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As a respiratory infection, pneumonia has gained great attention from countries all over the world for its strong spreading and
relatively high mortality. For pneumonia, early detection and treatment will reduce its mortality rate significantly. Currently,
X-ray diagnosis is recognized as a relatively effective method. ,e visual analysis of a patient’s X-ray chest radiograph by an
experienced doctor takes about 5 to 15 minutes. When cases are concentrated, this will undoubtedly put tremendous pressure on
the doctor’s clinical diagnosis. ,erefore, relying on the naked eye of the imaging doctor has very low efficiency. Hence, the use of
artificial intelligence for clinical image diagnosis of pneumonia is a necessary thing. In addition, artificial intelligence recognition
is very fast, and the convolutional neural networks (CNNs) have achieved better performance than human beings in terms of
image identification. ,erefore, we used the dataset which has chest X-ray images for classification made available by Kaggle with a
total of 5216 train and 624 test images, with 2 classes as normal and pneumonia. We performed studies using five mainstream
network algorithms to classify these diseases in the dataset and compared the results, from which we improved MobileNet’s
network structure and achieved a higher accuracy rate than other methods. Furthermore, the improved MobileNet’s network
could also extend to other areas for application.

1. Introduction

Pneumonia is an acute respiratory infection of the lungs, and
it has a high incidence, accounting for about 12% of the total
population. Nowadays, the incidence of pneumonia is still
increasing due to the social population aging, increased
immune-impaired hosts, pathogen changes, difficult path-
ogenic diagnosis, and increased bacterial resistance. A chest
radiograph analysis (CXR) is the most commonly used
method for X-ray examination to diagnose and differentiate
the type of pneumonia. However, because of a lack of
professional radiologists, pneumonia has alarming mortality
rates in some limited resource areas. ,erefore, addressing
the issue of how to improve the accuracy of pneumonia
detection and reducing the cost of pneumonia detection has
great help for the treatment and prevention of pneumonia.

In recent years, deep learning technologies have devel-
oped rapidly. Deep learning is a widely used tool in research

fields such as computer vision, speech analysis, and natural
language processing. ,is method is particularly suitable for
those fields that need to analyze large amounts of data and
human intelligence. A major advantage of using deep
learning methods is that complex features can be learned
directly from the raw data. ,is allows us to define a system
that does not rely on manual operations, which is unique
among other machine learning technologies. ,e use of deep
learning as a machine learning and pattern recognition tool
is also becoming an important aspect in the field of medical
image analysis. At present, the deep learning technology has
played an important role in medical image processing,
computer-aided diagnosis, image interpretation, image fu-
sion, image registration, image segmentation, and image-
guided therapy. It can help doctors diagnose and predict
disease risk accurately and quickly.

Cicero et al. from St Michael’s Hospital discussed the
training and validation of CNNs with modest-sized medical
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data to detect pathology in 2017 [1]. Ma et al. presented a
survey on deep learning for pulmonary medical imaging in
2019 [2]. Jaiswal et al. from University of Bedfordshire
described an approach based on deep learning for identi-
fying pneumonia in chest X-way in 2019 [3]. Hwang et al.
from Seoul National University College of Medicine de-
veloped the deep learning-based algorithm for major tho-
racic diseases on chest radiographs with consistently high
performance in 2019 [4]. Sirazitdinov et al. from Innopolis
University proposed an ensemble of two convolutional
neural networks, namely, RetinaNet and Mask R-CNN, for
pneumonia detection and localization, and it is validated to
be a liable solution for automated pneumonia diagnosis in
2019 [5]. Rajpurkar et al. from Stanford University devel-
oped and validated a deep learning algorithm that classified
clinically important abnormalities in chest radiographs at a
similar performance level to practicing radiologists in 2018
[6]. Christe et al. from Bern University Hospital proposed
the computed-aided detection algorithm based on machine
learning which was able to classify idiopathic pulmonary
fibrosis as well as man reader in 2019 [7]. Correa et al. from
Tulane University School of Public Health and Tropical
Medicine presented a method for automatic classification of
pneumonia using ultrasound imaging of the lungs and
pattern recognition in 2018 [8]. Knok et al. from Polytechnic
of MeCimurje used an already defined convolution neural
network architecture to develop a model of an intelligent
system that receives X-ray image of the lung as an input
parameter and based on the processed image returned the
possibility of pneumonia as an output in 2019 [9]. Rajara-
man et al. proposed a CNN-based decision support system
to detect pneumonia in pediatric CXRs, and it effectively
learned from a sparse collection of complex data with re-
duced bias and improved generalization in 2018 [10]. Anwar
et al. from University of Engineering and Technology, Taxila,
reviewed the medical image analysis using convolutional
neural networks in 2019 [11]. Professor Razzak et al. from
King Saud bin Abdulaziz University for Health Sciences
discussed the overview, challenges, and the future of the
deep learning for medical image processing in 2018 [12].
Maruyama et al. from Gunma Prefectural College of Health
Sciences used three types of machine learning methods to
compare their accuracy of medical image classification; their
conclusions showed the CNN is more accurate than con-
ventional machine learning methods that utilize the manual
feature extraction in 2018 [13]. Gabruseva et al. presented an
algorithm that automatically locates lung opacities on chest
radiographs by using squeeze-and-excitation CNNs, aug-
mentations, and multitask learning; it demonstrated one of
the best performances in the Radiological Society of North
America (RSNA) Pneumonia Detection Challenge for
pneumonia region detection hosted on the Kaggle platform
[14].

Although some of the aforementioned studies use
transfer learning methods to solve the limitations of in-
sufficient training data, they have achieved better recogni-
tion results in pneumonia image recognition than other
studies. However, because of the large difference between the
ImageNet dataset and the pneumonia dataset, they did not

make corresponding improvements to the existing migra-
tion learning model to make it more suitable for the
pneumonia image dataset in order to obtain higher recog-
nition accuracy. In addition, all children with pneumonia in
the dataset of the previous study are patients with lobar
pneumonia, which means that the performance of the al-
gorithm may be affected. In this case, the expected sensitivity
is low. In addition, there is currently no algorithm that can
determine other types of lung diseases, such as an algorithm
that distinguishes interstitial infiltration or bronchiolitis
from lobar pneumonia.

In our study, we analyzed the structural advantages of
different deep learning models and concluded that Mobi-
leNet is a suitable model for clinical image diagnosis of
pneumonia. Also, we used the improved MobileNet’s net-
work structure for higher accuracy. To validate the theo-
retical results, we utilize a regular convolution and four other
mainstream network models to classify and identify the
same pneumonia X-ray datasets acquired in reality. After
comparing their accuracy and other performance indicators,
the results turn out that improved MobileNet does get better
results than other CNNs. In the end, the conclusion and
future work are illustrated based on our study.

2. Methodology

2.1.DepthwiseSeparableConvolution. A regular convolution
is performed in one step by filtering and merging inputs into
a new set of outputs (in Figure 1). ,e depthwise separable
convolution divides it into two layers: one layer for filtering
and the other layer for merging. ,e influence of this fac-
torization is to reduce the amount of computation and
model size greatly [15].

For the depthwise separable convolution, the input
images have three channels: red, green, and blue. After
several convolutions, the images may have multiple chan-
nels. Each channel imaging can be a specific interpretation of
the image. For example, the “red” channel explains “red” for
each pixel, the “blue” channel explains “blue” for each pixel,
and the “green” channel explains “green” for each pixel. An
image with 64 channels has 64 different interpretations of
the image. Being a distinct regular convolution, a depthwise
separable convolution comprises a depthwise convolution
(DW) and a pointwise convolution (PW). ,ere, DW deals
with spatial relationship modeling with 2D channelwise
convolutions (in Figure 2(a)), while PW deals with cross-
channel relationship modeling with 1× 1 convolution across
channels (in Figure 2(b)). ,is factorization form is
expressed by DW + PW (in Figure 3).

Next, a depthwise separable convolution will be proved
to have better performance by comparing the computational
cost of a depthwise separable convolution with a regular
convolution.

First, the DF ×DF ×M feature map F of the regular
convolution layer is taken to input, and then aDF ×DF ×N
feature map G (in Figure 4) is generated. DF represents the
spatial width and height of the square input feature map 1,M
represents the number of input channels (input depth), DG

represents the spatial width and height of the square output
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Figure 2: (a) 3D model representation of a depthwise convolution; (b) 3D model representation of a pointwise convolution.
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Figure 1: A regular convolution.
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Figure 3: A depthwise separable convolution.
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feature map, and N represents the number of output
channels (output depth).

,e regular convolutional layer is parameterized by
convolution kernel K of size DK ×DK ×M ×N. DK rep-
resents the spatial dimension of the kernel assuming a
square, M represents the number of input channels, and N
represents the number of output channels.

,e output feature map for regular convolution as-
suming stride 1 and padding is computed as

Gk,l,n � ∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m. (1)

,e computational cost of the regular convolution CR is

CR � DK ·DK ·M ·N ·DF ·DF, (2)

where the computational cost is determined by the number
of input channels M, the number of output channels N, the
kernel size DF ×DF, and the feature map size DF ×DF.

Before, it is introduced that a depthwise separable
convolution comprised two layers: a depthwise convolution
(in Figure 5) and a pointwise convolution (in Figure 6). ,e
depthwise convolution is used to apply a single filter per each
input channel (input depth). ,en, we use pointwise con-
volution, a simple 1× 1 convolution, to create a linear
combination of the output of the depthwise layer. ,erefore,
we can define the depthwise convolution with one filter per
input channel (input depth) as

Ĝk,l,m �∑
i,j

K̂i,j,m · Fk+i−1,l+j−1,m, (3)

where K̂ is the depthwise convolutional kernel of size
DF ×DF ×M; the mth filter in K̂ is applied to the mth

channel in F to produce the mth channel of the filtered
output feature map Ĝ.

,e computational cost of the depthwise convolutionCD

is

CD � DK ·DK ·M ·DF ·DF. (4)

,e computational cost of the pointwise convolution CP

is

CP �M ·N ·DF ·DF. (5)

So, the computational cost of the depthwise separable
convolution CDP is

CDP � DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF, (6)

which is the sum of the depthwise and 1× 1 pointwise
convolution. By splitting convolution into a 2-step process of

f iltering and merging, we obtain a reduction R in compu-
tation of

R �
DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

�
1

N
+

1

D2
K

.

(7)
,erefore, it is concluded that the depthwise separable

convolution can greatly reduce the amount of computational
cost [16].

Moreover, we experimented with reducing the number
of filters to reduce redundancy. Howard’s network model
using 32 filters in a full 3× 3 convolution is used to build
initial filter banks for edge detection. ,rough the analysis of
the experiment results, we found that reducing the number
of filters to 16 could maintain the same accuracy as 32 filters,
which saves an additional 2 ms.

2.2. Model Evaluation Metrics. In order to evaluate the
performance of the deep learning model, we refer to the
confusion matrix (in Table 1), which is a standard format for
expressing accuracy evaluation. Based on this confusion
matrix, evaluation is performed using the following criteria:

(1) Accuracy represents the ratio of the number of
samples correctly classified by the classification
model to the total number of samples for a given test
data set. It can be expressed by the following formula:

Accuracy �
TP + TN

TP + TN + FP + FN
. (8)

(2) Recall represents the positive sample of the original
sample, the probability that the classification model
correctly predicted a positive sample. It can be
expressed by the following formula:

Recall �
TP

TP + FN
. (9)
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Figure 4: ,e regular convolution layer.
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Figure 5: ,e depthwise convolution layer.
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Figure 6: ,e pointwise convolution layer.
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3. Experiments

3.1. Dataset and Training. In this paper, we use the Mobi-
leNet which applies 3× 3 depthwise separable convolutions,
a regular CNN, ResNet-18, and two mainstream CNN
models pretrained on ImageNet [17]. ,ey are ResNet-50
and VGG19. ,e dataset was chest X-ray images for clas-
sification made available by Kaggle with a total of 5216 train
and 624 test images (in Figure 7). ,e dataset is organized
into 3 folders (train, test, and file type) and contains sub-
folders for each image category (pneumonia/normal). ,ere
are 5840 X-ray images (JPEG) and 2 categories (pneumonia/
normal).

,e chest X-ray images were selected from pediatric
patients of one to five years old from Guangzhou Women
and Children’s Medical Center, Guangzhou. ,e charac-
teristics of the data and their distribution could be organized
(see Table 2). All chest X-rays were performed as part of
patients’ routine clinical care. ,is dataset is quality con-
trolled by screening chest X-rays to remove unreadable and
low-quality X-rays and is managed by several experts to
avoid grading errors.

Above all, we should carry out some data analysis and
preprocessing. So, we convert the images gotten from the
dataset into a NumPy array (see Figure 8). ,en, we change
the sizes of the images to 226× 226 in order that we can have
more data (images) to train on (in Figure 9). In addition, in
order to facilitate comparison, we uniformly set the number
of epochs to 20. ,e experimental environment is an Ubuntu
Linux server with GeForce GTX 1050 Ti GPU, and all
models are implemented using Python.

4. Results

Corresponding to these five CNN models, we put the
training set accuracy, the training set loss, the validation set
accuracy (Val_accuracy), and the validation set loss
(Val_loss) in four line charts for comparison (as shown in
Figures 10–13). And then, we calculated the average of
training set accuracy, training set loss, Val_accuracy, and
Val_loss. ,e results are shown in Table 3. Here, the purpose
of setting epoch to 25 is to compare the accuracy of different
algorithms under the same number of iterations. ,is can
reflect the speed of training between algorithms. If you
encounter a new type of pneumonia and the time is urgent,
researchers need to train the lung images of the new type of
pneumonia in time, so achieving a higher accuracy rate while
saving time is also a factor we need to consider.

After that, we applied the five trained models to the test
set for experiments and recorded their accuracy and recall.
,e result indicates that the accuracy of pneumonia rec-
ognition using MobileNet is up to 92.79% and the recall is
98.90% (see Table 4). In addition, we can see from
Figures 10–13 that the MobileNet has higher accuracy and
lower loss and at the same time has less floating-point
calculations. Compared with other networks, MobileNet can

Table 1: Confusion matrix.

Actual positive Actual negative

Predicted positive TP FP
Predicted negative FN TN

Pneumonia Pneumonia Pneumonia Pneumonia Pneumonia

Normal Normal Normal Normal Normal

Figure 7: Chest X-ray images (pneumonia/normal).

Table 2: ,e data characteristics of the dataset.

Category Train samples Test samples File type

Normal 1341 234 JPEG
Pneumonia 3875 390 JPEG

Computational Intelligence and Neuroscience 5
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Figure 8: (a) Conversion of the lung with pneumonia image obtained from the dataset into a NumPy array; (b) conversion of the normal
lung image obtained from the train set into a NumPy array.
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Figure 9: ,e sizes of images are changed to 226× 226.
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Figure 10: ,e training set accuracy of five CNNs.
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Figure 11: ,e training set loss of five CNNs.
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trade for better data throughput while sacrificing very little
accuracy.

5. Discussion

From the experimental results, it can be seen that MobileNet,
as a lightweight network, not only has a smaller amount of
calculations than most CNNs but also has a better classi-
fication effect than other types of CNN models when the
number of parameters is almost on an order of magnitude.
,is benefits from using the depthwise separable convolu-
tion. Since the development of deep learning, most image

recognition models have large parameters and a large
amount of calculations, which are not suitable for use in
embedded devices. For the identification of pneumonia, a
common disease, we must also consider how to quickly and
accurately identify pneumonia in areas where equipment
and doctors are scarce. ,is is one of the reasons why we
recommend using MobileNet for pneumonia recognition.

6. Conclusions

In this paper, five mainstream deep learning models are used
to diagnose clinical data on a dataset consisting of X-ray
images of the lungs with pneumonia and normal lungs and
the accuracy of these methods is compared. Among them,
because of the superior performance of MobileNet, we focus
on the network structure of MobileNet. ,e results dem-
onstrated that all five network structures have the ability to
recognize pneumonia and the accuracy of MobileNet is
higher than other network structures. In addition, the ap-
plication of artificial intelligence technology in the medical
field is not sufficient, and the dataset in this field should be
improved in terms of types. As the amount of pneumonia
image data increases and the network structure continues to
improve, the performance of CNN-based pneumonia di-
agnosis algorithms will also continue to improve. In the
future, the application of clinical image diagnosis of
pneumonia X-rays can reduce the workload of clinicians and
enable patients to obtain early diagnosis and timely treat-
ment, thereby reducing the mortality rate of pneumonia.

Data Availability

,e dataset used in this study was chest X-ray images by
Kaggle, please visit https://www.kaggle.com/
paultimothymooney/chest-xray-pneumonia.
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Figure 13: ,e validation set loss of five CNNs.

Table 3: ,e five CNNs’ average of their training set accuracy,
training set loss, validation set accuracy, and validation set loss.

Accuracy Loss Val_accuracy Val_loss

MobileNet 0.94454 0.15300 0.87119 0.25509
ResNet-18 0.98795 0.03783 0.85388 0.28453
ResNet-50 0.94342 0.13564 0.82982 0.37387
VGG19 0.94318 0.18500 0.86044 0.50610
CNN 0.93980 0.15152 0.72090 0.51290

Table 4: ,e five CNNs’ testing accuracy and recall.

Accuracy Recall

MobileNet 0.92986 0.98984
ResNet-18 0.85515 0.98947
ResNet-50 0.87486 0.98531
VGG19 0.90529 0.78635
CNN 0.91446 0.98813
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