also performed 

better than all its component scores (AUC = 0.85, 95% CI: 0.81-0.9), but some of the difference was not 

statistically significant. On the other hand, other existing ensemble scores achieved only intermediate 

performance compared with its component scores. For example, the probability of a TP variant having a 

higher predicted deleterious score than a TN variant is 0.77 for CONDEL (AUC = 0.77, 95% CI: 0.76-0.78) in 

testing dataset II, which was statistically lower than its component score Mutation Assessor (AUC = 0.8, 95% 

CI: 0.8-0.81). In testing dataset I, CONDEL also achieved intermediate performance (AUC = 0.79, 95% CI: 0.73-

0.85), which is worse than two of its component scores but the difference was not statistically significant (Fig. 

1).  

Moreover, we have found that ensemble scores that integrate component scores that are specific to 

protein features may perform better than ensemble scores that integrate a large amount of unfocused 

component scores. For example, KGGSeq, which integrated five component scores (SIFT, PolyPhen-2, LRT, 

MutationTaster and PhyloP), performed better than CADD, which integrated more than forty component 

scores (including deleteriousness prediction scores such as SIFT, PolyPhen-2, GERP++ and many more whole 

genome annotation information such as reference allele, GC content and methylation level, which are beyond 

the scope of our comparison) in both testing datasets. Nevertheless, our results show that integration of 

several deleteriousness prediction tools may be helpful in identifying deleterious mutations from common 

neutral mutations. Therefore, we developed our own ensemble scores LR and SVM that integrated ten 

component scores to test this hypothesis and the results are discussed below.  

Fifth, we compared our two ensemble methods, both with each other and with all other existing 

deleteriousness prediction methods. Our two ensemble scores both integrated nine deleteriousness 

prediction scores including SIFT, PolyPhen-2, GERP++, MutationTaster, Mutation Assessor, FATHMM, LRT, 

SiPhy and PhyloP as well as the MMAF (to allow for the contribution of allele frequency to deleterious 

mutation discovery), but they used slightly different algorithms (LR for LR score and SVM with three different 

kernel functions for three SVM scores) to integrate their component scores. From our results, our ensemble 

scores not only outperformed all its components, but also outperformed all other deleteriousness prediction 

methods evaluated. Indeed, the probability of a TP variant having a higher predicted LR score than a TN 
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variant is 0.92 in testing dataset I (AUC = 0.92, 95% CI: 0.88-0.96) and in testing dataset II (AUC = 0.94, 95% 

CI: 0.93-0.94), both followed by radial SVM (AUC = 0.91 with 95% CI: 0.87-0.95 for testing dataset I and AUC = 

0.93 with 95% CI: 0.92-0.93 for testing dataset II), indicating excellent separation of TP and TN variants. Both 

LR score and radial SVM score have significantly larger AUCs compared with FATHMM (the best individual 

deleteriousness prediction score tested) and KGGSeq (the best existing ensemble score tested) in testing 

dataset I (P-values<0.02, one-sided test with 2000 bootstrap) and testing dataset II (P-values of 2.20 × 10−16, 

one-sided test with 2000 bootstrap). In testing dataset III with only neutral variants, LR achieved the lowest 

median score (0.195) among all normalized deleteriousness scores, indicating the highest tendency of 

correctly classifying TN observations (Fig. S2, S4).  

Comparison of qualitative predictions 

For many function prediction tools, such as SIFT, MutationTaster and PolyPhen-2, categorical 

predictions are available in addition to quantitative function scores. For conservation scores, we determined 

their optimal cutoffs for their qualitative predictions based on their ROC curves for the training data (see 

Materials and Methods section). Therefore, we dichotomized such categorical prediction outcomes and 

compared their performance using a series of different measurements, such as Matthews Correlation 

Coefficient (MCC), True Positive Rate (TPR, or sensitivity) and TNR, for testing datasets I and II, which 

contained both TP and TN observations. As testing dataset III contained only TN observations, we applied 

TNR as the sole measurement for qualitative prediction performance. Our results showed that existing 

deleteriousness prediction methods tend to have unstable performance in different testing datasets and on 

different measurements of qualitative outcomes. For example, the best agreement between binary prediction 

from deleteriousness prediction tools and the actual observation was achieved by MutationTaster in testing 

dataset I (MCC = 0.7), which did not retain in testing dataset II (MCC = 0.4 for MutationTaster, which is the 

10th among the 17 scores compared). Similar results were also observed when using TPR and TNR as 

measurement. For example, while KGGSeq correctly classified the most TP variants in testing datasets I (TPR 

= 0.96) and II (TPR = 0.98), it failed to maintain its predictive power in correctly classifying TN variants (TNR 

= 0.52 and 0.35 for these two datasets, respectively) (Fig. 2). Indeed, its TNR became even lower when 

evaluated on testing dataset III (0.22) (Fig. S4).  
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On the other hand, our ensemble scores, remained to be high performing methods by various 

performance measurements in all three testing datasets. For example, LR achieved the second best agreement 

between binary prediction from deleteriousness prediction tools and the actual observation in testing dataset 

I (MCC = 0.68) and the best agreement in testing dataset II (MCC = 0.71), all followed by radial SVM (MCC = 

0.66 for testing dataset I, MCC = 0.7 for testing dataset II). Similar results were also observed when using TPR 

and TNR as measurements. For example, in testing dataset I and II, LR correctly classified more than 80% of 

TP variants (TPR = 0.8, 95% CI: 0.76-0.84 for testing dataset I, TPR = 0.86, 95% CI: 0.855-0.865) and more 

than 85% of TN variants (TNR = 0.89, 95% CI: 0.86-0.92 for testing dataset I, TNR = 0.85, 95% CI: 0.845-0.855 

for testing dataset II) (Fig. 2). In classifying rare neutral variants, LR and SVM with radial kernel also achieved 

excellent performance. They correctly classified the most TN variants in testing dataset III (TNR = 0.84 for LR, 

95% CI: 0.83-0.85, TNR = 0.85 for SVM, 95% CI: 0.84-0.86), statistically significantly higher than the third best 

tool, FATHMM (TNR = 0.79, 95% CI: 0.78-0.80) (Fig. S4). This implies that large-scale ensemble methods may 

be able to take advantage of different deleteriousness prediction tools and achieve a more balanced 

qualitative prediction performance than individual tools.  

Parameter tuning and feature selection for ensemble approaches 

All the analyses described above on ensemble approaches (LR and SVM) used default parameters. To 

assess whether these parameters can be optimized to achieve substantially better performance, we 

performed five-fold cross validation on training dataset. Based on the AUC values of ROC curves for different 

parameter cocktails (Fig. S5), we found that the performance of default parameter for SVM with linear, radial 

and polynomial kernel was rather similar to that of other parameter settings, indicating that LR and SVM have 

already reached optimal performance using default settings so that the use of default settings for these two 

models were justified. To examine whether our model can be further enhanced using different combination of 

prediction scores, we applied step-wise feature selection and generated a reduced model, which lacks 

MutationTaster score. From step-wise feature selection, all prediction scores except for MutationTaster (SIFT 

score, PolyPhen-2 HDIV, PolyPhen-2, LRT, Mutation Assessor, FATHMM, GERP++, PhyloP, SiPhy and MMAF) 

were chosen to be the optimal feature combination with Akaike Information Criterion (AIC) of 16483.91 

(Table S6). To compare the performance of this reduced model with our final model, which contains all 
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prediction scores, we calculated the accuracy and AUC value of the ROC curve of both models. Results showed 

that these two models share the same accuracy (Accuracy = 0.91 for both reduced model and our final model) 

and that there is no statistical significant difference between the reduced model and our final model 

(AUC=0.97, 95% CI: 0.968-0.971 for both models) (Table S7). Thus, the only difference in predictive 

performance between our final model and the reduced model with the optimal feature combination lies in the 

inclusion of MutationTaster. MutationTaster comprises unique features, such as splice site analysis, protein 

length analysis and direct or indirect protein feature analysis, which could potentially enhance our model in 

the future when more training data are available. Therefore, to allow for information of unique feature 

analysis from MutationTaster, we included it into our final model, which achieved the optimal performance as 

with the reduced model with the optimal combination of prediction scores. 

 

Discussion 

In this study, we evaluated the predictive performance of eighteen existing prediction methods and 

two new ensemble prediction methods on three manually curated testing datasets. Among the existing 

methods, FATHMM achieved the highest discriminative power as evaluated by AUC values of ROC curve. 

However, our two ensemble methods that incorporated nine deleteriousness prediction scores and MMAF, 

achieved the highest discriminative power and outperformed popular tools such as SIFT, GERP++ and 

PolyPhen-2. Our results demonstrated the value of combining information from multiple deleteriousness 

prediction methods. To facilitate variant prioritization in exome sequencing studies, we also merged 

mutations all but testing dataset III, generated our whole-exome ensemble-based prediction scores using LR 

and SVM algorithms and made the prediction scores for 87,347,044 possible variants in the whole-exome 

publicly available in ANNOVAR (37) software and dbNSFP database (38, 39).  

Collinearity is an indicator of redundancy of prediction method pairs. To estimate such redundancy 

and avoid numerical instability of our model, we performed collinearity analysis on current eighteen scoring 

methods and MMAF. Results show that PolyPhen-2 HDIV score and PolyPhen-2 HVAR score have the highest 

linear correlation. PolyPhen-2 HDIV and PolyPhen-2 HVAR are positive correlated with each other; every 1 
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increase of PolyPhen-2 HDIV score is associated with 0.946 increase of PolyPhen-2 HVAR score (Pearson 

correlation coefficient=0.946 evaluated on testing dataset I, Fig. S10). Such strong association potentially 

owes to the fact that they share the same algorithm.  Indeed, the only difference between these two scores lies 

in their training datasets. While PolyPhen-2 HDIV uses alleles encoding human proteins and their closely 

related mammalian homologs as TN observations, PolyPhen-2 HVAR applies common human nsSNVs as TN 

observations. Therefore, algorithm redundancy exists between these two prediction scores and was captured 

by Pearson Correlation Coefficient statistic. On the other hand, the least linear correlation was observed 

between MMAF and SIFT. SIFT score and MMAF are negative correlated with each other; every 1 increase of 

SIFT is associated with 0.030 decrease of MMAF, indicating little redundancy within this pair of scoring 

methods (Pearson Correlation Coefficient = -0.030 evaluated on testing dataset I, Fig. S10). 

Besides predictive performance, ease of use and speed are also important aspects for application of a 

function prediction method. For large-scale WES on Mendelian diseases, it is necessary to perform queries on 

tens of thousands of variants in a relatively short period of time. Some authors of deleteriousness prediction 

methods provide software tools or web servers, on which batch queries are performed. Based on our 

experience, currently SIFT, PolyPhen-2, MutationTaster, Mutation Assessor and KGGSeq have the highest ease 

of use and speed among all methods tested, which allows for direct batch queries using genome coordinates. 

To facilitate querying multiple predictions for large number of nsSNVs, Liu et al. developed a database 

compiling prediction scores from six prediction algorithms (SIFT, PolyPhen-2, LRT, MutationTaster, Mutation 

Assessor and FATHMM) and three conservation scores (PhyloP, GERP++ and SiPhy) for all possible nsSNVs in 

human genome. With the dbNSFP tool, users no longer need to use individual software tools or web servers; 

instead they can obtain all scores easily from dbNSFP. We have also made all dbNSFP scores available directly 

in the ANNOVAR software, so that users can perform automated queries on all function prediction scores 

rapidly (less than one minute for a typical exome). We have now incorporated the SVM and LR scores into the 

ANNOVAR tool and dbNSFP, and we believe that these data sources will benefit researchers working on 

exome sequencing studies. 
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Missing values is another concern when applying a prediction method to large-scale WES data. Some 

methods tend to restrict their predictions to well-annotated proteins or transcripts, which may improve the 

prediction accuracy for non-missing scores, but they suffer from higher rate of missing values. For example, 

PON-P has a higher missing rate than their component scores because it depends on the availability of all 

component scores. Based on the datasets we used for training and testing, we observed some scores 

(PANTHER, SNPs&GO, PON-P and LRT) with relatively high (>10%) rate of missing values (Table 3). To 

reduce such bias caused by missing values, we used imputed scores for computing our SVM and LR scores if 

some component scores are missing. 

Our study also suggested that we increase the predictive power of the prediction tools by integrating 

them through machine learning algorithms, such as LR and SVM. Both LR and SVM scores have enhanced 

performance than all existing prediction tools, indicating that current prediction tools may provide 

orthogonal information that can be integrated using such ensemble-based approaches for better 

performance. Such performance may be further enhanced if we could update our SVM and LR model 

dynamically, with more component scores and more accurate TP/TN observations, as other machine learning 

applications. However, due to the computation cost and the technical challenge of dynamically implementing 

many of the existing deleteriousness prediction methods online or locally for large numbers of mutations, we 

were not able to realize this function. Nevertheless, we were still optimistic that in the future, when most of 

the existing deleteriousness prediction tools come up with whole exome prediction scores, like the CADD 

team, or when they come up with an interface/software package that can handle large dataset easily, there 

may be possibilities of realizing such dynamic update of our ensemble scores. Moreover, even though LR 

performed better than SVM in our study, we caution that this does not necessarily suggest that LR is superior 

for this type of tasks. LR is relatively a simpler algorithm and therefore may be better when the data are 

simpler and do not require kernel transformation. More complex machine learning algorithms, such as SVM, 

Random Forest and Neural Network, can better handle data in large-scale and with multi-collinearity, which 

already appeared to some extend in our intermediate level training data (Fig. S6). In the future when the 

input scores are more complex and more correlated, more complex machine learning algorithms may be 

preferred over LR. For example, if we would like to integrate information such as phenotypic information (40, 
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41), pathway information (42) and protein interaction (43), we may consider those more complex machine 

learning algorithms.  

A problem associated with every comparison study is the quality of the datasets. We used various 

ways to make sure that our four datasets are of high quality. For training dataset, we separated the 

deleterious mutations in Uniprot database according to the genetic model of the underlying disease 

(dominant, recessive, or unspecified) and conducted independent analysis, with the initial hypothesis that the 

mutations identified from recessive disease have higher reliability. With no significant difference observed 

among the three groups, we combined them as a single deleterious mutation set to increase estimation 

accuracy. We also limited the neutral mutations in testing dataset I to the nsSNVs that were observed more 

than ten times (as reported in dbSNP) with 1% or higher MMAF in the population. As for neutral mutation set 

for testing dataset II, we require mutations to have MMAF>1% or being observed more than 22 times in 

dbSNP. This MMAF cutoff may help to eliminate variants that were due to sequencing error or potentially 

deleterious variants with low MMAF (36). However, as rare and common variants may have different 

features, a method that performs well with relatively common (MMAF>1%) neutral mutations may not 

perform well with rare neural mutations. Therefore, we collected singleton nsSNVs from 824 exomes with 

strict control of the mapping quality and individual phenotypes as a test set for rare neural variants. Our 

results showed that our ensemble scores outperformed all other scores evaluated with higher TNR (i.e. lower 

false positive rate).  Another issue associated with dataset is the overlap between our testing datasets and the 

original training datasets of the prediction scoring methods compared. If a prediction method is tested using 

a dataset, which overlaps its training dataset, then it is likely that its performance evaluation will be biased. In 

order to avoid this issue, we manually collected all three testing datasets, on which no current prediction 

scoring method is likely to be trained. For example, testing dataset I has TP observations manually collected 

from recent publications of Nature Genetics and TN observations from recently available data from CHARGE 

project. Applying these testing datasets helps us provide a relatively unbiased evaluation of performance of 

current prediction scoring methods.  
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Thusberg et al. previously published a nice comparison of nine deleteriousness prediction methods. 

Although seven out of nine of their compared methods (PolyPhen-2, SIFT, PANTHER, PhD-SNP, SNAP, 

SNPs&GO and MutPred) overlap our study, there are major differences between their study and ours. First, 

we included many more up-to-date methods into comparison. For example, we included recently published 

methods such as Mutation Assessor, FATHMM and CADD. Second, our comparison has a larger diversity. 

While they focused exclusively on the function prediction methods that use information of amino acid 

substitutions, we not only included methods based on such amino acid substitutions and but also methods 

that are based on DNA sequence information (such as conservation scores) and ensemble scores. Third, while 

Thusberg et al. only compared binary predictions, we compared both the continuous prediction scores and 

the binary predictions. Finally, we constructed new ensemble-based methods (i.e. LR and SVM) that take 

advantage of the characteristics of multiple algorithms in a single application. Nevertheless, we also evaluated 

the same datasets provided by Thusberg and presented the results in Fig. S7. 

In summary, we have performed a comparative study of several popular prediction algorithms for 

nsSNVs in response to the demand of developing a practical guideline for their use in WES-based human 

disease studies. Using three independent testing datasets, we evaluated eighteen existing deleteriousness 

prediction methods on their quantitative and qualitative prediction performance and demonstrated the 

potential of ensemble approaches (LR and SVM). We recommended the regular use of such ensemble 

methods in prioritizing disease-causing nsSNVs to boost the predictive power. 

Materials and Methods 

Training and testing data sets 

We manually collected four datasets of nsSNVs based on the Uniprot database, previous publication 

in Nature Genetics, CHARGE sequencing project and VariBench dataset (Table 1). Training dataset included 

14,191 deleterious mutations, which were annotated as causing Mendelian disease and 22,001 neutral 

mutations, which were annotated as not known to be associated with any phenotypes, all based on Uniprot 

annotation. Considering that some algorithms may have used a part of the nsSNVs in the Uniprot set as 

training data, we constructed our first independent testing dataset, testing dataset I, to reduce potential bias 
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associated with the Uniprot data. It included 120 deleterious mutations recently reported in the journal 

Nature Genetics that belong to 54 different genes and cause 49 diverse diseases, and 124 neutral mutations 

newly discovered from the CHARGE sequencing project. To ensure the quality of these deleterious mutations, 

we used mutations that were reported to cause Mendelian diseases with experimental supports and were 

published after January 1st, 2011. To ensure the quality of the neutral mutations, we applied the following 

criteria when selecting them: (i) with a MMAF >1% in 2,269 exomes from the Atherosclerosis Risk in 

Communities Study (ARIC) study via the CHARGE sequencing project (34); (ii) not reported in the 1000 

Genomes Project or Uniprot and (iii) with Hardy-Weinberg exact test P-value > 0.01. The 1% threshold for 

MMAF was chosen to minimize the contamination of potential Mendelian disease-causing mutations in the 

neutral control set. To provide high quality benchmark datasets, on which novel variant scoring methods can 

be evaluated, Thusberg et al. curated VariBench datasets, seven different datasets of high quality variants, 

whose effects were experimentally verified. These seven datasets cover variants with different properties, 

such as variants affecting protein tolerance, variants affecting transcription factor binding sites and variants 

affecting mRNA splice site. Because our study is mostly related to variants affecting protein tolerance, we 

chose this dataset as benchmark dataset. Original TN observations from this dataset contain 17,393 nsSNV 

extracted from dbSNP database build 131. Original TP observations from this dataset contain 14,610 

missense variations obtained by manual curation from the PhenCode database downloaded in June, 2009, 

IDBases and from 16 individual LSDBs. Because 57.02% of TP observations and 23.87% of TN observations 

overlap our training dataset, we removed these variants from VariBench dataset and constructed our second 

independent testing dataset, testing dataset II, and curated 6,279 deleterious variants as our TP observations 

and 13,240 common neutral variants (MMAF>1%) as our TN observations. In addition to the first two testing 

datasets that contain only common variants as TN observations, we also prepared testing dataset III that 

contains only 10,164 singleton neutral mutations (MMAF<0.1%).  We collected the rare neutral nsSNVs from 

824 European Americans from cohort random samples of the ARIC study32 via the CHARGE sequencing 

project (34). We retained only nsSNVs that have only one alternative allele observed in the sample (i.e. 

singletons). We further removed nsSNVs that have been reported in the 1000 Genomes Project or the NHLBI’s 
Exome Sequencing Project, to make sure those nsSNVs are truly rare and novel. To reduce the artifacts that 

are due to mapping errors, we further filtered out any nsSNVs that reside outside the strict mask of the 1000 
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Genome Project and that with an ENCODE (44) mappability score smaller than 1. To reduce interpretation 

complication, we removed nsSNVs that correspond to multiple transcripts as to RefSeq, Ensembl and Uniprot. 

After the above filtering steps, we retained 10,164 rare nsSNVs. As this number is too large to interrogate all 

the prediction methods, we only compared the methods that are relatively easy to scale up for large number 

of queries, which include SIFT, PolyPhen-2, LRT, MutationTaster, Mutation Assessor, FATHMM, CONDEL, 

KGGSeq and our two ensemble scores.  

Training dataset was used for modeling LR and SVM and testing datasets I and II were used for 

evaluating the performance of all deleteriousness prediction methods on separating deleterious mutations 

from common neutral mutations and testing dataset III was used for evaluating the performance on 

distinguishing rare neutral mutations.  

Additionally, to compare the performance of all deleteriousness prediction tools with the result from 

Thusberg et al, we derived two additional testing dataset, additional testing dataset I and additional testing 

dataset II, from benchmark dataset from his team (Table S4). The results are shown in Fig. S7 and S8. 

Deleteriousness prediction methods 

We compared the predictive performance of all prediction methods (Table 2). Despite their differences 

in the use of prediction features, training data, and statistical models, the premise of most algorithms was that 

nsSNVs, which are evolutionarily conserved and/or lead to critical protein structure changes are likely to be 

deleterious. Each method assigns a quantitative prediction score measuring the likelihood of an nsSNV being 

deleterious as well as qualitative prediction such as “benign” or “damaging” based on some algorithm-specific 

threshold for the prediction score, except for SiPhy, GERP++ and PhyloP, which only provide a prediction 

score.  

In order to compare the performance of the quantitative scores of these prediction methods, we 

obtained all the prediction scores (Table S5). Among them, PolyPhen-2, SIFT, MutationTaster, Mutation 

Assessor, FATHMM, LRT, SiPhy, GERP++ and PhyloP were obtained from the dbNSFP database version 2.1; 

PON-P, PANTHER, PhD-SNP, SNAP and SNPs&GO were obtained via the PON-P webserver; MutPred, Condel 

(ensemble score of SIFT, PolyPhen-2 and Mutation Assessor) and KGGSeq were obtained manually through 
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their own webservers or software package. Due to the limitation of the PON-P webserver that each batch 

query can only submit up to ten variants, we only obtained PON-P, PANTHER, PhD-SNP, SNAP and SNPs&GO 

scores for testing dataset I. It is noted that the prediction scores obtained from dbNFSP database underwent 

transformation from original prediction scores (Table 2). We plotted the ROC curve for each of these 

prediction scores, together with MMAF and ensemble scores, and computed their AUC value of the ROC curve 

as cumulative statistics to evaluate their performances. As for testing dataset III that contains only TN 

observation, we were not able to plot the ROC curve. Therefore, we rescaled all the transformed prediction 

scores with suggested binary cutoff from their continuous prediction score into 0-1 scale with 0.5 being the 

binary cutoff of deleteriousness. We calculated the median of all prediction scores and demonstrated our 

result in Fig. S2.  

We also compared the performance of qualitative categorization of these prediction methods. We 

dichotomized prediction scores according to their current dichotomizing threshold recommended in the 

literature(38, 39) for those providing dichotomizing thresholds. Note that there are three categorical 

outcomes for LRT, D (Deleterious), N (Neutral) and U (Unknown). In order to rule out the influence of 

unknown prediction outcomes and more accurately assess its performance, we discarded the mutations with 

U prediction outcome and calculated its qualitative prediction performance measurements such as MCC, TPR 

and TNR. Note that MCC is a balanced measurement of qualitative prediction outcome and it ranges from -1 to 

1(45). For the remaining prediction methods with no available dichotomizing thresholds, such as SiPhy, 

GERP++ and PhyloP, we calculated the thresholds as the points that were closest to the left-upper corner in 

their ROC curves with training dataset and used these thresholds for dichotomization with all testing 

datasets. We compared their sensitivity and specificity at the dichotomous thresholds for testing datasets I 

and II and demonstrated the results in Fig. 2. As for testing dataset III that contains only TN observations, we 

calculated TNR for all deleteriousness prediction scores and demonstrated the results in Fig. S4. We also 

dichotomized our ensemble-based scores according to their standard dichotomizing threshold (0 for SVM and 

0.5 for LR) and incorporated them into qualitative comparison with other prediction methods.  

Missing scores 
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As for mutations whose prediction scores contained certain missing values (Table 3), we used BPCAfill 

program, a tool designed to impute large dataset with correlated columns or rows with good performance in 

previous studies, to impute these missing values for each of such mutation, by borrowing information from its 

available scores. The imputation was conducted for PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, 

FATHMM, LRT, SiPhy, GERP++ and PhyloP using all non-missing scores for all potential nsSNVs in human 

exome collected in the dbNSFP database v2.1. We reported the overall missing value percentage before and 

after imputation in Table S3. Because there was less than 3% missing rate for all the prediction tools after 

imputation, the small percentage of mutations with missing values was discarded in our comparison analysis 

without risking selection bias. These imputed scores were used to compute two ensemble-based scores using 

SVM and LR algorithms. Note that to avoid the effect of imputed score on performance evaluation in testing 

phase, mutations with any missing values were excluded to ensure that comparison of all deleteriousness 

prediction scores was done using only output scores from the prediction methods. 

SVM and LR 

In order to analyze the advantage of incorporating various prediction scores, we used two models, SVM 

and LR, to compute the ensemble-based scores. We harvested output scores from all of the prediction 

methods for all mutations in all of our datasets, combined them with MMAF from various populations and 

integrated them into input files for constructing LR and SVM, with linear kernel, radial kernel and polynomial 

kernel using R package e1071 (46). Performance for each model under each specific setting was tested on 

testing datasets I and II and was evaluated using R package ROCR (47). Because testing dataset III contains 

only TN observations, we applied manually calculated TNR for evaluating its performance. 

To assess whether the parameters of our SVM model can be optimized to generate substantially better 

performance, we performed five-fold cross validation on training set for different parameter cocktails. For 

linear SVM, cost of 0.01, 0.1, 1 (default), 10 and 100 were evaluated for performance. For polynomial SVM, 

degree of 2, 3 (default), 4, 5 and 6 with default parameter for cost were analyzed. For radial SVM, different 

combinations of gamma of 0.01, 0.1, 1, 10, 100 and 1/11 (default) and cost of 0.01, 0.1, 1 (default), 10 and 100 

were evaluated. Default parameters for all SVMs were chosen as a result. Moreover, in order to assess the 

relative contribution of each prediction score to the performance of LR and SVM, we tested several modified 
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SVM and LR models with one prediction score deleted from the original models and plotted average ROC 

curve and AUC value, as shown in Fig. S9. In addition, in order to test whether our model can be further 

improved by using different combinations of prediction scores, we applied step-wise model selection using 

Akaike Information Criterion (AIC) statistic as a criterion. The resulting model from step-wise model 

selection is shown in Table S6 and is compared with our final model in Table S7.  

To assess the model assumption and evaluate pair-wise redundancy of prediction scores, we checked 

the multi-collinearity between all pairs of predictors using R and demonstrated the results in Fig. S6. 

ROC curves 

We used ROC curves and their AUC values to compare the performance of the quantitative individual 

prediction scores and the ensemble-based scores. For each prediction/ensemble score we evaluated, we 

varied the threshold for calling deleterious nsSNVs from the minimum value to the maximum value of this 

score. And for each threshold, we computed corresponding sensitivity (TP/(TP+FN)), and specificity (1- 

FP/(FP+TN)) for this score, with respect to its proportions of true positive and true negative nsSNVs at this 

threshold, where TP, FP, FN and TN corresponds to true positive, false positive, false negative and true 

negative predictions, respectively. Having values for each point value for each score, the corresponding ROC 

curve was therefore obtained by plotting sensitivity against 1-specificity at each threshold for this score. On 

the other hand, for qualitative prediction evaluation, we computed the point estimates of sensitivity and 

specificity instead, using dichotomized prediction/ensemble score. The ROC plot and sensitivity against 

specificity plot were generated using R package ROCR and the 95% Confidence Interval (CI) using 2000 

bootstrap was generated using R package pROC (48).  
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Legends to Figures  

 

 

Figure. 1. ROC curves for existing prediction scores and our ensemble scores  

These two plots illustrated performance of quantitative prediction outcomes for existing prediction scores and our 

ensemble prediction scores evaluated by the Receiver Operating Characteristics (ROC) curve and Area Under Curve 

(AUC) score for the ROC curve. Higher AUC score indicates better performance. Top plot used testing dataset I as 

benchmark dataset and bottom plot used testing dataset II as benchmark dataset (see Table 1). 95% CI indicates 

95% confidence interval computed with 2000 stratified bootstrap replicates. 
 

 

 

Figure 2. Sensitivity and specificity plots for existing prediction scores and our ensemble scores  

These two plots illustrated the performance of qualitative prediction outcomes of existing prediction scores and 

our ensemble prediction scores, evaluated by sensitivity and specificity. Higher sensitivity/specificity score 

indicates better performance. Top plot used testing dataset I as benchmark dataset and bottom plot used testing 

dataset II as benchmark dataset (see Table 1). The legend table showed various qualitative prediction performance 

measurements for each prediction tool. Matthews Correlation Coefficient (MCC) is a correlation coefficient between 

the observed and predicted binary classification, ranging from -1 to 1, where 1 indicates perfect prediction, -1 

indicates total disagreement between prediction and observation. MCC = TP×TN−FP×FN√(TP+FP)(TP+FN)(TN+FP)(TN+FN) , where TP, 

TN, FP and FN denotes true positive, true negative, false positive and false negative respectively. ACC denotes 

accuracy. ACC =  TP+TNTP+FP+TN+FN. TPR denotes true positive rate, or sensitivity. TPR =  TPTP+FN. TNR denotes true 

negative rate, or specificity. TNR =  TNTN+FP. FPR denotes false positive rate. FPR =  FPTN+FP. FNR denotes false negative 

rate. FNR =  FNTP+FN. PPV denotes positive predictive value. PPV =  TPTP+FP. NPV denotes negative predictive value. NPV =  TNTN+FN. FDR denotes false discovery rate. FDR =  FPFP+TP. For each qualitative prediction performance 

measurement, top three performance scores were highlighted. The brighter the highlight color, the better the 

performance.  
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Table 1. Description of the four datasets used in our study 

Dataset Training 

dataset 

Testing dataset 

I 

Testing dataset 

II 

Testing dataset 

III 

TP 14,191 120 6,279 0 

TN 22,001 124 13,240 10,164 

Total 36,192 244 19,519 10,164 

Source Uniprot 

database (30, 

31) 

Recent Nature 

Genetics 

publications 

for TP variants 

 

VariBench 

dataset II (10, 

35) without 

mutations in 

training 

dataset 

CHARGE 

database (34) 

CHARGE 

database (34) 

for TN variants 

TP: True Positive, number of deleterious mutations that were treated as true positive observations in 

modeling. TN: True Negative, number of non-deleterious mutations that were treated as true negative 

observations in modeling. Total: Total number of mutations for each dataset. (Total = TP+TN) 
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Table 2: Summary of deleteriousness prediction methods analyzed in our study 

Name Category Score used for analysis Deleterious 

Threshold  

Information used 

SIFT Function 

prediction 

1 - Score >0.95 Protein sequence conservation among 

homologs 

PolyPhen-2 Function 

prediction 

Score >0.5 8 protein sequence features,  

3 protein structure features 

LRT Function 

prediction 

Score*0.5 (if Omega ≥1) or  
1-Score*0.5 (if Omega<1) 

 P DNA sequence evolutionary model 

MutationTaster Function 

prediction 

Score (if A or D) or  

1-Score (if N or P) 

>0.5 DNA sequence conservation, splice site 

prediction, mRNA stability prediction, 

protein feature annotations 

Mutation Assessor Function 

prediction 

(Score-Min)/(Max-Min) >0.65 Sequence homology of protein families 

and sub-families within and between 

species 

FATHMM Function 

prediction 

1 - (Score-Min)/(Max-Min)  >=0.45 Sequence homology 

GERP++ RS Conservation 

Score 

Score >4.4 DNA sequence conservation 

PhyloP Conservation 

Score 

Score >1.6 DNA sequence conservation 

SiPhy Conservation 

Score 

Score >12.17 Inferred nucleotide substitution pattern 

per site 

PON-P Ensemble 

Score 

Score P Random forest methodology-based 

pipeline integrating five predictors 

PANTHER Function 

prediction 

Score P Phylogenetic trees based on protein 

sequences 

PhD-SNP Function 

prediction 

Score P SVM-based method using protein 

sequence and profile information 

SNAP Function 

prediction 

Score P Neural network-based method using DNA 

sequence information as well as functional 

and structural annotations 

SNPs&GO Function 

prediction 

Score P SVM-based method using information 

from protein sequence, protein sequence 

profile, and protein function 

MutPred Function 

prediction 

Score >0.5 Protein sequence-based model using SIFT 

and a gain/loss of 14 different structural 

and functional properties 

KGGSeq Ensemble 

Score 

Score P Filtration and prioritization framework 

using information from three levels: 

genetic level, variant-gene level and 

knowledge level 

CONDEL Ensemble 

Score 

Score >0.49 Weighted average of the normalized 

scores of five methods 

CADD Ensemble 

Score 

Score >15 63 distinct variant annotation retrieved 

from Ensembl Variant Effect Predictor 

(VEP), data from the ENCODE project and 

information from UCSC genome browser 

tracks 
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Score indicates raw score for the corresponding function prediction/conservation score output. Max/Min indicates 

the max/min prediction score. Classification outcome for deleterious threshold was used for qualitative prediction 

score analysis. P means that categorical prediction outcome given by the prediction method was used for 

dichotomizing prediction outcomes. 
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Table 3. Missing values for four datasets (%) 

Dataset 

Training 

dataset (%) 

Testing dataset 

I (%) 

Testing dataset 

II (%) 

Testing dataset 

III (%) 

SIFT 6.91 2.87 3.83 3.96 

PolyPhen-2 3.79 2.87 0.55 0.02 

LRT 10.49 13.93 7.97 11.33 

MutationTaster 0.04 0.41 0.10 0.11 

Mutation Assessor 1.51 3.69 2.23 2.67 

FATHMM 4.05 5.73 3.48 6.69 

GERP++ 0 0 0 0.01 

PhyloP 0 0 0 0 

SiPhy 0 0 0 0.285 

PON-P NA 13.93 NA NA 

PANTHER NA 47.95 NA NA 

PhD-SNP NA 6.56 NA NA 

SNAP NA 9.02 NA NA 

SNPs&GO NA 15.98 NA NA 

MutPred NA 7.37 NA NA 

KGGSeq NA 0.82 0.05 0.82 

CONDEL NA 0.41 0.0003 0.32 

CADD 0 0 0 0 

 

(%): the percentage of missing values for each prediction scores for the corresponding dataset. NA: not available. 
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Abbreviations: 

Whole Exome Sequencing (WES), nonsynonymous SNPs (nsSNVs), Support Vector Machine (SVM), Logistic 

Regression (LR), True Positive (TP), True Negative (TN), Maximum Minor Allele Frequency (MMAF), 

Atherosclerosis Risk in Communities Study (ARIC), The Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE), Area Under the Curve (AUC), Receiver Operating Characteristic (ROC), True 

Negative Rate (TNR), Matthews Correlation Coefficient (MCC), True Positive Rate (TPR). 
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SVM (linear)= 0.89 , 95%CI: 0.84 − 0.94

SVM (radial)= 0.91 , 95%CI: 0.87 − 0.95

SVM (polynomial)= 0.89 , 95%CI: 0.84 − 0.94

Logistic Regression= 0.92 , 95%CI: 0.88 − 0.96

SIFT= 0.76 , 95%CI: 0.69 − 0.83

PolyPhen−2 HDIV= 0.81 , 95%CI: 0.75 − 0.87

PolyPhen−2 HVAR= 0.82 , 95%CI: 0.75 − 0.88

LRT= 0.72 , 95%CI: 0.66 − 0.78

MutationTaster= 0.83 , 95%CI: 0.77 − 0.89

Mutation Assessor= 0.83 , 95%CI: 0.77 − 0.89

FATHMM= 0.87 , 95%CI: 0.82 − 0.92

GERP++ RS= 0.78 , 95%CI: 0.71 − 0.85

PhyloP= 0.74 , 95%CI: 0.67 − 0.82

SiPhy= 0.81 , 95%CI: 0.75 − 0.88

Allele Frequency= 0.5 , 95%CI: 0.47 − 0.53

Cadd Phred= 0.83 , 95%CI: 0.77 − 0.89

KGGSeq= 0.85 , 95%CI: 0.81 − 0.9

CONDEL= 0.79 , 95%CI: 0.73 − 0.85

PON−P= 0.84 , 95%CI: 0.79 − 0.89

PANTHER= 0.65 , 95%CI: 0.58 − 0.72

PhD−SNP= 0.86 , 95%CI: 0.81 − 0.91

SNAP= 0.7 , 95%CI: 0.64 − 0.77

SNPs&GO= 0.81 , 95%CI: 0.76 − 0.87

MutPred= 0.84 , 95%CI: 0.79 − 0.89



Performance of quantitative predictions in testing dataset II
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SVM (linear)= 0.88 , 95%CI: 0.87 − 0.88

SVM (radial)= 0.93 , 95%CI: 0.92 − 0.93

SVM (polynomial)= 0.89 , 95%CI: 0.84 − 0.94

Logistic Regression= 0.94 , 95%CI: 0.93 − 0.94

SIFT= 0.78 , 95%CI: 0.77 − 0.79

PolyPhen−2 HDIV= 0.76 , 95%CI: 0.76 − 0.77

PolyPhen−2 HVAR= 0.79 , 95%CI: 0.78 − 0.8

LRT= 0.67 , 95%CI: 0.66 − 0.67

MutationTaster= 0.71 , 95%CI: 0.7 − 0.71

Mutation Assessor= 0.8 , 95%CI: 0.8 − 0.81

FATHMM= 0.91 , 95%CI: 0.9 − 0.91

GERP++ RS= 0.67 , 95%CI: 0.66 − 0.67

PhyloP= 0.67 , 95%CI: 0.66 − 0.68

SiPhy= 0.69 , 95%CI: 0.69 − 0.7

Allele Frequency= 0.75 , 95%CI: 0.74 − 0.75

Cadd Phred= 0.76 , 95%CI: 0.75 − 0.77

KGGSeq= 0.89 , 95%CI: 0.89 − 0.9

CONDEL= 0.77 , 95%CI: 0.76 − 0.78



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Performance of qualitative predictions in testing dataset I

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

●

●

●

●

●

●

●

●

●

●

●

●

SVM (linear): mcc= 0.6  , 0.8  , 0.84  , 0.75  , 0.25  , 0.16  , 0.83  , 0.77  , 0.17

SVM (linear): mcc= 0.6  , 0.8  , 0.84  , 0.75  , 0.25  , 0.16  , 0.83  , 0.77  , 0.17

SVM (radial): mcc= 0.66  , 0.82  , 0.79  , 0.88  , 0.12  , 0.21  , 0.9  , 0.75  , 0.1

SVM (polynomial): mcc= 0.6  , 0.8  , 0.8  , 0.81  , 0.19  , 0.2  , 0.86  , 0.74  , 0.14

Logistic Regression: mcc= 0.68  , 0.84  , 0.8  , 0.89  , 0.11  , 0.2  , 0.91  , 0.76  , 0.091

SIFT: mcc= 0.43  , 0.71  , 0.68  , 0.75  , 0.25  , 0.32  , 0.79  , 0.63  , 0.21

PolyPhen−2 HDIV: mcc= 0.56  , 0.78  , 0.92  , 0.59  , 0.41  , 0.08  , 0.76  , 0.84  , 0.24

PolyPhen−2 HVAR: mcc= 0.56  , 0.79  , 0.88  , 0.67  , 0.33  , 0.12  , 0.79  , 0.79  , 0.21

LRT: mcc= 0.57  , 0.79  , 0.88  , 0.66  , 0.34  , 0.12  , 0.78  , 0.81  , 0.22

MutationTaster: mcc= 0.7  , 0.86  , 0.94  , 0.74  , 0.26  , 0.062  , 0.83  , 0.9  , 0.17

Mutation Assessor: mcc= 0.49  , 0.74  , 0.7  , 0.8  , 0.2  , 0.3  , 0.83  , 0.66  , 0.17

FATHMM: mcc= 0.48  , 0.7  , 0.55  , 0.91  , 0.086  , 0.45  , 0.9  , 0.59  , 0.1

GERP++ RS: mcc= 0.48  , 0.75  , 0.77  , 0.72  , 0.28  , 0.23  , 0.79  , 0.69  , 0.21

PhyloP: mcc= 0.49  , 0.75  , 0.76  , 0.73  , 0.27  , 0.24  , 0.8  , 0.69  , 0.2

SiPhy: mcc= 0.49  , 0.75  , 0.8  , 0.69  , 0.31  , 0.2  , 0.78  , 0.71  , 0.22

Allele Frequency: mcc= 0.0043  , 0.58  , 0.96  , 0.037  , 0.96  , 0.035  , 0.58  , 0.43  , 0.42

PON−P: mcc= 0.34  , 0.64  , 0.31  , 0.95  , 0.048  , 0.69  , 0.86  , 0.59  , 0.14

PANTHER: mcc= 0.39  , 0.66  , 0.38  , 0.94  , 0.056  , 0.62  , 0.87  , 0.61  , 0.13

PhD−SNP: mcc= 0.54  , 0.77  , 0.7  , 0.83  , 0.17  , 0.3  , 0.8  , 0.74  , 0.2

SNAP: mcc= 0.23  , 0.61  , 0.53  , 0.7  , 0.3  , 0.47  , 0.63  , 0.6  , 0.37

SNPs&GO: mcc= 0.53  , 0.75  , 0.55  , 0.94  , 0.065  , 0.45  , 0.89  , 0.68  , 0.11

MutPred: mcc= 0.55  , 0.77  , 0.74  , 0.81  , 0.19  , 0.26  , 0.79  , 0.76  , 0.21

KGGSeq: mcc= 0.53  , 0.73  , 0.96  , 0.52  , 0.48  , 0.042  , 0.66  , 0.93  , 0.34

CONDEL: mcc= 0.44  , 0.72  , 0.71  , 0.73  , 0.27  , 0.29  , 0.72  , 0.72  , 0.28

Cadd Phred: mcc= 0.53  , 0.77  , 0.79  , 0.74  , 0.26  , 0.21  , 0.81  , 0.71  , 0.19

MCC ACC TPR TNR FPR FNR PPV NPV FDR

SVM,(linear) 0.6 0.8 0.84 0.75 0.25 0.16 0.83 0.77 0.17

SVM,(radial) 0.66 0.82 0.79 0.88 0.12 0.21 0.9 0.75 0.1

SVM,(polynomial) 0.6 0.8 0.8 0.81 0.19 0.2 0.86 0.74 0.14

Logistic,Regression 0.68 0.84 0.8 0.89 0.11 0.2 0.91 0.76 0.091

SIFT 0.43 0.71 0.68 0.75 0.25 0.32 0.79 0.63 0.21

PolyPhenI2,HDIV 0.56 0.78 0.92 0.59 0.41 0.08 0.76 0.84 0.24

PolyPhenI2,HVAR 0.56 0.79 0.88 0.67 0.33 0.12 0.79 0.79 0.21

LRT 0.57 0.79 0.88 0.66 0.34 0.12 0.78 0.81 0.22

MutationTaster 0.7 0.86 0.94 0.74 0.26 0.062 0.83 0.9 0.17

Mutation,Assessor 0.49 0.74 0.7 0.8 0.2 0.3 0.83 0.66 0.17

FATHMM 0.48 0.75 0.55 0.91 0.086 0.45 0.9 0.59 0.1

GERP++,RS 0.48 0.75 0.77 0.72 0.28 0.23 0.79 0.69 0.21

PhyloP 0.49 0.75 0.76 0.73 0.27 0.24 0.8 0.69 0.2

SiPhy 0.49 0.75 0.8 0.69 0.31 0.2 0.78 0.71 0.22

Allele,Frequency 0.0043 0.58 0.96 0.037 0.96 0.035 0.58 0.43 0.42

PONIP 0.34 0.64 0.31 0.95 0.048 0.69 0.86 0.59 0.14

PANTHER 0.39 0.66 0.38 0.94 0.056 0.62 0.87 0.61 0.13

PhDISNP 0.54 0.77 0.7 0.83 0.17 0.3 0.8 0.74 0.2

SNAP 0.23 0.61 0.53 0.7 0.3 0.47 0.63 0.6 0.37

SNPs&GO 0.53 0.75 0.55 0.94 0.065 0.45 0.89 0.68 0.11

MutPred 0.55 0.77 0.74 0.81 0.19 0.26 0.79 0.76 0.21

KGGSeq 0.53 0.73 0.96 0.52 0.48 0.042 0.66 0.93 0.34

CONDEL 0.44 0.72 0.71 0.73 0.27 0.29 0.72 0.72 0.28

Cadd,Phred 0.53 0.77 0.79 0.74 0.26 0.21 0.81 0.71 0.19
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SVM (linear): mcc= 0.48  , 0.73  , 0.82  , 0.68  , 0.32  , 0.18  , 0.58  , 0.88  , 0.42

SVM (linear): mcc= 0.48  , 0.73  , 0.82  , 0.68  , 0.32  , 0.18  , 0.58  , 0.88  , 0.42

SVM (radial): mcc= 0.7  , 0.85  , 0.87  , 0.85  , 0.15  , 0.13  , 0.76  , 0.92  , 0.24

SVM (polynomial): mcc= 0.6  , 0.8  , 0.8  , 0.81  , 0.19  , 0.2  , 0.86  , 0.74  , 0.14

Logistic Regression: mcc= 0.68  , 0.84  , 0.8  , 0.89  , 0.11  , 0.2  , 0.91  , 0.76  , 0.091

SIFT: mcc= 0.42  , 0.71  , 0.75  , 0.69  , 0.31  , 0.25  , 0.57  , 0.83  , 0.43

PolyPhen−2 HDIV: mcc= 0.37  , 0.63  , 0.88  , 0.49  , 0.51  , 0.12  , 0.48  , 0.89  , 0.52

PolyPhen−2 HVAR: mcc= 0.42  , 0.68  , 0.85  , 0.59  , 0.41  , 0.15  , 0.53  , 0.88  , 0.47

LRT: mcc= 0.38  , 0.66  , 0.81  , 0.59  , 0.41  , 0.19  , 0.51  , 0.86  , 0.49

MutationTaster: mcc= 0.4  , 0.64  , 0.91  , 0.49  , 0.51  , 0.089  , 0.49  , 0.91  , 0.51

Mutation Assessor: mcc= 0.46  , 0.74  , 0.73  , 0.74  , 0.26  , 0.27  , 0.61  , 0.84  , 0.39

FATHMM: mcc= 0.65  , 0.83  , 0.86  , 0.82  , 0.18  , 0.14  , 0.72  , 0.91  , 0.28

GERP++ RS: mcc= 0.26  , 0.62  , 0.68  , 0.6  , 0.4  , 0.32  , 0.48  , 0.77  , 0.52

PhyloP: mcc= 0.32  , 0.65  , 0.73  , 0.6  , 0.4  , 0.27  , 0.5  , 0.8  , 0.5

SiPhy: mcc= 0.3  , 0.65  , 0.7  , 0.61  , 0.39  , 0.3  , 0.5  , 0.79  , 0.5

Allele Frequency: mcc= 0.49  , 0.68  , 0.97  , 0.52  , 0.48  , 0.029  , 0.52  , 0.97  , 0.48

KGGSeq: mcc= 0.36  , 0.56  , 0.98  , 0.35  , 0.65  , 0.017  , 0.42  , 0.98  , 0.58

CONDEL: mcc= 0.4  , 0.71  , 0.7  , 0.72  , 0.28  , 0.3  , 0.54  , 0.84  , 0.46

Cadd Phred: mcc= 0.39  , 0.69  , 0.75  , 0.65  , 0.35  , 0.25  , 0.54  , 0.83  , 0.46

MCC ACC TPR TNR FPR FNR PPV NPV FDR

SVM,(linear) 0.48 0.73 0.82 0.68 0.32 0.18 0.58 0.88 0.42

SVM,(radial) 0.7 0.85 0.87 0.85 0.15 0.13 0.76 0.92 0.24

SVM,(polynomial) 0.59 0.8 0.82 0.8 0.2 0.18 0.69 0.89 0.31

Logistic,Regression 0.71 0.86 0.89 0.85 0.15 0.11 0.76 0.93 0.24

SIFT 0.42 0.71 0.75 0.69 0.31 0.25 0.57 0.83 0.43

PolyPhenI2,HDIV 0.37 0.63 0.88 0.49 0.51 0.12 0.48 0.89 0.52

PolyPhenI2,HVAR 0.42 0.68 0.85 0.59 0.41 0.15 0.53 0.88 0.47

LRT 0.38 0.66 0.81 0.59 0.41 0.19 0.51 0.86 0.49

MutationTaster 0.4 0.64 0.91 0.49 0.51 0.089 0.49 0.91 0.51

Mutation,Assessor 0.46 0.74 0.73 0.74 0.26 0.27 0.61 0.84 0.39

FATHMM 0.65 0.83 0.86 0.82 0.18 0.14 0.72 0.91 0.28

GERP++,RS 0.26 0.62 0.68 0.6 0.4 0.32 0.48 0.77 0.52

PhyloP 0.32 0.65 0.73 0.6 0.4 0.27 0.5 0.8 0.5

SiPhy 0.3 0.65 0.7 0.61 0.39 0.3 0.5 0.79 0.5

Allele,Frequency 0.49 0.68 0.97 0.52 0.48 0.029 0.52 0.97 0.48

KGGSeq 0.36 0.56 0.98 0.35 0.65 0.017 0.42 0.98 0.58

CONDEL 0.4 0.71 0.71 0.71 0.29 0.29 0.54 0.84 0.46

Cadd,Phred 0.39 0.69 0.75 0.65 0.35 0.25 0.54 0.83 0.46
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Table S1. Description of deleteriousness prediction scores and MMAF in training dataset 

 

 

 

 

 

 

 

 

 

Range: range of all the predictors in training dataset. TP: summary statistics for True Positive observations in 

training dataset. TN: summary statistics for True Negative observations in training dataset. Total: Total number of 

mutations in each dataset (Total=TP+TN). sd: standard deviation. p-value: Bonferroni adjusted p-value for Wilcox 

rank sum test between TP group and TN group. ρ: Spearman correlation coefficient of the corresponding 
predictor with deleteriousness status (1: deleterious or TP, 0: neutral or TN). MMAF: maximum Minor Allele 

Frequency in various populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  Range 

  
Total TP TN p-value ρ 

  min max mean sd mean sd mean sd 

SIFT 0 1 0.76 0.31 0.93 0.16 0.64 0.33 < 0.01 0.59 

PolyPhen-2 HDIV 0 1 0.59 0.45 0.9 0.25 0.39 0.43 < 0.01 0.61 

PolyPhen-2 HVAR 0 1 0.51 0.44 0.85 0.29 0.3 0.38 < 0.01 0.60 

LRT 0 1 0.87 0.26 0.98 0.11 0.81 0.3 < 0.01 0.45 

MutationTaster 0 1 0.64 0.41 0.92 0.24 0.46 0.41 < 0.01 0.54 

Mutation Assessor 0 0.95 0.62 0.14 0.72 0.1 0.55 0.12 < 0.01 0.61 

FATHMM 0 1 0.43 0.12 0.53 0.09 0.36 0.08 < 0.01 0.72 

GERP++ RS -12.3 6.17 2.9 3.42 4.6 1.84 1.81 3.74 < 0.01 0.45 

PhyloP -9.28 2.94 1.22 1.31 1.96 0.84 0.74 1.35 < 0.01 0.44 

SiPhy 0 27.69 11.34 5.36 14.75 3.9 9.14 5.02 < 0.01 0.50 

MMAF 0 1 0.12 0.24 0 0.02 0.2 0.28 < 0.01 -0.65 
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Table S2. Summary of logistic regression model built using training dataset 

 

 

Estimate se z value p-value 

Intercept -11.36 0.20 -55.98 < 0.001 

SIFT 0.19 0.11 1.71 0.09 

Polyphen2_HDIV -0.32 0.13 -2.40 0.02 

Polyphen2_HVAR 1.31 0.14 9.64 < 0.001 

LRT -0.32 0.13 -2.43 0.02 

MutationTaster 0.10 0.08 1.26 0.21 

Mutation Assessor 4.30 0.26 16.52 < 0.001 

FATHMM 17.23 0.27 63.87 < 0.001 

GERP 0.08 0.02 4.72 < 0.001 

PhyloP -0.14 0.05 -2.93 0.003 

SiPhy 0.05 0.01 7.07 < 0.001 

MMAF -36.41 1.35 -27.06 < 0.001 

 

 
Estimate: estimated value of the corresponding regression coefficient. se: Standard error of the estimate of the 

coefficient. Intercept: intercept in the linear form of logistic regression model. Z value: Wald-test statistics that 

test the null hypothesis of corresponding estimated coefficient equals zero. P-value: p-value from Wald-test. 

MMAF: maximum Minor Allele Frequency in various population. 
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Table S3. Missing values for the whole exome mutations before and after BPCAfill imputation (%) 

 

Name Before(%) After(%) 

SIFT 2.53 2.53 

Polyphen-2 18.94 2.53 

LRT 24.03 2.53 

MutationTaster 22.75 2.53 

Mutation Assessor 16.67 2.47 

FATHMM 2.53 2.53 

GERP++ 0.01 0.01 

PhyloP 0.001 0.001 

SiPhy 0.04 0.04 

 

Before: the percentage of missing values for each prediction scores before imputation for whole exome mutations. 

After: the percentage of missing values for each prediction scores after imputation for whole exome mutations. 
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Table S4. Additional testing datasets curated for comparing with Thusberg team 

 
Dataset Additional testing dataset I Additional testing dataset I 

TP 18,900 14,221 

TN 20,812 17,150 

Total 39,712 31,371 

Source VariBench dataset II9,30 Additional training dataset I without 

somatic cancer mutations30 

 

TP: True Positive, number of deleterious mutations that were treated as true positive observations in modeling. 

TN: True Negative, number of non-deleterious mutations that were treated as true negative observations in 

modeling. Total: Total number of mutations for each dataset. (Total = TP+TN) 
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Table S5: Web Resources 

Resource URL 

PolyPhen-2 http://genetics.bwh.harvard.edu/pph2/ 

SIFT http://sift.jcvi.org/ 

MutationTaster http://www.mutationtaster.org/ 

LRT http://www.genetics.wustl.edu/jflab/lrt_query.html 

PANTHER http://www.pantherdb.org/tools/csnpScoreForm.jsp 

PhD-SNP http://gpcr2.biocomp.unibo.it/cgi/predictors/PhD-SNP/PhD-SNP.cgi 

SNAP http://rostlab.org/services/snap/ 

MutPred http://mutpred.mutdb.org/ 

SNPs&GO http://snps-and-go.biocomp.unibo.it/snps-and-go/ 

GERP++ http://mendel.stanford.edu/SidowLab/downloads/gerp/ 

PhyloP http://compgen.bscb.cornell.edu/phast/; 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/phyloP44way/ 

PON-P http://bioinf.uta.fi/PON-P/ 

KGGSeq http://statgenpro.psychiatry.hku.hk/limx/kggseq/ 

CONDEL http://bg.upf.edu/condel/home 

CADD http://cadd.gs.washington.edu/ 

dbNSFP http://sites.google.com/site/jpopgen/dbNSFP  

ANNOVAR http://www.openbioinformatics.org/annovar/ 

Uniprot http://www.uniprot.org/ 

1000 Genomes Project http://www.1000genomes.org/ 
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Table S6: Stepwise model selection result 

 

 

Estimate se z value p-value 

Intercept -11.40 0.20 -57.00 < 0.001 

SIFT 0.19 0.11 1.71 0.09 

Polyphen2_HDIV -0.32 0.13 -2.43 0.02 

Polyphen2_HVAR 1.31 0.13 9.81 < 0.001 

LRT -0.32 0.13 -2.17 0.03 

Mutation Assessor 4.30 0.26 16.70 < 0.001 

FATHMM 17.23 0.27 64.07 < 0.001 

GERP 0.08 0.02 4.90 < 0.001 

PhyloP -0.14 0.05 -2.93 0.003 

SiPhy 0.05 0.01 7.66 < 0.001 

MMAF -36.41 1.35 -27.13 < 0.001 

 

 
Estimate: estimated value of the corresponding regression coefficient. se: Standard error of the estimate of the 

coefficient. Intercept: intercept in the linear form of logistic regression model. Z value: Wald-test statistics that 

test the null hypothesis of corresponding estimated coefficient equals zero. P-value: p-value from Wald-test. 

MMAF: maximum Minor Allele Frequency in various population. 
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Table S7: Performance comparison between model generated from step-wise model selection and full 

model (final model) chosen in the current study 

 
 AIC Accuracy AUC 95% CI for AUC 

Full model 16484.51 0.91 0.97 0.968-0.971 

Reduced model 16483.91 0.91 0.97 0.968-0.971 

AIC: Akaike information criterion statistic. AUC: Area Under Curve value for Receiver Operating Characteristic 

(ROC) curve. 95% CI: 95% Confidence interval generated using bootstrap algorithm with 2000 bootstrap. 
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Figure S1. Violin plots of existing deleteriousness prediction scores in training dataset. 

These violin plots illustrated the distribution of the deleteriousness prediction scores as well as MMAF in TP 

(deleterious) groups and TN (neutral) groups. The plot shows the median (indicated by the small white dot), the first 

through the third interquartile range (the thick, solid vertical band), and estimator of the density (shades with different 

colors) of the deleteriousness prediction scores/MMAF in each group. 
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Figure S2. Violin plot of various normalized deleteriousness prediction scores in testing dataset III 

This violin plot illustrated the distribution of the rescaled deleteriousness prediction scores from different 

deleteriousness prediction tools. Note that all prediction scores were rescaled into 0-1 scale with 0 being neutral, 1 

being deleterious. Dotted black line at prediction score of 0.5 indicates the binary cutoff of deleteriousness. The plot 

shows the median (indicated by the small white dot), the first through the third interquartile range (the thick, solid 

vertical band), and estimator of the density (shades with different colors) of the deleteriousness prediction scores from 

each prediction tool.  

 

  

S
IF

T

P
o
ly

P
h

e
n

−2
 H

D
IV

P
o
ly

P
h

e
n

−2
 H

V
A

R

M
u
ta

ti
o

n
T
a

s
te

r

G
E

R
P

+
+

 R
S

P
h
y
lo

P

S
iP

h
y

C
a

d
d

P
h

re
d

L
in

e
a
r 

S
V

M

R
a
d

ia
l 
S

V
M

P
o
ly

n
o

m
ia

l 
S

V
M

L
o
g

is
ti
c
 R

e
g
re

s
s
io

n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

●

●

● ●
● ●

●

●

●

●

V iolin plot of various scores of variants in testing dataset III



5 

 



6 

 

 Figure S3. Combined ROC plot of three categories of deleteriousness prediction scores in testing dataset I and II 

These two plots illustrated performance of quantitative prediction outcomes for combined deleteriousness prediction 

scores evaluated by receiver operating characteristics (ROC) curve and area under curve (AUC) score for the ROC curve. 

Deleteriousness prediction scores were combined into four categories and ROC curves were averaged among all 

prediction scores from the same category Higher AUC score indicates better performance. Top used testing dataset I as 

benchmark dataset and bottom plot used testing dataset II as benchmark dataset (see Table 1). 95% CI indicates 95% 

confidence interval computed with 2000 stratified bootstrap replicates for each category. 
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Figure S4. Boxplot of TNR of various deleteriousness prediction scores for testing dataset III 

 

This plot illustrated the different TNR of various deleteriousness prediction scores. Different colors indicated different 

deleteriousness prediction scores. Error bar indicates standard error. 
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Figure S5. Five-fold cross validation for evaluating different SVM parameters cocktails on training dataset 

 

These eight plots demonstrated that performance of SVM and LR models with different parameter cocktails was as good as 

models with default parameter settings. For linear SVM, cost of 0.01, 0.1, 1 (default), 10 and 100 were evaluated for 

performance (top left plot). For polynomial SVM, degree of 2, 3 (default), 4, 5 and 6 with default parameter for cost was 

analyzed (top right plot). For radial SVM, different combinations of gamma of 0.01, 0.1, 1, 10, 100 and 1/11 (default) and cost 

of 0.01, 0.1, 1 (default), 10 and 100 were evaluated (remaining plots). Error bar indicates horizontal and vertical variance from 

five-fold cross validation. ROC curve and AUC values were averaged from five-fold cross validation. 
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Figure S6. Correlation plot of nine existing deleteriousness prediction scores and MMAF in training dataset 

 

This plot illustrated the pair-wise Pearson correlation of nine deleteriousness prediction scores and MMAF in training dataset. 

Blue color indicated positive correlation between two scores. Red color indicated negative correlation between two scores. 

Colored pie charts on the upper right indicated the level correlation. The larger the shade, the higher the correlation. 
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 Figure S7. ROC curves for individual prediction scores and ensemble scores generated using training dataset (evaluated 

on additional testing dataset I and II) 

 

These plots illustrated performance of quantitative prediction outcomes evaluated on two datasets (additional testing 

dataset I and II). Performance was evaluated by ROC curve and by AUC score for the ROC curve. Higher score indicates better 

performance. For the top plot, additional testing dataset I was used for performance evaluation; for the bottom plot, testing 

dataset II was used for evaluation.  
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 Figure S8. Sensitivity and specificity plots for existing prediction scores and our ensemble scores  

 

These two plots illustrated the performance of qualitative prediction outcomes of existing prediction scores and our 

ensemble prediction scores, evaluated by sensitivity and specificity. Higher sensitivity/specificity score indicates better 

performance. Top plot used additional testing dataset I as benchmark dataset and bottom plot used additional testing 

dataset II as benchmark dataset (see Table 1). Legend table showed various qualitative prediction performance 

measurements for each prediction tool. Matthews Correlation Coefficient (MCC) is a correlation coefficient between the 

observed and predicted binary classification, ranging from -1 to 1, where 1 indicates perfect prediction, -1 indicates total 

disagreement between prediction and observation. MCC = TP×TN−FP×FN√(TP+FP)(TP+FN)(TN+FP)(TN+FN) , where TP, TN, FP, FN denotes true 

positive, true negative, false positive and false negative respectively. ACC denotes accuracy. ACC =  TP+TNTP+FP+TN+FN. TPR 
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denotes true positive rate, or sensitivity. TPR =  TPTP+FN. TNR denotes true negative rate, or specificity. TNR =  TNTN+FP. FPR 

denotes false positive rate. FPR =  FPTN+FP. FNR denotes false negative rate. FNR =  FNTP+FN. PPV denotes positive predictive 

value. PPV =  TPTP+FP. NPV denotes negative predictive value. NPV =  TNTN+FN. FDR denotes false discovery rate. FDR =  FPFP+TP. 

For each qualitative prediction performance measurement, top three performance scores were highlighted. The brighter the 

highlight color, the better the performance.  
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Figure S9. Performance evaluation of delete-one-score model on testing dataset I and II 

 

These two plots demonstrated that performance of SVM and LR models with each prediction score deleted from the full 

model was as good as the full models with all prediction scores. Top plot used testing dataset I as benchmark dataset and 

bottom plot used testing dataset II as benchmark dataset (see Table 1). Error bar indicates horizontal and vertical variance 

from deleting-one-score models. ROC curve and AUC values were averaged from deleting every prediction score. 
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Figure S10. Correlation plot of nine existing deleteriousness prediction scores and MMAF in testing dataset I 

 

This plot illustrated the pair-wise Pearson correlation of nine deleteriousness prediction scores and MMAF in testing dataset 

I. Blue color indicated positive correlation between two scores. Red color indicated negative correlation between two scores. 

Colored pie charts on the upper right indicated the level correlation. The larger the shade, the higher the correlation.  
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