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Abstract—This paper presents a validation study on statistical
nonsupervised brain tissue classification techniques in magnetic
resonance (MR) images. Several image models assuming different
hypotheses regarding the intensity distribution model, the spatial
model and the number of classes are assessed. The methods are
tested on simulated data for which the classification ground truth
is known. Different noise and intensity nonuniformities are added
to simulate real imaging conditions. No enhancement of the image
quality is considered either before or during the classification
process. This way, the accuracy of the methods and their ro-
bustness against image artifacts are tested. Classification is also
performed on real data where a quantitative validation compares
the methods’ results with an estimated ground truth from manual
segmentations by experts. Validity of the various classification
methods in the labeling of the image as well as in the tissue volume
is estimated with different local and global measures. Results
demonstrate that methods relying on both intensity and spatial
information are more robust to noise and field inhomogeneities.
We also demonstrate that partial volume is not perfectly modeled,
even though methods that account for mixture classes outperform
methods that only consider pure Gaussian classes. Finally, we
show that simulated data results can also be extended to real data.

Index Terms—Brain tissue models, hidden Markov random
fields models, magnetic resonance imaging, partial volume, statis-
tical classification, validation study.

I. INTRODUCTION

A
CCURATE and robust brain tissue segmentation from

magnetic resonance (MR) images is a key issue in many

applications of medical image analysis for quantitative studies

and particularly in the study of several brain disorders such as

Alzheimer’s disease or Schizophrenia [1]–[4]. Moreover, brain

tissue segmentation can also be required as preliminary step of

image processing algorithms such as, for instance, voxel-based

morphometry [5] or image registration [6]. Manual tracing

by an expert of the three brain tissue types—white matter
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(WM), gray matter (GM), and cerebrospinal fluid (CSF)—is

exceedingly time consuming as the volume of data involved

in magnetic resonance imaging (MRI) studies is large. On

the other hand, automated and reliable tissue classification is

a challenging task as the intensity representation of the data

typically does not allow a clear delimitation of the different

tissue types present in a MRI, because of partial volume (PV)

effect, image noise and intensity nonuniformities caused by

magnetic field inhomogeneities.

Numerous approaches have been proposed for MRI brain

tissue classification. They can be divided into two main groups:

supervised classification explicitly needs user interaction while

nonsupervised classification is completely automatic. An ex-

haustive review of these classification methods is beyond the

scope of this paper but we refer the interested reader to [7]–[9].

In this paper, we focus on statistical nonsupervised methods

only. While this choice limits the scope of the paper, it allows

us to create a homogeneous scenario in which we can compare

the different hypotheses about the intensity distribution, the

number of classes and the use of a spatial prior.

A. State-of-the-Art

Statistical classification methods usually solve the estimation

problem by either assigning a class label to a voxel or by the esti-

mation of the relative amounts of the various tissue types within

a voxel [10]–[12]. Finite Gaussian Mixture (FGM) models, that

assume a Gaussian distribution for the image intensities, are

widely used and their parameter estimation problem is typi-

cally solved in an expectation-maximization (EM) framework

[2], [13], [14]. Other algorithms [10], [15] add separate classes

to take into account the PV voxels and model them also by inde-

pendent Gaussian densities. A more realistic model of PV than

Gaussian is proposed by Santago et al. [16], [17] and it is ex-

tensively used by other authors [11], [18]–[21]. However, some

finite mixture (FM) models have the limitation of not consid-

ering the spatial information. That is why increasing attention

has been paid recently to methods that model the spatial infor-

mation by a Markov random field (MRF) [19], [22]–[25]. Fi-

nally, nonparametric classification techniques can be considered

when no well justified parametric model is known [26], [27].

The assessment of brain tissue classification is a complex

issue in medical image processing. Visual inspection and com-

parison with manual segmentation are labor intensive and not

reliable since the amount of data to deal with is usually large.
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Tissue classification methods can also be assessed by using syn-

thetic data even if these kinds of images can hardly capture the

complexity and the artifacts present in a MRI. There is however

the possibility to validate brain tissue segmentation methods on

a brain simulated data set as the one proposed by the Brain Web

MR simulator [28], [29]. Their data is well-suited for this pur-

pose since a ground-truth classification is known while different

types of MR modalities and image resolution and artifacts can

be reproduced.

Most of the abovementioned papers present a validation

of the proposed approaches by classifying synthetic data,

a phantom or real data. However, as far as we know, few

validation studies comparing classification methods from dif-

ferent research groups have been published. For instance, Van

Leemput et al. [21] presented a new statistical parametrical

framework for PV segmentation as well as the validation on

two-dimensional (2-D) multispectral simulated data. They

performed a fuzzy classification instead of assigning a label to

each voxel. Recently, Grau et al. [30] proposed an improved

watershed method using prior information and they compare

their approach for WM and GM segmentation with the methods

of Van Leemput et al. [24] and Zeng et al. [31].

B. Goals of This Study

The goal of this work is to assess the robustness and accuracy

of some of the most common tissue models and unsupervised

classification methods. The work presented here is the contin-

uation of [32]. Two main assumptions are made in this work.

First, we consider that only 3-D T1-weighted MR brain images

are available. This hypothesis creates a base line for later com-

parisons since classification methods will perform better if mul-

tispectral data (T1, T2, and PD weighted) is available. More-

over, this assumption is not unrealistic, since often only T1 is

available for a concrete study and it undoubtedly a widely used

modality. Second, no enhancement of the images is done neither

before nor during the classification process.

The methods under study have been selected to cover the

range of hypotheses made in the classification paradigm.

The first method considers the finite Gaussian mixture model

(FGMM). The second one adds to the FGMM a hidden MRF

(HMRF) model to account for spatial prior information as

in [23]. The third method models pure tissues by a Gaussian

distribution but uses a specific PV distribution for mixture

tissues. The fourth method adds to the previous one spatial

interactions among voxels by means of a HMRF as in [10],

[11]. The fifth algorithm does not model the tissue classes by

parametric probability densities, but rather by nonparametric

models [26]. The resulting algorithm minimizes an information

theoretic quantity, called the error probability. The final method

is also nonparametric, but again adds to the previous one a

HMRF to model spatial prior information.

Various measures of the validity of the classification methods

under consideration are presented for the simulated data [28].

We choose to focus primarily on the ability of the methods to

correctly classify individual voxels. Later, we investigate how

this ability reflects on global and local volumetric measure-

ments. Classification is also performed on real data where a

quantitative validation compares the methods’ results with an

estimated ground truth from manual segmentations by experts

as proposed by Warfield et al. in [33]. While the scope of real

data is limited, it allows us to show that conclusions drawn on

simulated data can be extended to real data.

This paper is organized as follows. First, in Section II, the

general theory used in this work for both intensity and spatial

prior models is presented. Then, in Section III, the methods an-

alyzed in this comparative study are summarized. In Section IV,

the data set we use for this assessment study is presented. Next,

in Sections V and VI, the validation method, the classification

results on both simulated and real data are presented and dis-

cussed. Finally, conclusions and our current research are in Sec-

tion VII.

II. IMAGE MODEL

A. Intensity Distribution Model

Let us index data points to be classified with

. In the case of 3-D images, such as MR images,

they index the image voxels. Let us furthermore denote the ob-

served data features by . In the case of classification of

single MR images, represents the intensity of voxel . is

the random variable associated to the data features , with the

set of possible outcomes, . Any simultaneous configuration of

the random variables, , is denoted by

.

The classification process aims to classify the

data into one of the hidden underlying classes

present in the image labeled by one of the symbols

, where

CG, CW, GW, and CGW are the mixtures of CSF+GM,

CSF+WM, GM+WM, and CSF+GM+WM, respectively.

The family of random variables represents these classes.

denotes a possible configuration

of . is the space of all possible configurations.

Let us suppose that all the random variables, , are identi-

cally and independently distributed. Then, the probability den-

sity function of the voxel intensity is

(1)

where is the prior probability of the tissue class and

is the conditional probability density function of

given the tissue class . The prior probability is used to

model the spatial coherence of the images in Section II-B. The

transition probability models the image intensity for-

mation process for each tissue type. Different models are used

for pure tissues and for tissue mixtures.

In what follows, we only consider stationary intensity models,

for which we can simplify notations and write instead

of . The simplest model considers only the three pure

tissues of the brain, with . The proba-

bility density function of the observed intensity for the pure

tissue class is Gaussian, i.e.,

(2)
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Fig. 1. Probability density function of a mixture tissue as described in (7), varying � and � with (a) � = 50 and � = 150 and (b) � = 150 and
� = 200.

where the model parameters are, respectively,

the mean and standard deviation of the Gaussian, which is a

good approximation of the Rician acquisition noise present in

MR images at high signal-to-noise ratio (SNR). As in [17], [18],

and [34], different tissues are assumed to have different noise

variances. While this is not motivated by the physics of MR

acquisition, it gives more flexibility to the model and allows it

to adapt to other types of artifacts.

More evolved intensity models also consider the major tissue

mixtures . As assumed

by most authors [21], the mixtures CW and CGW are not

considered because they are so quantitatively insignificant that

and are not relevant in explaining .

Two different models of mixture tissues are considered in this

paper. The simplest one assumes that the PV can be modeled by

a Gaussian distribution as proposed in [15] and [23]. In this case,

(2) is used both for pure and mixture tissues. This Gaussian mix-

ture model is used in the methods described in Sections III-A

and III-B.

A more complex probability density model for mixture tis-

sues was proposed by Santago et al. [16] and used by [19] and

[34]. This improved model is used in the methods described in

Sections III-C and III-D. A mixture tissue voxel

has a probability density function

(3)

where the two pure tissues composing the voxel are denoted by

, and is the fraction of present in the mixture

voxel. The mean and variance of the mixture are determined by

the model parameters of the pure tissues

(4)

(5)

As discussed before, Santago [17] considers either a physically

motivated common noise variance for all tissues or a more flex-

ible model with a different noise level for each tissue. Once

again we use the more flexible approach. The probability den-

sity function for the whole PV tissue is

(6)

As discussed by Ballester [20], choosing the correct function for

is a complex issue. The true distribution is typically

U-shaped, i.e., approximately uniform around with

peaks at and . Unfortunately, choosing this U-shape

is not trivial and a wrong choice can lead to poor results. Hence,

like most authors, we assume a uniform distribution for , i.e.,

for , this leads to

(7)

This integral has no known closed form and needs to be numer-

ically computed. Its shape varies depending on the parameters

, as illustrated in Fig. 1. It approaches a Gaussian

when a high and identical variance of noise is assumed for both

pure tissues. But in other cases, when noise variances are dif-

ferent, the probability density function of a mixture has an asym-

metric bell shape.

Finally, it is also possible not to make any assumption on the

shape of the probability density functions of each tissue class.

Nonparametric, information theoretic alternatives are also con-

sidered in this work. The two such nonparametric approaches

assessed in this comparative study were developed and imple-

mented by Butz [26], [27]. Similar ideas can be found in [35].
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For nonparametric classification, the posterior probability

from parametric classification, , is replaced by an error

probability which is defined as follows:

(8)

where is a realization of random variable which es-

timates from . The probabilities and

are estimated by Parzen-window probability density estimation,

i.e.,

(9)

(10)

where is a Gaussian of expectation and vari-

ance denotes the set of voxels being classified into class

is the number of elements of this set, and is the

number of samples with intensity . As in [26], a modified ver-

sion of (10) is actually used to properly take into account the

tails of the Gaussians beyond the range of values in . The

probability is called the distortion of the

nonparametric classification algorithm, and is given by the fol-

lowing equation:

(11)

The final expression used for the estimation of the error

probability, , is the class probability, , and is given by

being the total number of voxels in the image.

B. Spatial Distribution Model

The other term in (1) is . It describes the prior knowl-

edge about the spatial distribution of brain tissues in the image

volume. The simplest spatial distribution model considers that

for a given tissue class, the prior probability if constant over the

image, i.e., . This model is used in Sections III-A,

III-C, and III-E.

Alternatively, one can consider that the probability of having

a given tissue at a given location varies, depending on the tis-

sues found at the neighboring locations. In the methods of Sec-

tions III-B, III-D, and III-F, this is done by using a MRF to

model spatial interactions among tissue classes [36], [37].

The sites in the image S are related with a neighborhood

system , where is the set of sites neigh-

boring , with , and . A random field

is a MRF on S with respect to if and only if

(12)

and

(13)

where denotes the tissue class at location , and de-

notes those at all the locations of except at . According to the

Hammersley-Clifford theorem [38], [39], a MRF can be equiv-

alently characterized by a Gibbs distribution

(14)

where is the energy function, the spatial parameter and

a normalization factor. Let us briefly discuss how these pa-

rameters are chosen in the particular framework of image seg-

mentation.

First, the choice of the energy function is arbitrary and there

are several definitions of in the framework of image seg-

mentation. A complete summary of those can be found in [40]

where a general expression of the energy function for pairwise

interactions is denoted by

(15)

where is an external field that weighs the relative

importance of the different classes present in the image and

models the interactions between neighbors. In

image segmentation [41], a simplified model with no external

energy, , is used. Only the local spatial transitions

are taken into account and all the classes in the label image are

considered equally probable. A typical definition of

is the Potts model [23]

(16)

which encourages the voxel to be classified like the majority of

its neighbors. A more evolved function which takes into account

the distance between neighbors and preserves thin structures is

used in this paper, as proposed in [19] and [34]

(17)

where

(18)

and represents the distance between voxels and . With

this energy function configurations that are not likely to occur,

such as CSF inside WM, are penalized. On the other hand,

smooth transitions, such as inserting a GW layer between WM

and GM areas, are encouraged. The spatial parameter con-

trols the relative influence of the spatial prior over the intensity

model. corresponds to a uniform distribution over the

possible states so that only the conditional distribution of the

observed data is considered. On the other hand, with

the spatial information is dominant over the intensity

information and one tends to classify all voxels to a single class

[40].
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TABLE I
METHODS UNDER STUDY

The value of is sometimes determined by maximum likeli-

hood estimation although the complexity of the MRF model re-

quire the use of approximations [39]. can also be determined

empirically as proposed in [42] by gradually increasing its value

through the algorithm iterations. In this paper, the value of is

fixed empirically to 1.2 by classifying a training set.

Finally, while the normalization factor of the Gibbs distribu-

tion is theoretically well-defined as

(19)

this requires a high computational cost. It may even be in-

tractable since the sum among all possible configurations of

is usually not known [43]. Instead of computing , the

conditional probabilities are normalized by forcing

(20)

III. METHODS

Let us now describe with more details the classification

methods considered for this comparative study. These methods,

whose main hypotheses regarding the intensity and the spa-

tial model are summarized in Table I, all consider 5 classes

of tissues, i.e., . The

3-classes methods considered in the later part of this paper are

straightforward simplifications of these methods.

A. Finite Gaussian Mixture Model: FGMM

In the FGMM [13], each brain tissue in is modeled by

a Gaussian distribution and no spatial information is taken into

account. The random variables are assumed to be indepen-

dent of each other, which means that, writing instead of to

simplify notations

(21)

Then, the probability density function of the image intensity can

be written as

(22)

where the component densities are Gaussian distri-

butions defined by the parameters . The mixing

parameters must also be included among the unknown pa-

rameters. The aim is to estimate the parameters

under the constraint

(23)

that maximize the log-likelihood function

(24)

One common solution to this optimization problem is the EM

algorithm [44]. For Gaussian distributions, it goes as follows:

Initialization Step: Choose the best initialization for .

Expectation Step: Compute the a posteriori probabilities

(25)

Maximization Step:

(26)

(27)

(28)

Practically, the sum among all the image voxels of (25)

can also be written

(29)

where is the image histogram [45]. This decreases sig-

nificantly the number of computations in (26)–(28). This

simplification is also used in the GPV method. Unfor-

tunately, it cannot be adapted to the methods using the

HMRF model where each voxel has to be treated with its

neighborhood. Finally, once the optimal parameters have

been found, classification is performed by choosing for

each voxel the class that maximizes the posterior proba-

bility. Once again, this is simplified by finding the limits

between on the image histogram and thresh-

olding the image with these values.

B. Gaussian Hidden Markov Random Field Model: GHMRF

The second approach adds a Markovian spatial prior to the

above method. The image intensity distribution function de-
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pends on the parameter set and on the voxel neighborhood

(30)

where is, , a Gaussian distribution parame-

terized by . represents the locally de-

pendent probability of the tissue class . The optimal parame-

ters are computed using an adapted version of the EM algorithm

called HMRF-EM, as suggested in [23]. The equations for the

maximization step are identical to those of A-FGMM, i.e., (26),

(27), and (28). The expectation step becomes

(31)

In this equation, the term requires a previous

estimate of the class labels . Therefore, the classification step

needs to be performed at each iteration of the EM algorithm,

which becomes

1) Estimate the image labeling given the current , then

use it to form the complete data set .

2) Estimate a new by maximizing the expectation of the

complete-data log likelihood, .

Note that, as detailed in [46], the estimation of can be sim-

plified by minimizing the energies instead of maximizing the

probabilities.

C. Gaussian and Partial Volume Model: GPV

The third approach relies only on the intensity information.

Pure tissue intensities are modeled by Gaussian distributions

while mixture tissues are modeled as proposed by Santago et

al. [16], [17] and described by (7). is defined by (22)

where is either a Gaussian or a PV equation. The

optimal parameters are found by minimizing the square differ-

ence between observed normalized intensity histogram and

the intensity model of (22), i.e.,

(32)

where the list of parameters to be optimized is

(33)

This model has fewer parameters than A-FGMM since the mean

and variance of the PV distributions are determined by the mean

and variance of the neighborhood pure tissues composing the

mixture. As in [13], a genetic algorithm is used to solve the es-

timation problem (see Section III-G). Finally, the classification

is performed by maximazing the MAP criteria, similarly to the

A-FGMM approach.

D. GPV and HMRF Model: GPV-HMRF

This method adds a MRF prior to the C-GPV approach. The

resulting probabilistic model is the same as (30), with

defined either as a Gaussian for pure tissues or by the PV equa-

tion (7).

The parameter optimization is performed similarly to the al-

gorithm for B-GHMRF. The modified EM-algorithm becomes,

as in [11]:

(34)

(35)

(36)

In this approach, (35) and (36) are only computed for pure

tissues . Besides in (34) is either a

Gaussian or a PV distribution depending on the tissue type. As

for B-GHMRF, the term requires a previous

estimate of the classification result . In [11], this is done

through

(37)

Here, we do

(38)

Contrarily to B-GHMRF, this expression cannot be handled at

the energy level [46] and the optimization has to be performed

on the probabilities, because does not always follow a

Gaussian distribution.

E. Error Probability Minimization: EP

The last two approaches do not consider a parametric model

for the image intensities, but instead apply an information the-

oretic framework to both the image formation process and the

classification as in [26]. Let us consider a random variable dif-

ferent from , called , also over , which models an es-

timation of from the observable data, . Naturally, the fol-

lowing stochastic process can be built

(39)

where is an error random variable being 1 whenever the es-

timated class label is considered a wrong estimate of the

initial class label, , and 0 otherwise. A key quantity of (39) is

the probability of error, , of the transmission from to

, for a given class map . This probability also equals the

expectation of . Then, the classification objective consists of
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determining the class label map that minimizes an error prob-

ability

(40)

F. Nonparametric HMRF: NP-HMRF

The probabilistic nature of the above method allows us to add

a HMRF spatial prior as before. This results in a nonsupervised

nonparametric hidden Markov model (F-NP-HMRF) segmenta-

tion

(41)

The optimization objective above is called the minimal error

probability principle for F-NP-HMRFs. In complete analogy to

parametric HMRFMs, the prior probabilities, , are mod-

eled by a Gibbs distribution (Section II-B). The derived non-

parametric framework for classification allows the considera-

tion of voxel features for which no particular parametric model

is known. Here, the only feature is the voxel intensity though

voxel gradient could be also used as in [27].

G. Practical Implementation

1) Initialization and Settings: Because of the local nature of

the EM algorithm, a proper initialization is obviously required,

as discussed in [23], [47] for instance. Among the parameters

, with , the most sensitive appears

to be the means . Those are estimated using a prior k-means

classification. The other parameters are set to standard values,

i.e., (because our model has 5 classes) and

(a small value different from zero). In addition, the methods

using a MRF require an initial estimate of the voxel classifica-

tion since the MAP is solved using the ICM labeling algorithm

that converges locally. Actually, we assume that initial label map

is close to the global optimal solution. For this purpose we use

the output of FGMM, GPV, and EP to, respectively, initialize

GHMRF, GPV-HMRF and NP-HMRF.

A genetic algorithm is used for the parameter optimiza-

tion of GPV. In this approach, no initial values have to be

determined but an optimization space has to be defined:

ranging from the minimum

to the maximum intensity value of the image histogram , and

finally . The number of

chromosomes is set to 11. The evolution strategy is described

in [13].

2) Computation Time: All parametric methods are imple-

mented in MATLAB and nonparametric algorithms are in C++.

They all run on a Pentium 4, CPU 1.8 Ghz, 764 MB of RAM.

The total computing time on an image of 161 187 161

voxels is around seconds for FGMM and GPV, few minutes

for EP and GHMRF, around 20 minutes for GPV-HMRF and

between one and two hours for NP-HMRF.

IV. DATA SET

A. Simulated Data

The main dataset used in this study comes from the digital

brain phantom1 from McConnell Brain Imaging Center [28].

It consists of a realistic anatomical brain model and of a MRI

simulator. The brain model has fuzzy tissue membership vol-

umes where voxel values reflect the proportion of a given tissue

within the voxel. It was generated through the semi-manual clas-

sification of a very high SNR MRI of a normal subject ob-

tained through repeated acquisitions. The MRI simulator uses

this anatomical model and a model of MR acquisition physics to

generate images where different RF nonuniformity (bias of 0%,

20%, and 40%) and noise levels (0%, 1%, 3%, 5%, 7%, and 9%)

can be added. All the methods have been applied to the whole

range of noise and RF levels on the T1-weighted modality. The

volume is 217 181 217 voxels with isotropic 1 mm voxel

size. In Fig. 2(a)–(c), three MR images simulated with different

levels of noise and inhomogeneities are shown.

For the purpose of this study, a 5-class (CSF, CG, GM, GW,

and WM) ground truth classification, Fig. 2(d), was created from

the 3-D fuzzy tissue membership volumes. Finally, a ground

truth image histogram was computed by splitting each image

histogram into the specific pure tissue and their mixture his-

tograms [see Fig. 6(a)].

B. Real Data

While simulated data provides an excellent tool to validate

and compare method performance in presence of a variety of

artifacts, assessment on real data is ultimately needed since the

final purpose of these methods is to classify a real T1w MRI

of the human brain for a concrete application. For instance, the

study of term and preterm neonates [48]–[50] requires the acqui-

sition of newborn MRIs; the detection, quantification and study

of brain disorders is based on MR images of pathological brains

[4], [51]; the study of brain aging deals with MRI of aged per-

sons [52]; finally, normal brains are needed to perform statistical

studies or create probabilistic atlases [53]. The trouble with real

data is that the ground truth is typically not available, or exces-

sively time consuming to generate manually.

In this paper, we consider a single real MR brain image of a

normal brain (female adult, no pathology): a three–dimensional

(3-D) T1-weighted magnetization-prepared rapid acquisition

gradient echo (MPRAGE) sequence (Siemens Vision®, 1.5 T,

Erlangen, Germany) TR 9.7 ms, TE 4 ms, FOV 280 280,

matrix 256 256, 146 slices, 0.98 0.98 1.25 mm . Its

signal to noise ratio (SNR) and coefficient of joint variations

(CJVs) were measured at 18 dB and 0.66, respectively. This

corresponds to a digital phantom image with values %

and RF between 0% ( dB, ) and 20%

( dB, ).

C. Ground Truth for Validation on Real Data

Manual segmentations were performed for 2 slices: slice 1

contains mostly GM and WM [see Fig. 3(a)], while slice 2 in-

cludes the central nuclei and ventricles [see Fig. 3(c)]. These

1In this paper, the word phantom stands for a digital synthetic MR brain image
where different artifacts can be added. We do not refer to a physical phantom.
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Fig. 2. Simulated brain T1-weighted: (a) 5% noise and 0% RF, (b) 7% noise and 20% RF, (c) 9% noise and 40% RF, and (d) 5 classes ground truth created from
Brainweb classification. Colorbar: background (BG) is in dark blue, CSF is in blue, mixture of CSF and GM (CG) is in light blue, GM is in yellow, mixture of GM
and WM (GW) is in red, and WM is in dark red.

(a) (b) (c) (d)

Fig. 3. Real MRI data and manual segmentations at a high image resolution level. CSF is in light blue, GM is in yellow and WM is in dark red (a) Slice 1, (b)
Manual segmentation (c) Slice 2 (d) Manual segmentation.

slices were oversampled 8 times, then five experts manually seg-

mented them into pure tissue classes (CSF, GM, WM or back-

ground), as illustrated in Fig. 3(b) and (d) for one of the experts.

The ground truth high-resolution CSF, GM, and WM masks

were estimated using Warfield’s STAPLE algorithm [33], [54].

It generates a probabilistic estimate —where is the

tissue and is the voxel position—of a

ground truth , from a group of expert segmentations ,

where . At the same time, two measures

of quality for each expert segmentation are also estimated: the

sensitivity and the specificity

and

(42)

The parameters are characteristic of rater .

Initially they are fixed to . The ground truth

prior probabilities are assumed to be 0.05, 0.25, and 0.3 for

CSF, GM, and WM, respectively, as suggested in [33]. The

ground truth estimate and rater performances are computed it-

eratively within an expectation maximization (EM) framework.

The algorithm stops at iteration when , with

. Convergence is usually reached with less

than 15 iterations. The final 3 class ground truth estimated are

shown in Fig. 4(a) and (c).

The 3 class high-resolution ground truth is downsampled

back to the original resolution, as can be seen at Fig. 4(b) and

(d). Each pixel at the lower resolution corresponds to a group

of high resolution pixels. If this group consists of a single

tissue class, the low resolution pixel is a pure tissue. If this

group includes several tissue classes, then the low resolution

pixel is PV. Eventual pixels mixing CSF and WM are removed

manually. Let us note that this technique to generate the ground

truth only creates PV at the interface between pure tissues. In

particular, the thalamus or the caudate nuclei at Fig. 4(c) are

classified as pure GM.

The estimated quality parameters of each expert segmentation

and the Dice Similarity Measure (see its definition in

Section V) with respect to the estimated ground truth for slice

2, Fig. 4(c), are shown in Table II. All and values are high

(between 0.85 and 1) except for the CSF where large variability

of the experts segmentations is shown (see for instance ,

and ).

V. VALIDATION METHODS

The data described above allows us to compute many dif-

ferent measures of the validity of the various classification

methods under consideration. We choose to focus primarily on
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(a) (b) (c) (d)

Fig. 4. Estimated ground truth from manual segmentations: (a) and (c) are, respectively, the 3 classes STAPLE estimates of slices 1 and 2. (b) and (d) are,
respectively, the 5 classes ground truth images at the original image resolution level of slices 1 and 2. CSF is in blue, CG is in light blue, GM is in yellow, GW is
in red, and WM is in dark red.

TABLE II
QUALITY PARAMETERS AND DICE SIMILARITY MEASURE OF EACH EXPERT SEGMENTATION WITH RESPECT TO THE 3 CLASSES STAPLE GROUND TRUTH OF SLICE 2

the ability of the methods to correctly classify individual voxels,

both for simulated and real data. Later, we investigate how this

ability reflects on global and local volumetric measurements.

A. Classification of Simulated Data

In order to assess the methods presented in Section III, their

results are compared to the ground truth classification and to

the histograms of the simulated MR brain images. Because of

limited space, most results are only shown for images with 7%

Noise (N) and 20% of in-homogeneity (RF), noted 7N20RF. The

same results for images with 5N0RF and 9N40RF are presented

in [46]. The comparison is performed in 5 different ways.

First, each of the volumes classified by each of the algorithms

is visually assessed. A comparison of a representative slide of

the resulting classified images where all brain tissues are present

with the corresponding slide of the ground truth classification

volume is presented for 7N20RF in Fig. 5.

Second, in Fig. 6, the intensity image model is assessed by

comparing the histogram fitting to the ground truth histogram

of 7N20RF.

Third, global measures of quality are represented by the

percentage of voxels correctly classified (called pergood). This

value is computed with respect to the ground truth volume

and background voxels are not considered. This synthetic

quality measure allows us in Fig. 7 to compare all methods in

terms of robustness with respect to the full range of noise and

inhomogeneities.

Fourth, in Table III, a more detailed tissue dependent quan-

titative analysis is performed by computing the confusion ta-

bles between the ground truth and the classification results for

Fig. 5. Nonsupervised classification of the brain digital phantom with 7%
noise and 20% RF. First row, methods using intensity information only: (a)
A-FGMM, (b) C-GPV, and (c) E-EP. Second row, methods that add to the
intensity the spatial prior information: (d) B-GHMRF, (e) D-GPV-HMRF, and
(f) F-NP-HMRF. Background is in dark blue, CSF is in blue, CG is in light
blue, GM is in yellow, GW is in red, and WM is in dark red.

7N20RF. This table also includes false positive (FP) and false

negative (FN) percentages for all tissue classes.
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Fig. 6. Analysis of the probability density functions for the phantom 7N20RF: (a) 5 classes ground truth histogram and tissue distributions, and from (b) to (g)
Histogram fitting (ground truth is in solid line and estimated probability density functions are in dotted line). (a) 5 classes ground truth probability density functions.
(b) Method A: FGMM. (c) Method B: GHMRF. (d) Method C: GPV. (e) Method D: GPV-HMRF. (f) Method E: EP. (g) Method F: NP-HMRF.



1558 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 12, DECEMBER 2005

Fig. 7. Percentage of voxels correctly classified: all noise and inhomogeneity levels are considered.

TABLE III
CONFUSION TABLE OF PHANTOM 7N20RF. VALUES ARE IN PERCENTAGE COMPUTED OVER ALL VOXELS: A-FGMM, B-GHMRF, C-GPV, D-GPV-HMRF, E-EP,

F-NP-HMRF. FALSE POSITIVES (FP) AND FALSE NEGATIVES (FN) ARE COMPUTED IN PERCENTAGE WITH RESPECT TO THE TOTAL TISSUE

VOLUME OF THE REFERENCE AND TO THE OWN CLASSIFICATION, RESPECTIVELY
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Fig. 8. DSM: all methods and all levels of noise are considered, RF = 20%.

Finally, we compute the Dice Similarity Measure (DSM) [55]

for each tissue as a relative index of similarity. DSM is defined

as

(43)

where and are the voxels classified as tissue with the

methods and , respectively, and is the number of voxels

classified as tissue by both methods. This measure is sensitive

to both differences in size and location. Although is

considered as an excellent agreement between the two segmen-

tations, DSM is hardly interpreted as an absolute value but as a

value to compare the similarities between pairs of methods. In

Fig. 8, the DSM with respect to the ground truth is presented for

all methods and all levels of noise. In Table IV, DSM is shown

for all levels of bias and %.

B. Volumetric Measures

Because volumetry is a major application of tissue classifica-

tion, we investigate how the above results affect volume mea-
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TABLE IV
DICE SIMILARITY MEASURE WITH RESPECT TO THE 5 CLASSES GROUND TRUTH: PHANTOM WITH 7% NOISE AND ALL RF LEVELS

Fig. 9. Comparison of DSM values for GM between 3 and 5 tissues
classification. Only methods A-FGMM and B-GHMRF are shown. Notice that
DSM values obtained with 5 classes are lower than the ones obtained with 3
classes.

surements. In this section, we include both 3 and 5 class classi-

fication methods.

The true volume for each tissue of the synthetic data is ob-

tained by computing the integral of the fuzzy tissue volumes.

For the 3 class classification methods, the volume of CSF, GM,

and WM are estimated by counting the voxels of each class. For

the 5 class classification methods, PV voxels also contribute to

the volume of each tissue. Their gray level is used to estimate

the percentage of each pure tissue in the PV voxel. For instance,

the total volume of GM is computed as

(44)

where means . The other pure tissues

have similar expressions but with a single PV class contribu-

tion. Tissue volume is computed on six brain digital phantoms

(5N0RF, 7N0RF, 9N0RF, 5N20RF, 7N20RF, 9N20RF) and the

root-mean-square (RMS) error over all phantoms for each tissue

was computed with respect to the reference tissue volume. In

Fig. 10, this error is shown as percentage with respect to the

real volume of each tissue.

Finally, volumes are also measured locally, using the above

formulae for cubes of (15 mm) . In Fig. 11(a) and (b) a slice

of the simulated phantom 7N0RF and its corresponding local

volume of GM are shown. Then, the difference between

local volume computation for all methods using both 3 and

5 classes and the reference local volume image is shown in

Fig. 11.

C. Classification of Real Data

Because of its more limited scope, real data is analyzed less

exhaustively. The validation relies only on two of the above

tests. First, visual inspection of the results for the 2 selected

slices is performed in Fig. 12. Second, quantitative validation

is presented in Table V where the DSM is computed for each

method on both slices.

VI. DISCUSSION

A. Global Performance

There is no global winner as the most suitable tissue classifi-

cation technique for T1-MR brain image. In fact, if we define

the best classification as the one with the highest percentage

of correct classified voxels, as in Fig. 7, the optimal method

varies depending on the noise (N) and in-homogeneity (RF)

levels present in the images. For low noise levels ,

no method clearly outperforms the others. However, for higher

noise levels , D-GPV-HMRF almost always per-

forms the best classification, closely followed by B-GHMRF,

whose performance differs by less than 2%. In [46], methods

are also compared by allowing small errors such as confusing a

pure tissue with a PV containing it or confusing a PV voxel with

one of its pure tissues. In this case, C-GPV and D-GPV-HMRF,

both methods using the PV equation, have the lowest error rates

for low and high noise levels, respectively. However, differences

are less than 1%.

B. Robustness to Noise and Inhomogeneities

In order to evaluate their intrinsic robustness, none of the

methods under study includes a preprocessing step to com-

pensate for image artifacts such as noise or bias. In Fig. 7, all

possible levels of noise and inhomogeneities present in the

MRI simulator are considered. Robustness depends primarily

on whether the methods use voxel intensity only or include a

spatial prior.

Methods that consider intensity only are represented with

dotted lines. In general, classification accuracy decreases with

increasing noise and nonuniformities. A-FGMM is very sensi-

tive to both noise and inhomogeneities. However, for low levels

of noise, methods C-GPV and E-EP are equally performant in

and in . For very high noise levels ,

all methods perform a classification that converges toward a

range of pergood equal to [60–65]% for any value of RF.
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TABLE V
DICE SIMILARITY MEASURE OF EACH CLASSIFICATION METHOD WITH RESPECT TO THE ESTIMATED 5 CLASSES GROUND TRUTH

Fig. 10. Study of tissue volume estimation: RMS error is computed over six phantoms (5N0RF, 7N0RF, 9N0RF, 5N20RF, 7N20RF, 9N20RF) and RMS is in
percentage with respect to reference volume of every tissue.

Solid lines represent all methods using local spatial priors,

which present similar behaviors with noise and bias. With no

bias field, , pergood decreases proportionally to the in-

crease of noise. For , there is no decrease of quality

but almost a constant pergood. Finally, for , the per-

good actually increases for high noise levels. The reason for this

unexpected behavior is that—in the presence of a strong bias

field—low noise levels are not realistically modeled

by Gaussian distributions.

C. Pure Tissues and Partial Volume

Using confusion tables such as Table III, the global conclu-

sions can be refined on a tissue per tissue basis. Considering

such confusion tables for noises and bias fields

and , we observe that the best clas-

sifier for CSF is B-GHMRF (70% of the cases), the best clas-

sifier for GM is F-NP-HMRF (70% of the cases) and the best

classification of WM tissue is performed by B-GHMRF in more

than 50% of the cases. D-GPV-HMRF almost always achieves

the best classification score for both PV tissues: 78% of the cases

for CG and 100% for GW.

These results show that PV distributions are not properly

modeled by a Gaussian function. This is also clear when looking

at the histogram fitting of Fig. 6 where CG and GW mixtures

are always better fitted by methods C-GPV and D-GPV-HMRF

using the PV equation. However, the percentage of voxels

correctly classified for a mixture tissue never reaches more than

73% while the best scores for pure tissues usually reach 90%

of correctly classified voxels. This poor result indicates that

PV distribution is not properly modeled yet, and may require

additional study and modeling. For instance, different types of

GW mixtures could be considered as recently suggested in [27].

This anatomical model splits the GW mixture into a geomet-

rical GW mixture corresponding to the brain cortico-subcortical

interface and a mosaic GW mixture corresponding to the deep

cerebral nuclei structures such as the thalamus.

Tissue per tissue robustness to noise is analyzed with the

DSM for bias field % (see Fig. 8). DSM for pure

tissues is almost always above 0.7, which is considered as

an excellent similarity. The best methods to classify the CSF

are B-GHMRF and D-GPV-HMRF, whose stands

between 0.85 and 0.9. They also show excellent noise robust-

ness. The other methods also have a good , but they

prove to be more sensitive to noise. Similar conclusions can

be obtained in the case of WM classification. All methods

present an excellent similarity to the ground truth classification

and a small noise sensitivity. The largest

variabilities were obtained for GM classification. All methods

using spatial prior have , while the methods

using only the image intensity are more sensitive to noise,

decreasing their performance down to . DSM

measures are much less satisfactory for mixture tissues, for
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Fig. 11. (a) A Brainweb simulated MRI (7N0RF). (b) Local volume of GM
in mm (V ). Difference of local volume computation with respect to V :
(c) FGMM in 5 classes, (d) GHMRF in 5 classes, (e) FGMM in 3 classes, (f)
GHMRF in 3 classes, (g) GPV in 5 classes, (h) GPV-HMRF in 5 classes, (i) EP
in 3 classes, (j) NP-HMRF in 3 classes, (k) EP in 5 classes, and (l) NP-HMRF in
5 classes. Negative and positive values, respectively, mean an underestimation
and overestimation of the computed local tissue volume. (m) Local volume of
GM in mm , and (n) Volume estimation error in mm .

which they range between 0.2 and 0.8. For low noise levels,

C-GPV obtains an excellent agreement but it decreases for

high noise levels. The most robust classification is obtained by

B-GHMRF and D-GPV-HMRF whose DSM values are within

0.6 and 0.7.

Notice that DSM values obtained with a 5 class classification

are automatically lower than the ones obtained with a 3 class

classification. Hence, we cannot directly compare DSM values

to the ones published by other groups [56]. In Fig. 9,

values for 3 tissue and 5 tissue classification using A-FGMM

and B-GHMRF are compared.

D. Computation of Tissue Volume

The results in Fig. 10 allow us to assess how the above clas-

sification accuracies affect a practical problem such as tissue

volumetry. In this section, we consider both the 6 classification

methods into 5 classes of this paper, but also 4 methods that

generate 3 pure tissue classes and no PV. The 3-classes methods

include a parametric model made of mixture of 3 Gaussian dis-

tributions and a nonparametric approach, both with or without

a MRF to ensure spatial coherence.

For the parametric methods, 5-classes classification gives

better estimates of the volume of each tissue than the 3-classes

approaches. Tissue volume computation is globally improved

by the parametric methods that use a MRF in comparison to the

ones that only consider the intensity information.

However, for nonparametric approaches we have a com-

pletely opposite behavior. Among those classification methods,

the lowest error is obtained by the 3-classes classification

using EP. Hence, in the case of nonparametric approaches,

considering 5-classes does not improve the results. Indeed,

nonparametric approaches do not estimate correctly the PV

classes, usually overestimating them. In the case of nonpara-

metric approaches, using a MRF does not improve the total

tissue volume computation.

This analysis can be refined by looking at the local volume

measures (see Section V-B) of GM in Fig. 11. In Fig. 11(a) and

(b) a MR image and the local volume of are shown.

The intensity value of every voxel in Fig. 11(b) represents the

volume of GM in a region of interest of (15 mm) centered on

this voxel, see colorbar (m). The rest of the images show the dif-

ference between the local volume computed by a classification

method and , see colorbar (n). In the first two rows, para-

metric methods using 5 classes and a MRF (d, h) are clearly

better at estimating local tissue volume than methods that do not

consider MRF (c, g) or that only consider 3 classes (e, f). For

the most efficient methods (d, h), cortical grey matter volume

is accurately measured while significant errors remain for deep

brain structures such as the putamen, thalamus and caudate nu-

cleus.

In the bottom row, nonparametric approaches display a dif-

ferent behavior. 3-classes EP (i) has both under and over estima-

tion of GM in the cortex, so that when the total tissue volume is

computed there is an error compensation effect. This effect is re-

moved by adding the MRF (j), which always overestimates cor-

tical GM. In the 5–class classification (k) compensation errors

increase around the cortex as well as errors in deep brain struc-

tures. When adding a MRF (l), the errors in deep brain structures

are smaller, but as previously, an overestimation of cortical GM

appears, which removes the error compensation entirely. This

explains why MRF do not improve global tissue volume com-

putation in the case of nonparametric approaches.

E. Real Data

Even though simulated data provides an excellent tool to vali-

date and compare the performance and robustness of algorithms,

assessment on real data is ultimately needed. The results in

Fig. 12 and Tables IV and V show that conclusions drawn on

simulated data can be extended to real data. By analogy, the clas-

sification methods can directly process patient data with degen-

erative brain tissue diseases only, that is, without other patho-

logical processes involved such as early stages of Alzheimer’s

disease or Schizophrenia.

In Fig. 12, visual validation on real data shows that—simi-

larly to the simulated data study—the methods using local spa-

tial prior are less noisy than the ones using only intensity in-

formation. Quantitative validation is shown in Table V with

DSM for each method on the selected slices with respect to

the 5-classes estimated ground truth. DSM values are similar on
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Fig. 12. Statistical nonsupervised classification on a real MR brain image. Columns are: (a) FGMM, (b) GHMRF, (c) GPV, (d) GPV-HMRF, (e) EP, and (f)
NP-HMRF. Slice 1 and 2 are in top and bottom row, respectively.

TABLE VI
CONFUSION TABLE OF METHOD D-GPV-HMRF WITH RESPECT TO THE

ESTIMATED 5 CLASSES GROUND TRUTH. VALUES ARE PERCENTAGE WITH

RESPECT TO THE ESTIMATED GROUND TRUTH. GREY MATTER HAVE BEEN

SEPARATED INTO CORTICAL AND DEEP BRAIN CLASSES

both slices and they are comparable to the ones obtained with

simulated data at Table IV, except for CSF because of its large

variability. Satisfactory results are obtained for

GM, except for nonparametric methods. All methods give ex-

cellent results for WM .

Again in agreement with the simulation results, mixture tis-

sues have lower rates of correct classification. In the case of GW,

this arises primarily because of the choice of the experts to clas-

sify the central nuclei—part of the thalamus and caudate nu-

clei—as pure GM instead of GW mixture tissue. Nonsupervised

classification always select these structures as GW or WM. This

disagreement has been quantified for D-GPV-HMRF by cre-

ating a confusion table at Table VI, where cortical GM and cen-

tral GM were split into two different classes. Almost 85% of

cortical GM is correctly classified as GM. On the contrary, only

16% of central GM is classified as GM while 60% is classified

as GW and 22% as WM. The confusion table also shows that

most of the CSF is actually classified as CG.

In summary, conclusions for real data are the same as for

the simulated data: B-GHMRF and D-GPV-HMRF perform, in

general, much better than the others while C-GPV shows the

best performance for CSF and CG.

VII. CONCLUSION

This paper presents a validation study on statistical classifi-

cation of brain tissue in MR images. Several image models have

been assessed assuming different hypotheses regarding the in-

tensity distribution model, the spatial model and the number of

classes. Both qualitative and quantitative validation on simu-

lated data allows us to obtain the following conclusions.

The percentage of correct classification never reaches 100%

and, even if pure tissues are in general correctly classified, PVs

are not. Nonparametric models have performed in some cases

equally or even better than parametric approaches. Actually,

3-classes EP algorithm has proved very well-suited to perform

volume computation. This is because the misclassification made

with nonparametric approaches is mainly due to an overestima-

tion of both mixture classes. However, in the case of parametric

approaches, results show that, even if the assumptions regarding

the mixture tissues are imperfect, it is necessary to take them

into account. Actually, 5-class models not only better estimate

the image histogram but they also reduce considerably the errors

in the estimation of tissue volume. Our study has also revealed

that techniques considering spatial information increase in av-

erage the accuracy of the classification by 7%. Finally, we have

shown that the results obtained with simulated data can also be

representative of real conditions of normal brains.

Emerging classification methods add atlas information to the

intensity and local spatial priors [11], [24], [56], [57]. One main

line of our current research is to quantify the importance of this

kind of information. Some preliminary results [46] have shown

that the performance of such methods is very sensitive to reg-

istration errors and to the precision of the atlas prior. Actually,

mixture tissues are particularly affected by prior class template

errors while pure tissue classification has almost always been

improved.
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Our current research also aims to quantify the sensitivity of

the algorithm to their parameters such as in HMRF methods as

well as the effect of preprocessing the images by an anisotropic

filter or a bias corrector or adding a bias field estimation model.

We expect both the preprocessing and bias model (as in [2], [10],

and [19]) to make the classification more robust faced with noise

and inhomogeneities. However, we suspect the preprocessing

could displace PV voxels, so that errors might be added in mix-

ture tissue classification.
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