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Comparison between 16S rRNA 
and shotgun sequencing data 
for the taxonomic characterization 
of the gut microbiota
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Daniel Remondini1* & Alessandra De Cesare4

In this paper we compared taxonomic results obtained by metataxonomics (16S rRNA gene 
sequencing) and metagenomics (whole shotgun metagenomic sequencing) to investigate their 
reliability for bacteria profiling, studying the chicken gut as a model system. The experimental 
conditions included two compartments of gastrointestinal tracts and two sampling times. We 
compared the relative abundance distributions obtained with the two sequencing strategies and then 
tested their capability to distinguish the experimental conditions. The results showed that 16S rRNA 
gene sequencing detects only part of the gut microbiota community revealed by shotgun sequencing. 
Specifically, when a sufficient number of reads is available, Shotgun sequencing has more power to 
identify less abundant taxa than 16S sequencing. Finally, we showed that the less abundant genera 
detected only by shotgun sequencing are biologically meaningful, being able to discriminate between 
the experimental conditions as much as the more abundant genera detected by both sequencing 
strategies.

�e study of the gut bacterial community composition has become a fast-developing �eld, both for the assess-
ment of possible correlations with human diseases and  pathologies1,2 and for the examination of the e�ects of 
diets and probiotics in animal  productions3,4. �is developing �eld has been hugely a�ected by the emergence 
and optimization of high-throughput sequencing, that made metagenomics the key instrument to access com-
plex ecosystems, such as the human and animal gut. �e popularity of high-throughput sequencing is due to 
decreasing cost and augmented speed and scalability of  experiments5, which are crucial aspects when researchers 
design a sequencing project.

�e main objectives of gut metagenomic studies are: (i) the identi�cation of the gut microbiota taxonomic 
composition, (ii) the characterization of the relative abundances of taxa, (iii) the description of the functional 
contribution of each taxon and (iv) the understanding of the intra-species and/or intra-population gene 
 heterogeneity6. To this aim, metataxonomics and metagenomics strategies are used. Metataxonomics consists in 
the targeted sequencing of 16S rRNA gene hypervariable  regions7, and allows representative bacterial taxonomic 
 estimation8 even when a relatively small number of raw reads is obtained (i.e., as low as 18,000–20,000 reads per 
sample)9,10. �e overall sequencing output of metataxonomics is a set of clusters of nearly identical sequences, 
referred to as Operational Taxonomic Units (OTUs)11 or Amplicon Sequence Variants (ASVs)12. From the analy-
sis of such clusters, information on the community diversity, richness and evenness can be  derived13, while 
accounting for the degree of divergence between di�erent ecosystems or sample  types14. However, the choice 
of primers used to amplify 16S rRNA leads to potential biases in the representation of the taxonomic  units15–18.

Besides the mapping of the taxonomic composition of a sample, the most challenging task for metagenomic 
studies is the evaluation of the genic contribution of each member of the investigated community in terms of 
functional  genes6. To address this issue, shotgun metagenomic sequencing is the most suitable strategy. Here, long 
DNA molecules, such as complete chromosomes, are randomly broken into fragments that are then  sequenced19. 
Hence, metagenomic data deliver knowledge on the taxonomic composition of the ecosystem under study but 
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also on functional genes in the sample, an information that is not retrievable with 16S rRNA gene sequencing. 
On the other hand, shotgun metagenomics requires higher coverage than  metataxonomics16.

In a previous study we gained insights into the e�ects of Lactobacillus acidophilus D2/CSL (CECT 4529) (LA) 
on the ecology of the bacteria colonising the chicken gastrointestinal (GI)  tract20. Speci�cally, we investigated 
the crop and caeca microbiomes in treated animals and in a control group at 1, 14 and 35 days of rearing, using 
shotgun metagenomic sequencing. In the present study, the same DNA samples investigated in the previous 
research were analysed using the targeted 16S rRNA gene sequencing (16S). �en, the results obtained with both 
sequencing strategies were compared to answer three broad questions: (1) what is the resolution of bacterial 
populations observed by shotgun sequencing as a function of the total number of reads; (2) how many bacterial 
genera are retrieved exclusively by one sequencing strategy and not by the other; (3) how much the two sequenc-
ing strategies retrieve information about the speci�c experimental conditions, namely the di�erent compartments 
of gastrointestinal tracts and the sampling time. To address these questions, we studied the dependence between 
the capability of detecting bacterial populations and the total number of reads and we showed that, when a suf-
�cient number of reads is available, shotgun sequencing �nds a statistically signi�cant higher number of taxa than 
16S sequencing, corresponding to the less abundant. Finally, we analysed bacterial community pro�les exclusive 
to each strategy, demonstrating that the genera detected only by shotgun sequencing are able to discriminate 
between the experimental conditions better than those detected only by 16S sequencing.

Results and discussion
Relative species abundance distribution. In order to evaluate sample quality, we analysed both the 
Relative Species Abundance distribution (RSA) and the rarefaction curves. For each sample, we compared the 
RSA derived by shotgun and 16S sequencing. RSA histograms in logarithmic scale show that the distributions 
obtained by shotgun and 16S have similar shape at phylum level (Fig. 1a, b). In Fig. 1b, the 16S sample is char-
acterized by a more patchy distribution, having identi�ed less phyla. At phylum level, both strategies produce 

Figure 1.  RSA histograms in logarithmic scale (Preston plots 21) of bacterial abundances in one sample 
selected as anexample (caeca25): (a) genera sampled by shotgun sequencing, (b) genera sampled by 16S rRNA 
sequencing, (c) phyla sampled by shotgun sequencing and (d) phyla sampled by 16S sequencing.
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positively skewed samples in the  log2-transformed distributions, except for 16S outliers, because none of the 
phyla is signi�cantly rare (Fig. 2a).

On the other hand, at genus level, the two strategies display di�erent shapes (Fig. 1c, d, Supplementary Fig. S1, 
S2, S3, S4). Indeed, the  log2-transformed distributions derived by shotgun sequencing generally have a skewness 
closer to zero compared to those obtained by 16S, i.e. are more symmetrical (Figure 2b): a paired Student’s t-test 
on the skewness shows a signi�cant di�erence between them (P = 8·10–6). �is indicates that shotgun samples are 
characterized by a higher sampling size. According to Preston, le�-skewed shapes of the RSA can be explained 
as artefacts of small sample  size21,22, since insu�cient sampling of the original space produces a truncation of 
the le� tail of the RSA, increasing its skewness.

In shotgun samples, the RSA skewness at genus level is related to the total number of reads (Supplementary 
Fig. S5): the shotgun samples with the lowest total number of reads have the largest skewness. Speci�cally, Sup-
plementary Figure S5 shows that shotgun samples cluster in two groups, one characterized by a low number of 
reads (# reads < 500,000, 28/78 samples) and a highly skewed RSA (greater than the 16S median), and one with 
a high total number of reads (# reads > 500,000, 50/78 samples) and a less skewed RSA.

Noticeably, the high-skewness group includes all 9 samples from 1st day, all 15 crop samples from 14th day 
and 4 out of 18 crop samples from 35th day. �e samples collected at day 1 were very poor in terms of biomass 
and the crop samples contained more feed residues than caecal samples, making the DNA extraction less e�cient 
both in terms of DNA quantity and quality. For the comparative analysis we removed samples with less than 
500,000 reads being characterized by a low quality. �is choice was corroborated by the analysis of the rarefaction 
curves, showing that shotgun samples with less than 500,000 reads do not reach a plateau in terms of identi�ed 
genera (Supplementary Fig. S6). All the 50 samples included in the comparative analysis have a total number of 
reads > 500,000 and a skewness lower than the median of 16S samples, indicating a good sampling depth. Since 
included samples were characterized by a high microbial load, we are con�dent to extend the results of the fol-
lowing analyses only to samples with few contaminant DNA and low cross-contaminations. Nonetheless, we have 
shown that shotgun samples have a RSA similar to 16S samples when a low number of total reads is available, 
thus hypothesizing that in di�erential analyses carried on samples with a low microbial load regime, shotgun 
sequencing could perform similarly to 16S sequencing or even worse.

For a balanced comparison, also 16S samples corresponding to the discarded shotgun samples were removed.

Differential analysis for the experimental conditions. Since in many situations a metagenomic anal-
ysis is used to discriminate between di�erent experimental conditions, we compared the results of di�erential 
analysis performed on reads obtained by the two strategies. To this aim, we analysed the fold changes of genera 
abundances between compartments of the GI tract and between sampling times (Fig. 3 for caeca vs crop, Sup-
plementary Fig. S7 for 14th vs. 35th day) common to both sequencing strategies (288 genera for caeca vs crop, 
and 246 for 14th vs. 45th day). Comparing the genera abundances between caeca and crop, 16S identi�ed 108 
statistically signi�cant di�erences (adjusted P < 0.05 with DESeq2), while shotgun identi�ed 256; 28 genera, 
corresponding to 9.7% of total common genera, were not identi�ed as signi�cantly di�erent by either strategy. 
Among the 104 genera identi�ed to be di�erent between caeca and crop by both sequencing strategies, 93.3% 
(97/104) showed a concordant fold change. Concerning the genera with di�erent abundance between sampling 
times, 16S detected 58 statistically signi�cant changes (adjusted P < 0.05 with DESeq2), while 75 were detected 
by shotgun. �e 80% (16/20) of the 20 genera with di�erent abundance between the 14th and 35th day for 
both sequencing strategies showed a concordant fold change (see Table). �e discrepancies seem to be related 

Figure 2.  Box plot of the RSA skewness of bacterial communities at (a) phylum level and (b) genus level. 
Bacterial communities are sampled with (le�) shotgun sequencing and (right) 16S sequencing.
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to detection issues in 16S samples: indeed, all the seven discordant changes in caeca vs crop are caused by the 
partial or total absence of a genus in 16S samples (as shown in Supplementary Fig. S8). �is is possibly due to 
the fact that these genera are close to the detection limit of 16S strategy, for which we have provided an estimate 
in the next section. On the other hand, three of the four discordant genera in the 14th vs 35th day showed actual 
discrepancies between shotgun and 16S changes, not necessarily caused by detection issues (see Supplementary 
Fig. S9).

Noticeably, shotgun sequencing found 152 statistically signi�cant changes in genera abundance between 
caeca and crop of chickens that 16S sequencing failed to detect, while 16S found only 4 changes that shotgun 
sequencing did not identify (Fig. 3).

Genera detection and abundance quantification. �e agreement between the taxonomic pro�les 
estimated with the two strategies was further evaluated computing for each sample the Pearson’s correlation 
coe�cient (r) between the taxonomic abundances of genera common to 16S and shotgun sequencing. Overall, 
we observed a good agreement between the taxonomic abundances found by the two strategies (Fig. 4, Supple-
mentary Fig. S10), with an average correlation of 0.69 ± 0.03 in caeca (all p-values < 10–11 for correlation signi�-
cance between 16S-shotgun sample pairs) and 0.75 ± 0.05 in the crop (all p-values < 5·10–5).

A larger di�erence is observed between the number of identi�ed taxa by the two strategies. �e histogram 
on the le� of Fig. 4 shows that, in the selected sample, a great majority of genera detected by shotgun sequenc-
ing are not found by 16S sequencing (green portion of the bars). �is phenomenon is mostly observed on the 
le�most bins, that represent low abundance genera (Supplementary Fig. S11, S12, S13, S14 for single samples). 
�ese results are con�rmed in Fig. 5 and Supplementary Table S1, showing that (a) all the phyla detected in 
16S samples were identi�ed in shotgun samples and (b) only a small number of genera (about 23% for caeca 
samples and 11% for crop) is recovered by both strategies. �e percentage of reads mapping to the genera identi-
�ed by both sequencing strategies is large (on average 89% for caeca and 99% for crop). �is means that genera 
identi�ed by both strategies are the most abundant ones, e.g. those mapped by most of the reads. In summary, 
shotgun sequencing always identi�es more taxa than 16S sequencing, as also re�ected on the rarefaction curves 

Figure 3.  Fold changes between caeca and crop in genera identi�ed by both strategies. Some fold changes are 
shrunk toward zero by the DESeq2 algorithm (see “Methods” section). Points with a statistically signi�cant 
change for both strategies are represented in blue, for shotgun only in green, for 16S only in orange and without 
a signi�cant change in cyan (adjusted P > 0.05 with DESeq2). Point size is the  log10 of average number of 
reads from shotgun strategy mapping to each genus. Pearson’s correlation coe�cient r and regression line are 
computed only on points with statistically signi�cant fold changes according to both strategies (“Both” group in 
�gure legend and in Table 1).

Table 1.  Percentage of genera having a concordant change in abundance in shotgun and 16S samples with a 
statistically signi�cant change for: both sequencing strategies (1st column), 16S only (2nd column), Shotgun 
only (3rd column), neither (4th column).

16S & shotgun 16S only Shotgun only Not signi�cant

Caeca versus crop 93.3 (97/104) 75.0 (3/4) 72.4 (110/152) 64.3 (18/28)

14th versus 35th day 80.0 (16/20) 55.3 (21/38) 58.2 (32/55) 57.1 (76/133)
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(Supplementary Fig. S6). Moreover, 16S sequencing predominantly detects taxa that are also identi�ed by shotgun 
sequencing (133 of 187 genera and 14 of 14 phyla on average) (Fig. 5).

�e relationship between abundances detected by 16S and shotgun metagenomics was further investigated 
�tting a linear regression model on the abundance of genera common to both strategies in each sample. We 
considered, for each shotgun-16S pair of samples, the logarithmic abundances obtained with 16S as independent 
variable and those obtained with shotgun as dependent variable, so that the intercept in this model represents 
the number of shotgun reads corresponding to genera that are mapped to one single read by 16S sequencing, 
that we consider as a detection limit. Here, samples with low number of reads (< 500,000) were included for 
completeness. Results show that the model intercept increases as a function of the total number of reads avail-
able in shotgun samples (Fig. 6). �e regression intercept and the total number of shotgun reads are positively 
correlated (Pearson’s coe�cient = 0.93, P < 10–16).

Hence, given the total number of reads of a shotgun sequencing sample, the genera mapped by a number 
of reads lower than the model intercept are the most likely to be undetected by 16S strategy. For example, 

Figure 4.  Scatter plot of 16S and shotgun genera abundances of one sample selected as example (caeca25). 
Histograms display stacked bars, where every column is divided in a part corresponding to the abundance of 
genera detected by both sequencing strategies (blue) and the other part is relative to genera detected exclusively 
by only one strategy (red for 16S and green for shotgun). Pearson’s correlation coe�cient is computed only for 
the common genera. Logarithmic  (log2) scale helps to recognize that less abundant genera identi�ed by shotgun 
sequencing are almost not detected by 16S sequencing.

Figure 5.  Average number of (a) phyla and (b) genera found within caeca and crop samples. �e length of the 
error bars is equal to the standard deviation computed on all the samples.
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considering the sample depicted in Fig. 4 with a total number of reads equal to 2,972,671 with shotgun strategy, 
genera with a number of reads approximately < 350 would probably not be detected by 16S sequencing, corre-
sponding to 88% of total detected genera in that shotgun sample.

Sample stratification by experimental condition. Since in many studies an unsupervised analysis 
(i.e. clustering) based on taxonomic pro�ling is performed, in order to identify possible sample strati�cation 
due to experimental conditions or to other unknown factors, we calculated the Bray–Curtis beta diversity and 
performed a Principal Coordinate Analysis (PCoA). We considered for every sample a n-dimensional (n = 678) 
vector of abundances, considering the genera that are common to all samples (a graphical representation is 
showed in Supplementary Figure S15). A quantitative evaluation of the separation in the PCoA space of samples 
labelled by experimental conditions was obtained through the mean Silhouette Score (SS) of the samples at 
genus level. We compared the silhouette scores either on the totality of genera identi�ed by shotgun (“SHOT-
GUN”) or 16S (“16S”) strategy, or on the subset of genera detected exclusively by shotgun (“SHOTGUNex”) or 
by 16S (“16Sex”), to evaluate their ability to discriminate between known experimental conditions (compart-
ment of the GI tract and sampling time). Results show that when samples are labelled according to the compart-
ment of the GI tract, the Silhouette Score is high (i.e., close to 1) for both strategies (see Supplementary Tab. S2 
and Supplementary Fig. S16). However, the separation between groups is stronger in shotgun samples than in 
16S samples. �is result remains true even when the PCoA of shotgun samples is computed considering only 
shotgun-speci�c genera.

On the other hand, when grouping samples according to sampling time within the same compartment of 
the GI tract, Silhouette Scores are generally lower for both strategies, while still achieving a good separation 
(see Fig. 7). Figure 7 plots refer to the Silhouette Scores of Supplementary Table S3, in which full samples 
(Fig. 7a,b) reach an almost perfect separation, though the low compactness leads to worse scores with respect to 
GI tract labelling. An interesting result is that abundance pro�les of genera found only in shotgun sequencing 
(SHOTGUNex) have a positive silhouette score, while 16Sex samples have a smaller silhouette score, close to 0 
(a value representing low-quality clustering, very close to random). �is result highlights that shotgun sequenc-
ing detects low-abundance genera that carry signi�cant information about the experimental biological factors, 
while 16S-speci�c genera fail to correctly cluster samples based on one of the experimental factors considered 
(namely sampling time), and a good separation is obtained only when the most abundant genera common to 
both strategies are considered.

Conclusion
�is comparative analysis, based on 78 chicken gut metagenomes, showed that shotgun sequencing recovered 
more information about low-abundance genera than 16S sequencing, when a su�cient number of reads were 
available for taxonomic pro�ling (> 500,000 reads). Most of the bacterial genera were identi�ed by shotgun 
sequencing, while, on average, 16S recovered less than 31% of the genera and less than 50% of the phyla.

In agreement with our study, Campanaro et al. (2018)17 showed that several phyla were strongly under-rep-
resented in the 16S amplicon analysis in comparison to random shotgun DNA sequencing. Moreover, Laudadio 
et al. (2018)16 highlighted the higher resolution of taxonomic analyses performed by shotgun metagenomics as 
compared to 16S sequencing at di�erent taxonomic levels, using the number of taxa identi�ed in each sample as 
a metric to evaluate performance. Tessler et al. (2017)23 and Shah et al. (2011)24 showed instead that 16S rRNA 
sequencing identi�ed more diverse bacterial phyla and families than shotgun sequencing, but we remark that in 
both studies the number of reads per sample used for taxonomic pro�ling was about 100 time smaller than in our 

Figure 6.  Intercepts of shotgun vs 16S abundance linear regressions of caeca samples against the total number 
of reads in each set, representing the number of shotgun sequences corresponding to one 16S sequence. Error 
bars correspond to the con�dence interval for the parameter provided by the �t.
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study and in the two previously mentioned papers, thus this undersampling might be the reason of this apparent 
inconsistency (see Supplementary Table S4). In our work, we demonstrated that the total number of sequenced 
reads is a critical factor to perform a robust analysis with shotgun sequencing at low taxonomic (genus) level. 
Furthermore, analysing the changes in genera abundance due to di�erent experimental conditions (i.e., di�er-
ent compartments of the GI tract and sampling time), we showed that shotgun sequencing is more sensitive 
than 16S, being able to identify a larger number of genera that are signi�cantly a�ected by these factors (Fig. 3).

�e RSA distributions obtained by the two sequencing strategies showed quantitative and qualitative dif-
ferences at genus level, in particular for the le� tail. When the total number of reads was as low as ~ 200,000 in 
shotgun samples, the RSA shapes became strongly positively skewed, similarly to those obtained with 16S. On 
the other hand, increasing the sampling intensity enabled to detect less abundant  genera21. �e genera detected 
only by shotgun sequencing are not very abundant, because even if they constitute about 75% of the identi�ed 
genera, the associated read count is less than 9% of the total reads. Nonetheless, these less abundant genera pro-
vided reliable information and showed signi�cant correlation with the di�erent experimental conditions. �e 
same conclusion could not be drawn for low-abundance genera exclusively identi�ed by 16S sequencing. �e 
latter were able to discriminate di�erent compartments of the GI tract but failed to stratify samples according 

Figure 7.  PCoA based on the beta-diversities between samples (Bray–Curtis metric), computed on genera 
abundances of caeca samples normalized by DESeq2, labelled by sampling time: 14th day (gold), 35th day 
(cyan). (a, b) with all genera detected respectively by shotgun (a) and 16S (b); with genera found exclusively by 
shotgun (c) or 16S (d).
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to the sampling time. Finally, our results allowed to provide an estimation of the number of genera that would 
likely be detected by shotgun sequencing and not by 16S sequencing.

Methods
Animals and treatments. �e experimental trial from which the samples were collected has been previ-
ously described in De Cesare et al. (2020)20. In our study, we compared bacterial abundance pro�les in 78 sam-
ples undergoing both 16S and shotgun metagenomic sequencing. Overall, 40 samples were from caeca (4 from 
1st day, 16 from 14th day and 20 from 35th day) and 38 from crop (5 from 1st day, 15 from 14th day and 18 from 
35th day) were collected.

Shotgun sequencing was performed as previously  described20, whereas for amplicon sequencing, the libraries 
were prepared following the Illumina 16S Library preparation  protocol10, amplifying the variable V3 and V4 
regions of the 16S rRNA. Sequencing was performed in paired-end at 150 bp in the Illumina  MiSeq25,26. �e 
maximum output of the v2 kit is 15 million reads per run, meaning approximately 187,500 reads per sample.

Since biomasses extracted from GI tracts (caecum in particular) have typically a high microbial  load27 and 
host depletion methods can be not e�ective for DNA  libraries28, the samples were not depleted from host DNA. 
�e reads not assigned to Bacteria domain were hence removed a�er taxonomic pro�ling.

Overall, 78 metagenomes were analysed: 40 metagenomes from caeca (i.e., 4 from 1st day, 16 from 14th day 
and 20 from 35th day) and 38 from crop (i.e., 5 from 1st day, 15 from 14th day and 18 from 35th day). �e 16S 
and shotgun metagenomes analysed as well as their number of sequences mapping to Bacteria are detailed in 
Supplementary Table S5, with genera rarefaction curves in Supplementary Figure S6.

Processing and taxonomic profiling. Both 16S and shotgun raw reads were pre-processed and assigned 
to a genus using MG-RAST with default  parameters29. Speci�cally, 16S reads were taxonomically classi�ed using 
the Silva SSU reference  database30, while the RefSeq  database31 was used for shotgun reads. Singleton reads were 
discarded.

MG-RAST advices against the reliability of taxonomic pro�ling at species  level29, in particular for samples 
obtained by shotgun sequencing. For this reason, we choose to perform the analysis of the bacterial communi-
ties up to genus level.

Statistical analysis methods. Data were processed and visualized in Python 3.6 and R 3.6.0 using custom 
scripts.

For each sample, the Relative Species Abundance distribution (RSA) was computed counting the number of 
genera that have a certain abundance. RSAs were visualized as Preston  plots21,32. Rarefaction curves were com-
puted with an  extension33 of the R package phyloseq 34 implementing the package  vegan35.

Counts normalization and di�erential genera abundance analysis were performed by DESeq2  package36, 
considering as signi�cant those changes with an adjusted p-value lower than 0.05. High variability in the disper-
sion of the counts was adjusted with a shrinkage procedure by DESeq2, that led to smaller estimates of the fold 
changes in samples with a low number of total reads. For each sample, we calculated and visualized the Pearson’s 
correlation coe�cient between the taxonomic abundances obtained using 16S and shotgun, along with a p-value 
for correlation signi�cance. For this analysis, we considered only genera that were present in both pro�les.

Beta diversity was computed using the Bray–Curtis  distance37,38 and considering normalized counts retrieved 
by DESeq2, that keeps into account the di�erences in sample size. Principal Coordinate Analysis (PCoA)39 was 
performed to visualize the samples based on the beta diversity. Silhouette Scores were calculated to assess the 
correspondence between sample displacement in the PCoA space and experimental factors (i.e. compartments 
of gastrointestinal tract and sampling time). Sampling time corresponds to the days of rearing of the chickens 
(1st, 14th and 35th).

Ethical approval and informed consent. �e experiments were conducted a�er obtaining the approval 
of Ethical Committee of the University of Bologna on 17/3/2014 (ID: 10/79/2014). All experiments were per-
formed in accordance with relevant guidelines and regulations.

Data availability
All 16S and shotgun metagenomic sequences tested as part of this comparative study were deposited in MG-
RAST (http://metag enomi cs.anl.gov/) and are public available under the projects named newlacto16S (http://
www.mg-rast.org/mgmai n.html?mgpag e=proje ct&proje ct=mgp91 466) and newlacto (http://www.mg-rast.org/
mgmai n.html?mgpag e=proje ct&proje ct=mgp13 081), respectively.
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