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COMPARISON AND OSCILLATION THEOREMS
FOR MATRIX DIFFERENTIAL INEQUALITIES

BY

E. S. NOUSSAIR

Abstract. Strong comparison theorems of Sturm's type are established for

systems of second order quasilinear elliptic partial differential equations. The

technique used leads to new oscillation and nonoscillation criteria for such systems.

Some criteria are deduced from a comparison theorem, and others are derived by a

direct variational method. Some of our results constitute extensions of known

theorems to nonselfadjoint quasilinear systems.

1. Introduction.    The matrix differential operator L defined by

LV=-   %   Di(Alj(x,V)DjV) + 2^Bi(x,V)DjV+C(x,V)V,
(1) i,i=i f=i

Au = An iUj = 1,2,...,«),

will be considered for x e G, V e Hm, where G is a nonempty regular bounded

domain of «-dimensional Euclidean space E", and H is a domain in Fm containing

the origin. The coefficients A^ix, £), B^x, £) and C(x, f), i,j= 1,2,...,«, are mxm

symmetric matrix functions of class C1iGxHm), and the mnxmn matrix (Ati) is

positive definite in G x Hm.

A strong theorem of Sturm's type for a quasilinear selfadjoint elliptic system of

partial differential equations was obtained recently by C. A. Swanson [8], extending

results of Kuks [6], J. B. Diaz and J. R. McLaughlin [2]. The purpose of the present

work is to extend Swanson's theorem to nonselfadjoint systems and to obtain

oscillation and nonoscillation theorems for such systems. Some of the oscillation

theorems were derived by a direct variational method similar to that used in [9].

Points of En will be denoted by x = (x1; x2,..., xn) and differentiation with

respect to x¡ by D¡. The differential operator / defined by

n n

lu = - y   Di[aij(x,u)Dju] + 2y^bi(x,u)Diu + cix,u)u,
(2) i.i = i i = i

% = aft ii,j = 1,2,...,«),

will be considered for x e G, u e H. The coefficients au, b¡, c are real symmetric
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204 E. S. NOUSSAIR [October

functions of class C1(G x 77), where G is the closure of G in the Euclidean topology

of F\ and the mn x mn matrix (ai;(x, u)) (i,j= 1, 2,..., n) is positive definite in

Gx77.

The domain D of / is defined as the set of all functions u e C2(G) n C1(G) with

range in 77.

The notation Dm will be used for the set of all mxm matrix functions whose

column vectors v¡ e D, i= 1, 2,..., m. The conclusion of the comparison theorems

below concerns matrices Ve Dm with the property that VTLV is positive semi-

definite.

2. Comparison theorems for L.   If the zmzi x mn matrix

(AtJ(x, £))    (i,j = 1,2,...,«)

is positive definite for all (x, f) e G x Hm, then a diagonal matrix h(x, $) = (hit(x, {))

can be constructed such that for any (x, ¿;)e GxHm, the matrix

M(     fi\ -  \(Aii(X> ̂     (Bi(X' W
M(X'è)      [(*.(*, 0)     h(x,£)   _

is positive definite in G x Hm, where (7?()r denotes the transpose of the nmxm

matrix (7?¡). This can be shown easily by using a criterion of Gantmacher [3], and a

simple inductive argument.

Let/[w], F[u, V] be the functionals defined by

/[«] -fíS  (A«)ra«(x, u)DjU
Ja U,j = i

n -i

+ 22 (DiUfbiix, u)u + uTc(x, u)u\ dx
f = i J

F[u, V] = f   f J  (DtuYA^x, V)DjU
Ja u,í=i

+ 2 T (A"T)^(x, K)M+t/r(C(x, F) + /z(x, V))u] dx
z=i J

with domains Df, Df x Dm, respectively, where Df denotes the set of all vector

functions u e C1(G) with range in 77 such that u(x) vanishes identically on 8G,

where BG is the boundary of G.

Following C. A. Swanson [8] we call a matrix V a conjugate matrix relative to L

iff Yi(x, V)=0 identically in G for i= 1, 2,..., n, where

y((x, V) = 2 \yTMx, V)DjV-(DJV)TAij(x, V)V].
i = l

We shall discuss later the existence of a conjugate matrix.

The first comparison theorem requires that 8G is only piecewise C1.
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1971] MATRIX DIFFERENTIAL INEQUALITIES 205

Theorem 1. If

(i) there exists a nontrivial function ue Df such thatf[u]^0;

(ii) V e Dm is a conjugate matrix such that VTLV is positive semidefinite in G; and

iiii) f[u]^F[u,V];

then det K(x) must vanish at some point in G.

Proof. Suppose to the contrary that K(x) is nonsingular for all xeG. Then

there exists a unique w e C\G) satisfying u(x)= V(x)w(x) identically in G. An easy

calculation yields the following identity:

y  iVDiWfAvix, V)iVDjW) + 2 % (VwYB¿x, V)VDjW
i,i = l ¡ = l

(3) +(Vw)Th(x, V)Vw+ 2 d\(Vw)t 2 Mx, V)(D,V)w]

= F+[u, V]-iVw)TiLV)w+ 2 wTYtix, V)Dtw,

where F + [u, V] is the integrand in F[u, V], and Yx(x, V) is defined above.

Since Ytix, V) = 0 identically for /= 1,2,...,«, VTLV^0 in G, w(x) = 0 on 8G,

and the matrix Mix, V) is positive definite, it follows from integration of the above

identity over G and use of Green's identity that F[u, V]}z0 with equality iff Vw=0

identically in G.

This is impossible since, by hypothesis, u = Vw is a nontrivial function in Df. Then

the assumption that V(x) is nonsingular throughout G leads to the contradiction

f[u]ZF[u,V]>0.

Theorem 2. Under the hypotheses of Theorem 2, and the further assumption that

8G eC1, det V(x) vanishes at some point in G.

Proof. Suppose to the contrary that V is nonsingular throughout G. Then there

exists a unique w e C1 satisfying u(x)=V(x)w(x) identically in G. Since dG is of

class C1, it follows that [1, p. 131] u e HUG), i.e. u belongs to the closure in the

norm || • ||i defined by

Hï=l   [|H|2+2lAK|2pX

of the class CoiG) of infinitely differentiable vector functions with compact

support in G.

Let {un} be a sequence of Cô(G) functions converging to u in the norm || • \y.

The following inequality follows from identity (3)

F[un, V]^[   If  (VD^YMx, V)VDjWn

(4) 5 l
+ 2 2 ( VDiWJTBt(x, V)( Vwn) + i Vwn)Thix, V) Vwn  dx

í = i J

^0,
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206 E. S. NOUSSAIR [October

where wn is the unique solution of un(x)= V(x)wn(x). Since Atj(x, V(x)), B¡(x, V(x)),

and C(x, V(x)) are uniformly bounded in G, it follows that

(5) \F[un, V]-F[u, V]\ Í tf(||MJ1+H|i)|k-«||i,

where Tí is a positive constant. Since \\un — u\\i -*■ 0 as n -*> oo, we conclude from (4)

that F[u, V]^0. If F[u, V]>0, we obtain the contradiction f[u]>0, and hence

F[u, V] = 0.

Let S denote a ball with S<= G, and define

PsK, V] = j  [(rarf^/x, V)VDjWn

+ 2 2 (VDlWnYB(x, V)Vwn + (Vwn)Th(x, V)Vwn] dx.
f = i J

Then (4) implies

(6) 0 á Ps[un, V] =£ F[un, V],

and by an argument similar to that used in [8] we can show that w(x) = 0 identically

in S. Since S is arbitrary, w(x) = V(x)w(x) = 0 throughout G and hence throughout

G by continuity. The conclusion of the theorem follows.

When L is symmetric (i.e. Bt = 0m , m for all i = 1, 2,..., n), we can take h = 0m „ m,

the zero mxm matrix. The operator L reduces to

LV = -   2   DilMx, V)D}V] + C(x, V)V,        Ai} = Afl.
i=y=i

The following theorem is similar to a recent result of Swanson [8]. The latter is

obtained if we put ¿¡ = 0 (z'=l, 2,..., n).

Theorem 3 "Symmetric Case". If

(i) there exists a nontrivial vector function ue D, such thatf[u]^0;

(ii) V e Dm is a conjugate matrix such that VTL V is positive semidefinite through-

out G, and

(iii)

Í [ 2 Dy(a¿ü,ü)-Mx> v))Dp
Ja li,y = i

+ 2 2 D^bAx, u)u + uT(c(x, u)-C(x, V))u]    dx ^ 0
í=i J

then either det V(x) vanishes at some point in G or there exists a constant vector e#0

such that u(x) = V(x)e.

Proof. The proof is similar to that of Theorem 2.

Remarks. If m=\, Theorem 3 extends results of Kreith [5], and Diaz and

McLaughlin [2] to quasilinear nonselfadjoint differential inequalities.

If n= 1, Theorem 4 extends a result of Morse [7].
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1971] MATRIX DIFFERENTIAL INEQUALITIES 207

The conclusions in the above theorems apply to conjugate matrices. We show by

a simple example that the condition of being a conjugate matrix is necessary:

Let lu = u" + u, LV= V"+ V; take

u =
sin x

sinx

so m(0) = w(tt) = 0; let

Then det V=l.

V =
cos x     sin

— sin x   cos

in x"|

osxj

But VTLV=0, lu=0, and conditions (i), (ii), (iii) of Theorem 3 are satisfied,

except that V is not a conjugate matrix.

3. The existence of a conjugate matrix.    We shall show that a conjugate matrix

always exists for several nontrivial cases of the operator L.

For «= 1, the definition (1) of L reduces to

LV = -(A(x, V)V')' + 2S(x, V)V + C(x, V)V       (x e/),

where I is some interval.

A matrix V is a conjugate matrix relative to L if T(x, V) = 0 identically in /,

where 7(x, V)=VTA(x, V)V'-V'TA(x, V)V.

Proposition 4. If VQ is a solution of the system

LV = 0        in I,

Y(x0, V(x0)) = 0,       x0 e 7,

then any one of the conditions (i), (ii), (iii), (iv) given below implies that V0 is a con-

jugate matrix for L;

(i) Bix, F(x)) = 0 identically in I,

(ii) BA ~1 commutes with V0 and V0,

(iii) B is a diagonal matrix, A'(x, V(x)) exists, and A commutes with V0 and V'0,

where A' = dA/dx,

(iv) A is a diagonal matrix, A'(x, K0(x)) exists, and B commutes with V0 and V'Q.

Proof. If condition (i) holds, then it follows from the symmetry of the matrices

involved that Y'(x, Fo(x)) = 0 identically in I. Since 7(x0, K0(x0)) = 0 by hy-

pothesis, it follows that Y(x, K0(x)) = 0 identically in I.

If condition (ii) holds, then

Y'(x, Vo) = 2[VoTB(x, V0)V¿-VSB(x, V0)V0]

= 2B(x, V0)A-\x, VQ)Y(x, V0).
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208 E. S. NOUSSAIR [October

Hence Y(x, V0(x)) = [expJ"* B(t, V0(t))A-\t, V0(t))dt]N, where AMs a constant

mxm matrix. Using the hypothesis on V0, we conclude that U(x, Vo) = 0 iden-

tically in 7.

If condition (iii) or (iv) holds, we can use a similar argument to show that

Y(x, Vo) = 0 identically in I.

If the operator L defined by (1) is linear, and if we further assume that C(x)

= C(Xi), Bt(x) = B(Xi), and Ali(x) = Au(xi), (8l8xj)(Aji) = 0 (/==./) for at least one

suffix i, then a conjugate matrix V(x) of L can be sought in the form of a matrix

V(x)= V(xt), where V(x¡) is a conjugate matrix relative to the system of ordinary

differential equations

In particular, for strongly elliptic systems with constant coefficients without mixed

derivatives, a conjugate matrix exists.

4. Oscillation criteria. We shall find conditions on the coefficients of the

operator L defined by (1) which imply that the matrix differential inequality

VTLV^0 (as a form) is oscillatory.

The operator L is defined in an unbounded domain R of En. For simplicity we

assume that R coincides with F\

Notation. 7?r = {xeFn: |x|>r}.

Definition. The matrix differential inequality VTLV^0 (as a form) is said to be

oscillatory in En iff every conjugate solution V of the inequality has the property

that det V(x) vanishes at some point in Rr for all r > 0.

Definition. Two functions <f>, ih of class Cx(0, oo) are called majorants of the

matrices (Ai}) and C, respectively, if there exists a C1(0, oo) positive function S

such that

<l>(r) ̂ max sup [A(x, £)] + 2S(r),
Ix|-r ieH™

9(r) ^ max max sup [ 2  \ (B¡k(x, Ç)Y+p.(x, f)l +8,
k     lx\=r  leH<* l(,i=l ô J

where Bt(x, £) = (B¡k(x, f)) (j, k=l,2,...,m) (i=l, 2,...,n), X(x, () denotes the

largest eigenvalue of the mnxmn matrix (A^x, ¿¡)) (/,./= 1, 2,..., n), and p.(x, Ç)

denotes the largest eigenvalue of the matrix (C+h)(x, i) defined before.

Let W^x), Mc(x, f) denote the mn x mn matrix functions

W(x) =

Mc(x, 0 .

4>(r)imn     eT

6 >b(r)l
(r = |*|),

(Au(x, ¿))        (A(x, £)Y

Bt(x,i)     h(x,t) + C(.

Y   1
x,OÏ

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] MATRIX DIFFERENTIAL INEQUALITIES 209

respectively, where Imn, Im denote the mnxmn and the mxm identity matrices,

respectively.

Let <p, </> be any two majorants of iA{j), C, respectively. Let /, be the scalar

operator defined by

lyv = - 2 Atf(r)A»]+ ##■)»       ir = |x|).
¡ = i

Definition. A bounded domain AMs a nodal domain for f\ iff there exists a

nontrivial function v such that lyv = 0 in N and v = 0 on BN.

The operator ly is said to be strongly oscillatory in En iff it has a nodal domain

with C1 boundary in the complement of every ball S.

Theorem 5. If ly is strongly oscillatory in En, then the matrix differential in-

equality VTLV^0 is oscillatory in En.

Proof. Given r > 0, we choose a nodal domain #<= Rr, and a nontrivial function

v such that lyv = 0 in N, and v = 0 on BN.

Let l0 be the differential operator defined by

l0u = - 2 At-rX'-KAwR'AMAn",
i = l

where ueH, and 7m is the mxm identity matrix, and let

/oM = J   [2 (A«)^(r)/»A« + K^(r)/„«] ¿x.

If we choose « to be the «/-vector with each component equal to v, then lou = 0, and

/oM=o.
Let F be any conjugate matrix such that VTLV^0. We have to show that det V

vanishes somewhere in TV.

A simple calculation shows that the matrix W(x) — Mc(x, f) is positive definite

for every (x, ¿j)e Enx Hm. It follows that F[u, V] <f0[u]. From the above considera-

tions, it is clear that conditions (i), (ii) and (iii) of Theorem 2 are satisfied. Hence

det V=0inN.

Theorem 5 enables us to extend all known oscillation criteria for the scalar

operator ly to the matrix differential inequality VTLV}z 0.

Corollary 6. Let </>(r) be bounded in 0<r<oo with upper bound K. Then the

differential inequality VTLV^0 is oscillatory in En if

lim sup r2ib(r) < - K(n -2)2/4.
r-+ co

Proof. The hypotheses imply that ly is strongly oscillatory in En. Corollary 7 is

now an immediate consequence of Theorem 6.

Corollary 7 generalizes the Kneser-Hille Theorem [4] to matrix differential

inequalities.
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210 E. S. NOUSSAIR [October

Definitions and Notations. Let

Ati(x, V) = (Af}(x, V)), B,(x, V) = (BP(x, V)),

C(x, V) = (Ckl(x, V)),   and   h(x, V) = (h"(x, V)),

i,j = 1, 2,..., n; k, I = 1,2, ...,m.
Define

Â~ï!(r, 6i,...,en_i) = A?;(x, V(x)),       Bf(r, 9U^., 0n.x) = Bf(x, V(x)),

CM(r, 6i,...,en_i) = CM(x, V(x)),        hH(r, 6X,..., 0n_J = h»(x, V(x)),

where r, 9U ..., 6n_i are hyperspherical polar coordinates. Let

«"(/•)= f     2 Â~ï(r,ei,...,6n_i)dœn,

ß"(r)= f    ^\B^(r,61,...,en_i)dojn,
Jan Z = l

y"(r) = f    [C"(r, 6,..., 0n _ J + Ä«(r, 0,. .., 0„ _ 0] </«»,
Jo»

where wn is the surface of the unit ball in F\

Theorem 7. 77ze matrix differential inequality VTLV^0 is oscillatory in En if

there exists an integer I, l^l^m, and a number q ¿2 such that the following con-

ditions hold for every matrix V with det V(x)=£Q for all sufficiently large x:

(1) (1/zyOjT r-W^r) dr is bounded above for all b>0.

(2) (lib«)]™ rn-\2b-r)ßu(r) dr is bounded above for all b>0.

(3) For a>0, $™ yn(r)rn~x dr= -oo.

Proof. Suppose to the contrary that the differential inequality VTLV¡íO is not

oscillatory. Then there exists a positive number a, and a conjugate matrix V(x)

such that VTLV^0, and det F(x)#0 for |x|>a. Hence a unique solution w(x)

of u(x) = V(x)w(x) exists in 7?a = {x : |x|>a} for any m-vector function u(x). By

integrating identity (3) by parts, and applying Green's formula, we obtain the

inequality

F[u, V]=\ [J  (DtuYMx, V)DjU
Jai\x\S2b Li,; = i

(7) +2V (Dtu)TBt(x, V)u + uT(C(x, V) + h(x, v))u] dx
¡ = i J

for any piecewise C1 function tz(x) on the annulus N={x : aS \x\ ¿2/3} such that

m(x) = 0 on the boundary 8N. In particular choose u to be the vector function

u(r) = 0, rúa,

u(r) = (r-a)e,, a < r ^ a+1,

u(r) = e¡, a+1 < r ^ b,

u(r) = (2b-r)ex\b, b < r g 2b,

u(r) = 0, r > 2b,
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where e¡ is the unit «2-vector with 1 in the /th position and zero elsewhere. Choose

constants Kly K2 such that

1     Z"2b

bq

(8)

/•2b

/•""Vf/) dr Ú Ky   for all b > 0,

I  C2b
rq      rn~\2b-r)ßnir)dr <> K2   for all b > 0.

This is possible by hypothesis. Then

F[u, V] ^ f°+ aair)rn-1dr + K1b''-2
Ja

+ r+\r-a)ß"ir)rn-1 dr + K2b"

+ f°    (r-aMrjr'-1*
Ja

+ f    /'(r)^-1 </> + f " (^^) VíO'"""1 dr.

By hypothesis (3) there exists ¿z0>a+1 such that the sum of the first six terms of

the right member of the above inequality is negative for all b > b0-

Deñne fir) =Yboy"ir)rn-1 dr. Then limr^ „ fir) = - oo by hypothesis (3). Now

we choose b^b0 in the definition of the vector function u as the last root of fir).

Then

It follows from (8) that F[u, V] <0, contradicting (7).

When the operator L is symmetric, i.e. B¡ = 0 for i= 1,2,...,«, we can choose

A = 0. In this case the following more general version of Theorem 7 holds.

Theorem 8 "Symmetric Case". Under the hypotheses of Theorem 1 with the

weaker assumption that the matrix (Ay) (i,j=l, 2,...,n) is positive semidefinite,

the matrix differential inequality VTLV^0 is oscillatory in F\

In the case « = 1, the definition (1) of L reduces to

LV = -| (A(x, V)£ V)+2B(X, V)±V+Cix, V)V,

where x e [a, oo). We can use the above method to generalize the Hille-Kneser

classical theorem [4]. For simplicity we assume that Aix, V) = I, B = 0 where /is

the identity matrix.

Theorem 8. The matrix differential inequality VTLV^0 is oscillatory in En if

there exists an integer I, I Slum, such that the following conditions hold for every

matrix V with det V(x)=±0for all sufficiently large x:
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(1) C"(x, F(x))^-l/4x2;

(2) lim sup«.,, log a\™ x|C"(x, V(x))+ l/4x2| dx> 1.

Proof. If the inequality VTLV¡tO is not oscillatory, then, as in the proof of

Theorem 7, we find a number b, and a conjugate matrix F(x) such that VTLV^0,

det F(x)/0 for |x| >a, and

(*) F[w, F] - I"" [Mr«+MrC(x, K(x))k] öx ^ 0

for any «/-vector function u with compact support in [b, oo).

Now let u=xll2v and x=log f. Then

f[M, F] = r [v'Tv' + vTil/4+Cit))v]
Je"

where ¿!(i)=x2C(x, F(x)).

By hypothesis (2), we can choose a sequence ak —y oo, for which we have for some

8>0that

lim ak r | C""(f )+1/41 dt> 1 + 8,
Ufe-* CO Jak

where C"(í) = (C"»(í)) iUj= l,2,...,m).

We now choose the vector function u(f) as follows:

KO = 0> * ̂  a/2,

zz(í) = H2t-a)/a)e¡, a/2 < t -¿ a,

v{t) = eh a < t <q,

vit) = ((2ö-f)/a>„ q <t^2q,

where e, is the unit «/-vector with 1 in the Ith position, and a = ak is chosen such

that a J" |C""(f) +1/41 </f > 1 + 8/2, and a/2 > e". We then choose q so that a/o < 3/4.

Then

F[u, V] ̂ I + I-T \C"it)+\
a   q   Ja 4

¿f < i [1 + 5/4-(1 + 8/2)] <0,

which contradicts (*). This proves the theorem.

Remark. For «=1, Theorem 8 is sharper than Kneser's theorem for linear

second order equations [4].

5. Nonoscillation criteria.   In this section, we obtain a Kneser-Hille [4] non-

oscillation criteria for the vector equation

n n

(9) lu = - 2   AK(x, u)DjU] + 2 2 biix,u)Dlu + cix,u)u = 0
t,i=i i = i
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defined in an unbounded domain R of F". No restrictions are required on the

shape of the domain R. The conditions on the coefficients atj, bt, c are as given

before, and ue H.

Definition. The operator / is said to be nonoscillatory in the domain 7? if there

exists r>0 such that the system (9) has no nontrivial solution vanishing on the

boundary of any bounded /.-dimensional domain belonging to 7? n {x : |x| >/•}.

Definition. Let

m(x, {) =
ajx,®   (bt(x,0)

A(x, 0     c(

*, OY]
x,OY

Let A be the smallest eigenvalue of the mnxmn matrix (afj), i,j=\, 2,..., n,

and p. be the smallest eigenvalue of the mxm matrix c.

Definition. A function g of class C\0, oo) is said to be a minorant of the matrix

c if there exists a CJ(0, oo) positive function t such that

m      n

g(r) ^   min   min inf Y  ? -*(«*(*, 0)2 + t(x, ¿),
láfcSm |x| = r ieH i = l ( = 1

where bt(x, i) = (b{'c(x, £)),j, k=\,2,...,m, i= 1,2,...,«.

A function fe C\0, oo) is a minorant of (ay) if there exists a C^O, oo) positive

function z such that

Let

0 <f(r) ^ min inf [A(x, f)-2z(r)].
1x1 = r UH

where 7mn is the mnxmn identity matrix, 7m is the mxm identity matrix, and BT is

the mnxm zero matrix.

Theorem 9. Suppose the matrices (atj), c admit minorants f, g respectively, such

that f is bounded below in R by some positive number X0. Then the equation (9) is

nonoscillatory in R if

lim inf r2g(r) > -(«-2)2A0/4.
r-aco

Proof. Suppose to the contrary that there exists a bounded C1 nodal domain

Ns and a solution us of (9) such that «s=0on 8NS. From the hypothesis that/, g are

minorants of (atj), c respectively, it is easy to show that the matrix M(x, g) — A^(x)

is positive semidefinite for all (x, £)e Enx H. Then an application of Green's

formula gives

0= f   uju,dx* f    [2(Aws)rAo/mA"s+g(|x|)«rWslcix.
Jns Jn, 1¡ = i J
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Let usi, 1=1,2,...» m, denote the z'th component of the vector function us. Hence

the above inequality implies that

(10) f    § (î loiD^y + girixVuÙ dx Ú 0.
Jns ; = 1   M=l /

Let usj(x) = üsj(r, 6y,..., 0n_y), where r, dy,..., 6n_y are hyperspherical polar

coordinates. Extend üsj to all of R such that it is identically zero outside Ns. We

shall denote the extended function by w„. From the representation

£V-W> -)fdr = -2^üsi(t, -)jtusj(t, ■) dt jV"a dr,

and by means of Cauchy-Schwarz inequality we obtain the inequality

¡y^Ur,-)Ydr^^\\^l-rüs)2dr

for 7=1, 2,..., n. Integrating the two sides of the above inequality with respect

to the angular coordinates 0U 62,..., 6n_y we obtain

(id £ [2 (a««,)8-{J^-usi\ dx ^ o

for all7=1, 2,...,m.

The hypothesis implies that there exists a constant s0>0 such that r2gir)

> — (« — 2)2A0/4 provided that r^s0. Hence, from (11) we have

í     Í2 XoiDiUSoi)2+girix))uÜ dx>0
JNsn   Li = l J

for all 7=1, 2,..., m. This contradicts (10), and Theorem 9 follows.

Remark. When the operator / defined by (9) is symmetric, i.e. ¿>¡ = 0 for

/= 1, 2,...,«, we can choose minorants/, g such that

0 </(r) < min inf A(x, f),       g(r) ^   inf inf p(x, £).
1x1 = r teH \x\ = r Sett

In this case Theorem 9 generalizes the Kneser-Hille nonoscillation criterion [4] to

nonlinear partial differential systems.
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