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ABSTRACT

A collection of boundary layer heights has been derived from measurements performed by a ground-

based backscatter lidar in Neuchâtel, Switzerland (47.000°N, 6.967°E, 485 m ASL). A dataset of 98 cases

have been collected during 2 yr. From these data, 61 are noon and 37 are midnight cases. The following two

different schemes were used to retrieve the mixed layer depth and the height of the residual layer from the

measurements: the gradient and variance methods. The obtained values were compared with those derived

from the potential temperature profiles as computed from radiosonde data. For nocturnal cases, the height

of the first aerosol layer above the residual layer was also compared to the corresponding potential tem-

perature value. Correlation coefficients between lidar and radiosonde in both convective and stable con-

ditions are between 0.88 and 0.97.

1. Introduction

The mixed layer depth (MLD; see the appendix for a

list of acronym and symbol definitions) and the height

of the residual layer (RL) top are two important pa-

rameters characterizing the aerosol stratification in the

atmospheric boundary layer (ABL) (Stull 1988; McIl-

veen 1992; Siebert et al. 2001). Several studies focused

on the dynamics of nighttime and daytime ABL and

aimed to forecast its temporal evolution (De Wekker et

al. 1997; Rampanelli and Zardi 2004; Zampieri et al.

2005). The approximation of the current boundary

layer height (both day and night) is usually retrieved

from the temperature inversion at the top of the ABL

as measured by radiosondes, or from the gradient in the

water vapor mixing ratio (Heffter 1980; Stull 1988).

One convenient and widely used method for the day-

time determination of MLD by radiosonde measure-

ments (Cramer 1972; Van Pul et al. 1994; De Wekker et

al. 2004) is based on the local maxima of the potential

temperature vertical gradient.

The elastic backscatter lidar signal is determined by

the altitude profile of the atmospheric aerosol. By using

an aerosol as a tracer for convective and mixing pro-

cesses, the backscatter signal provides information on

the ABL stratification. As a remote sensing instrument,

the lidar has advantages in detecting the MLD and RL

height, in particular, in the possibility to perform con-

tinuous measurements and to choose the direction of

probing.

The lidar signal gradient gives information about the

structure of the ABL, as demonstrated by Russell et al.

(1974). This method is widely used and examples

thereof may be found in recent studies like those of

Menut et al. (1999), Bösenberg and Linné (2002), Fri-

oud et al. (2003, 2004), and Matthias et al. (2004). The

results from different approaches to the lidar signal de-

rivative methods for MLD determination have been

compared in Sicard et al. (2006). The study was

performed for daytime measurements only where it

also included correlation with the MLD determined

from radiosonde temperature profiles. In another

recent study (Wiegner et al. 2006), the authors compare

the lidar signal derivative method with results from

sodar, radiosoundings, and in situ aerosol measure-

ment of the vertical profile of the aerosol distribution.
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The measurements are again performed during day-

time.

Hooper and Eloranta (1986) and Piironen and Elo-

ranta (1995) evaluated the MLD with another method,

the standard deviation of backscatter signal. The

method was further developed by Menut et al. (1999)

and referred as a centroid method; therein, the altitude

of the maximum of lidar signal variance over a period

of 5 min was considered as an estimation of the MLD.

The authors compared the MLD obtained with such a

procedure and the MLD determined from the Richard-

son number, where the latter was retrieved from radio-

sonde measurements. They considered four daytime

convective cases and found good agreement between

both methods. Another approach to evaluate the cur-

rent boundary layer height directly from the lidar signal

is based on the determination of the altitude where the

backscatter signal drops below a defined threshold

(Melfi et al. 1985). A technique to determine the alti-

tude of this drop, based on the wavelet technique, was

suggested and used in a number of studies (Hayden et

al. 1997; Steyn et al. 1998, 1999; Hoff et al. 1997; Hägeli

et al. 2000). This method has been further developed in

Cohn and Angevine (2000), Davis et al. (2000), and

Brooks (2003), with the aim to obtain algorithms that

allow automated data processing. The wavelet ap-

proach became very convenient also for lidar study of

the ABL above complex terrain (Blumen 1990), where

the multiple layering of the aerosol is a typical situation

in both day- and nighttime.

The objective of the present study is to compare two

lidar methods with one based on the potential tempera-

ture gradient to determine the ABL stratification dur-

ing day and night. The two lidar methods are based,

respectively, on lidar signal gradient and variance. In

the previous studies the comparison between lidar and

radiosonde methods to determine the MLD was mainly

performed in convective conditions and on few cases;

there is hardly any systematic comparison between ra-

diosonde and lidar methods to determine RL height in

stable nighttime ABL.

The presented comparison includes 98 cases—61 of

which are at noon and 37 of which are at midnight. All

cases coincide in time with radiosoundings from a

nearby aerological station. The cases from data collec-

tion were selected for cloud- (cumulus, stratus, altostra-

tus) and fog-free conditions; however, cirrus might be

present. No other criteria of selection have been ap-

plied, like season or synoptic pressure conditions. All of

the nocturnal cases presented at least one elevated

aerosol layer above the RL top. This structure is typical

for the city of Neuchâtel, Switzerland, which has a com-

plex topography that strongly contributes to the forma-

tion of several nocturnal aerosol layers.

2. Boundary layer dynamics and local circulation

Knowledge of the potential temperature lapse rate is

usually sufficient to determine the static stability of an

atmospheric layer and to identify its boundaries. An

inversion corresponds to a sharp increase in local lapse

rate of the potential temperature (�) and respectively to

an increase in the static stability (Stull 1988) of the

inversion layer. Starting from the ground level, the first

maximum of ��/�h (where h is the altitude) is consid-

ered as reference height for the actual boundary layer

top.

The lidar measurements were performed in Neuchâ-

tel (47.000°N, 6.967°E; 485 m ASL). The city is situated

at the foot of the south slope of the Jura mountain

range (oriented NE–SW, with the highest elevation at

1609 m ASL), at the side of Lake Neuchâtel (38.3 km

long and 8 km wide, oriented in the mountain range

direction). In such topographic conditions, it may be

expected that the local circulation contributes to the

ABL development (Stull 1988; McIlveen 1992) during

both day and night.

During daytime, convection may drive anabatic wind

(Blumen 1990; McIlveen 1992) along the Jura slope.

The anabatic wind normally enhances the mixing pro-

cess inside the mixed layer (ML). In some cases, when

the ML above Neuchâtel is shallow, the anabatic wind

may flow over the ML. The outflow results then in an

aerosol layer above the Neuchâtel ML. In addition,

when the wind is from the W and NW, aerosol layers

are advected from the Jura top in the free troposphere

(FT) above the Neuchâtel ML. Because these layers

appear above the ML, they do not affect the retrieval of

the MLD from the lidar signal.

During nighttime, most of the aerosol sediment is in

the SBL, but particles remaining from daytime ML are

still present in the RL. The constituents can mix at the

RL top with advected aerosol layers when they are ly-

ing immediately above the RL, diluting its aerosol con-

tent. One process of mixing inside the SBL and RL is

due to surface winds. The lake and the mountain slope

initiate breeze circulation and katabatic flow (Blumen

1990; McIlveen 1992). The combined flows mix with the

already established air masses, and hence modify the

SBL stratification (Wallace and Hobbs 1977). The two

local winds advect air from the Jura slope with an aero-

sol content that is different from the one in the SBL.

When the winds are strong, the turbulent mixing also

may affect the RL. As well, the atmosphere above the

RL is influenced by the local topography, as it is in the
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daytime. The northwesterly wind blowing over Neuchâ-

tel may advect aerosol layers coming from the Jura

range and produce several peaks above the RL top in

the lidar signal profiles. These peaks are referred fur-

ther as nocturnal aerosol layers (NALs).

3. Lidar instrument and signal processing

Lidar measurements were performed from May 2000

until February 2003. During this period the lidar was

deployed in the frame of the European Commission

(EC) project EARLINET (Bösenberg et al. 2002;

Bösenberg and Matthias 2003). For this study, the in-

strument operated with the second harmonic (532 nm)

of a Q-switched Nd:YAG laser. The emitted output

pulse energy is from 30 to 45 mJ at a pulse repetition

rate of 20 Hz. The receiver has a diameter of 25 cm.

Altitudes where the field of view (FOV) of the tele-

scope completely overlaps the laser beam section are

around 450 m. Photomultipliers and a digital oscillo-

scope are used for data acquisition in analog mode.

Altitude and temporal resolutions of a single lidar pro-

file are 6 m and 60 s, respectively. The temporal reso-

lution �t � 60 s comes from the selected acquisition

system mode (1000 shots at 20 Hz), plus the transfer

time of the accumulated signal (10 s). Part of the trans-

mitted laser power is deviated to a power monitor and

is used to normalize the detected atmospheric signal.

The power of the signal P(h), backscattered by an

atmospheric layer of thickness (range gate) Dh cen-

tered at altitude h, is expressed by the lidar equation

(Wandinger 2005) as

P�h� � PLKO�h�
A

h2
�h��h�T2�h� � N, �1�

where T�h� � exp���
0

h

��h�� dh��.

Here PL is the emitted optical power, K the overall

optical efficiency of the instrument, A the telescope

area, and T(h) the round-trip transmission factor. The

last term N is the sum of the electronic and optical

background noise. The parameters a and b represent

the total extinction and the total backscatter coeffi-

cients, respectively. They can be expressed as sum of

the molecular and aerosol components:

��h� � �aer�h� � �mol�h� and

��h� � �aer�h� � �mol�h�. �2�

In the signal processing, the range-corrected signal

(RCS) is computed as

RCS�h� � 	P�h� � N
h2. �3�

Before further processing to retrieve the MLD, RL,

and NAL heights, the RCS is averaged in altitude to

decrease the shot noise component. The new altitude

gates (bins) combine a given number of the original 6-m

bins. This number increases quadratically with alti-

tudes; the range resolution �h becomes 60 m at 1 km

and 180 m at 4 km. The altitude averaging process leads

to a decrease of the range resolution with the altitude,

but the shot noise component is maintained almost con-

stant. Further on in this study only altitudes above the

laser-telescope full intersection are considered, for

these altitudes we assume also that O(h) � 1.

a. Gradient method

The gradient of the logarithm of the signal (Bösen-

berg and Linné 2002) GS allows the extinction coeffi-

cient at level h in linear form to be extracted:

GSi�h� �
d

dh
log�RCSi� �

d

dh
log	�i�h�
 � 2�i�h�.

�4�

For noon and midnight, i goes from 1 to 60, corre-

sponding to 1 h of measurement. Single GSi profiles are

computed by Eq. (4) using single RCSi profiles inte-

grated over 60 s and after altitude quadratic binning.

The value of GSi is around zero at altitudes where the

aerosol backscatter is approximately constant, like in

the ML and FT. The gradient shows local peaks when

passing from a layer with high aerosol content to one

with low aerosol content (negative peak), or vice versa

(positive peak).

During daytime, in the ML, the level of the aerosol

content remains almost constant with the altitude up to

the height of the first temperature inversion that marks

also the transition from the ABL to the FT. Around

this height, the aerosol concentration abruptly de-

creases and the backscattered signal drops accordingly,

showing a local minimum in GSi value.

During nighttime, the first temperature inversion

layer above the SBL (capping inversion) corresponds to

the top of the RL. The fall speed of particles with di-

ameter d � 1 �m is on the order of 0.03 cm s�1 and less

(Salby 1996). Aerosol particles with this diameter and

below remain suspended in the residual layer during

the night. Because the lidar backscatter signal at the

wavelength of 532 nm is more sensitive to particles with

the smaller diameters, the RCSi have quite homoge-

neous altitude distribution in the RL and a sharp de-

crease around its top. Corresponding to this altitude,

GSi profiles show local minima to be expected within

the inversion layer, capping the RL.

The final GS profile, used in the comparison pre-
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sented below, is obtained as an arithmetic average of

the GSi profiles, measured during 60 min, starting 30

min before noon or midnight. The height correspond-

ing to the minimum value of the mean GS profile hGSmin

is the height of the aerosol concentration drop defining

the averaged boundary layer top during the period of

measurement.

The use of d/dh{log[RCS(h)]} [Eq. (4)] for the deter-

mination of hGSmin
is advantageous compared to the use

of d/dh[RCS(h)]. An advantage is to have the extinc-

tion coefficient in linear form, which allows the maxima

and minima to appear with better expressed contrast.

The two different types of derivatives are compared in

Fig. 1. The small value of the signal fluctuation allows

minimization of the uncertainty in discriminating false

signal gradients produced by the shot noise component

from the ones produced by real atmospheric features.

b. Variance method

The variance of RCS is defined as (Menut et al. 1999)

Var�h�i �
1

N 
k�i�1�N�2

k�i�N�2

	RCSk�h� � RCS�h�i

2. �5�

For a period of 60 min, the external i index goes from

5 to 55. The length of the k index is equal to N, here

with a value of N � 10. The internal k index of sum-

mation represents the individual measurements k � i �

4, . . . , i � 5 in the N interval. The mean value RCS(h)i

is obtained by averaging the single RCSk profiles over

N. The variance indicates how much the backscatter

signal at a fixed h varies in respect to RCS(h)i during

the N interval. Equation (5) applies to all i profiles;

passing from profile i to profile i � 1, the N interval

shifts by 1 min and makes reference to RCS(h)i�1.

In daytime convective conditions, ascending air par-

cels (updrafts) are thermals arising above the ground

and developing inside the ML; descending air parcels

(downdrafts) are produced by thermal breakdown at

the top of the ML, entraining air from the FT. Figure 2a

illustrates the up- and downdraft dynamics around the

top of the ML in a convective situation with a typical

noon MLD at 1 km. When the convection is moderate,

the free convection scaling velocity w
*
, that is, a velocity

scale for the convective boundary layer, can be on the

order of w
*

� 1.5–3.5 m s�1. The entrainment zone

(EZ) thickness may amount to 300–400 m for an MLD

at about 1 km (Flamant et al. 1997; Hägeli 1998). Ther-

mals entering and passing through the EZ will then

require about 5–12 min (Stull 1988, p. 463) to reach the

top of the ML. In a mean zonal flow of a few meters per

second, there will be a diagonal shift of the ascending

and descending air parcels. Passing through the FOV of

the lidar telescope at different instants, they will cause

FIG. 1. Mean profiles, averaged over 1 h around noon: (left) mean RCS, and (right) mean GS (heavy

solid line) and the mean gradient of the signal (light solid line). Horizontal lines intersect the y axis at

the height of the MLD and the first aerosol layer above it.
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variability in the backscattered signal. Applying these

considerations to the variance method, we have deter-

mined the value of N � 10 in Eq. (5), that is, a sub-

interval duration of 10 min. In this way each single Vari

profile likely covers at least one up-/downdraft event.

In cloud-free conditions the buoyancy flux at the sur-

face fuels the thermals at an almost constant rate, keep-

ing the up- and downdraft process active. It is then

useful to use a moving variance to capture all up- and

downdraft events during the period of measurement.

Because the top of the ML corresponds to the level at

which the mixing of air parcels between the ML and FT

is most probable, the Vari maxima are expected to

match the ML top. Thermals may engender large signal

variability not only as part of the up- and downdraft

process, but also in producing gravitational distortion

of the inversion layer with the similar time period as

above. The final Var profile is obtained as the arith-

metic average of the single Vari profiles.

In convective conditions, the zone where the aerosol

concentration drops and the zone where the exchange

with the FT takes place coincide. For this reason we

may expect that the altitudes of local minimum in GS

and local maximum in Var will be inside this zone (see

Fig. 2a).

During nighttime stable conditions, distortions of the

inversion layer resulting from gravity waves may lead to

backscatter signal variability at that altitude. At the

level of the boundary between RL and FT the turbulent

mixing resulting from wind shear also generates time

variation of the lidar signal. Even when the wind shear

is weak or absent, there is nevertheless a mixing be-

tween RL and FT; in this case it is significantly lower

than in the daytime convective conditions and deter-

mines a smaller Var peak. Above the RL top, at the

level of the first NAL, the wind profile may show a

gradient at both of NAL’s boundaries. In such a case,

the turbulent mixing take place at both boundaries,

producing a double maximum in Var. The vertical dis-

tance between the two maxima provides an evaluation

of the thickness of the temperature inversion corre-

sponding to NAL (see Fig. 2b).

Following Taylor’s hypothesis, a measurement at one

point in space over a long time period can be inter-

preted as an observation of a large region of space at an

instant in time. This is possible when the frozen turbu-

lence condition is accomplished (�w � 0.5W, where W is

the horizontal wind magnitude and �w is the standard

deviation of the wind speed). This condition is achieved

for the already treated idealized case of constant zonal

flow of a few meters per second. The 1-h time-averaged

Var can be considered a space-averaged profile. The

signal variance at the height of temperature inversion

will likely show a local maximum representing a mea-

sure of the current boundary layer height. After these

considerations, the Var maximum at the level of the

inversion layer is likely due to both the combined ac-

tion of the distorting plumes and air parcel mixing in

daytime cases and of gravity waves and wind shear dur-

ing nighttime.

FIG. 2. (a) Simplified presentation of the up- and downdraft dynamics at MLD level. The dashed heavy line is the upward laser beam;

empty and filled clouds on the left are the air parcels undergoing updrafts and downdrafts through the EZ, and slanted light lines show

the laser FOV. Diagonal shifting is caused by the mean horizontal wind. Idealized GS and Var vertical profiles show minimum and

maximum values, respectively, at MLD level. (b) Outline of the aerosol stratification in the nocturnal lower troposphere (SBL, RL, and

NAL). Larger aerosols sediment to the bottom of the SBL. Only smaller aerosols stay at higher levels during the whole night as in the

capping inversion at the RL top and at the level of NAL, above the RL. Slanted light lines delimit the laser FOV. The upward heavy

dashed line shows the laser beam propagation direction. On the right side, the idealized GS and Var profiles are reproduced. Notice

that Var has two local maxima: one at the top and one at the bottom of NAL.
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c. Comparison algorithm

The automated procedure we developed first deter-

mines the MLD, RL, and NAL heights from the lidar

data and, separately, the altitudes of temperature in-

versions from ��/�h. It then correlates the lidar- to the

radiosondes-computed values. For lidar-derived

heights, no assumptions about the aerosol stratification

are needed.

The steps of the automatic lidar data processing start

from the measured lidar raw signals with 60-s temporal

and 6-m altitude resolutions; the signals are corrected

for the electronic noise, laser power variations, optical

background, and range (altitude). The initial vertical

resolution in the corrected signal is decreased by the

quadratic altitude binning between 0 and 8 km AGL to

reduce the fluctuations resulting from the signal shot

noise component at farther ranges. Single GSi profiles

and the averaged GS are obtained as described in sec-

tion 3a [see Eq. (4)], with a final averaging time of 60

min. Single Vari profiles and the averaged Var are ob-

tained as described in section 3b [see Eq. (5)], with a

final averaging time of 60 min. The heights of the first

(starting from the ground level) minimum and maxi-

mum of the GS and Var profiles, respectively, are de-

tected by the algorithm, and the mean value between

the two heights is kept as reference height (href) for the

next steps. The � profile and its gradient ��/�h are com-

puted from the radiosonde data. A vertical window

centered in href, and an extension equal to 0.15href limits

the vertical region in which to search for the principal

maximum of ��/�h (e.g., for href � 1 km, the window

extension is 150 m, from 0.925 to 1.075 km). The three

altitudes obtained from GS, Var, and ��/�h each repre-

sent an estimation of MLD, RL, or NAL height.

4. Observations

Each case of the elaborated comparison database

consists of a lidar measurement over 60 min around

noon and midnight, that is, from 1130 to 1230 and from

2330 to 0030 UTC, respectively. Each measurement

comprises 60 single profiles of 1-min integration time

each. Radiosoundings were performed at the Meteo-

suisse aerological station in Payerne, approximately 20

km south of Neuchâtel. Radiosonde data contain wind,

pressure, temperature, relative humidity, and dewpoint.

The potential temperature � is retrieved from tem-

perature and pressure as measured by radiosoundings

using Poisson’s equation (Stull 1988). Potential tem-

perature � and its vertical gradient ��/�h provide the

heights of the temperature inversions. These altitudes

are then correlated with the MLD, RL, and NAL

heights as obtained from the GS and Var methods. Ver-

tical resolution of � is not constant and depends on the

vertical velocity of the sounding balloon; however, �

vertical resolution is always higher than that of Var and

GS in the studied range of altitudes (from 0 to 5 km

AGL).

a. Noon and midnight lower troposphere:

Two examples

Two cases are shown (in Figs. 3 and 5) of measure-

ments taken, respectively, at noon 20 May 2002, and at

midnight 13 August 2001. They are presented as ex-

amples to illustrate the considerations given in section

3c for the comparison algorithm.

The height of the inversion layer as detected by ��/�h

and the MLD retrieved from the two lidar methods are

depicted in Fig. 3. The center of the average time in-

terval for mean GS and Var profiles corresponds to

noon, when the radiosonde measurement is carried out.

The black horizontal line intersects the y axis at the

MLD level (i.e., at 1.215 km AGL), computed by the

GS method (MLD computed by the Var method is

slightly lower, at 1.146 km AGL). Black circles high-

light the temperature inversions and the corresponding

positive peak in ��/�h. The height computed by GS

appears in the plot at about 100 m above the top of the

temperature inversion layer and about 200 m above the

local maximum of ��/�h, corresponding to the center of

the inversion layer. The aerosol-rich air mass is con-

fined below the first temperature inversion. Therefore,

the main decrease in the signal amplitude appears im-

mediately above the inversion level. Consequently, the

computed GS minimum is just above the top of the

inversion layer. The Var maximum height is principally

determined by its mixing component; it is not influ-

enced by the contribution from the gravitational distor-

tion of the inversion layer. Because we work with the

mean Var profile, the altitude fluctuations of the inver-

sion layer during the time of measurement do not affect

its mean position, but make it more spread. Thus, the

Var maximum corresponds to the level where most of

the exchange process takes place, namely, at or imme-

diately below the inversion layer top.

In Fig. 4 is shown the temporal development of the

RCS in the form of a two-dimensional plot correspond-

ing to the case of 20 May 2002. Superimposed to the

RCS time series are the values of MLD as computed by

single GSi (white solid line) and Vari (white dashed

line) profiles during the period of lidar observation.

The vertical axis extents up to 3 km AGL, not to 5 km,

to highlight the atmospheric portion in which the MLD

evolves over time.

A summer midnight case, 13 August 2001, is pre-
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sented in Fig. 5. The gradient ��/�h in the fourth panel

shows several local maxima, indicating a complex noc-

turnal ABL. Despite this multilayer structure, the

heights of GS minima coincide with those of the ��/�h

maxima. Horizontal lines in the figure show the heights

of the SBL top, RL, and NAL, as computed by the GS.

The presence of nocturnal multiple aerosol layers

above the RL represents a difficulty when retrieving

FIG. 3. (left to right) The vertical profiles of mean RCS, mean GS and Var, temperature and �, and

��/�h are shown. Mean GS and Var vertical profiles are averaged over 1 h. Altitude: km AGL; Payerne

is at 491 m ASL and Neuchâtel at 485 m ASL, y axes are shifted for the 6-m difference. The black

horizontal line intersects the y axis at the MLD level computed by the GS method. Circles show the

temperature inversions and the corresponding positive peak in ��/�h.

FIG. 4. First 3 km AGL of RCS time–altitude cross section during the 1-h lidar measurement

(from 1130 to 1230 UTC) on 20 May 2002. White solid and dashed lines represent the MLD

temporal evolutions as computed, respectively, by single GSi and Vari profiles. Vertical and

temporal resolutions are, respectively, 12 m and 60 s.

7



the RL top height, in particular when these layers are

close to it. The first maximum of ��/�h at about 200 m

matches the center of the superadiabatic layer, that is,

the SBL. Above this level the first horizontal line in-

tersects the y axis at 537 m AGL at the level of the SBL

top. As expected (Stull 1988, p. 17), the top of the SBL

does not correspond to any temperature inversion; nev-

ertheless, it is indicated by the decrease in the back-

scatter signal and, respectively, by the negative peak in

GS. Above the SBL, at the RL top, the dashed hori-

zontal line passes through the GS minimum, appearing

slightly above the corresponding ��/�h maximum. The

two solid horizontal lines above the RL intersect the y

axis at 1.215 and 1.707 km, showing the levels of two

elevated NALs. In both cases the lines match the cor-

responding ��/�h maxima. The Var profiles show, at the

levels of SBL, RL, and the first NAL, similar structures:

one more pronounced maximum at a lower altitude,

below the GS minimum, and another, less pronounced

peak at a higher altitude, above or at the level of the GS

minimum. From the radiosonde data we inspected the

vertical profile of wind direction, and found a shear at

the inversion boundaries of the RL top and the first

NAL. The turbulent mixing at these levels resulting

from wind shear determines the two Var peaks. Gradi-

ent GS has a minimum inside the inversion layer match-

ing the level of the maximum decrease of aerosol back-

scatter. The maxima of ��/�h are found approximately

at or a little below the level of the GS minimum and are

definitely below the higher Var maximum (as illus-

trated in Fig. 2b).

In Fig. 6, the temporal development of the RCS is in

the form of a two-dimensional plot, corresponding to

the case of 13 August 2001. Superimposed to the RCS

time series are the values of the RL top as computed by

single GSi (white solid line) and Vari (white dashed

line) profiles during the period of lidar observation.

The vertical axis extents up to 3 km AGL, not to 5 km,

to highlight the atmospheric portion in which the RL

top evolves over time.

b. Uncertainty estimation

The combined temporal and altitude averaging re-

duces the shot noise level. As an example, for a single

RCS profile without altitude binning, the shot noise

component �shot at 2 km is 4% of the RCS value. Av-

eraging reduces the shot noise contribution by a factor

of E � (NpNb)0.5, where Np and Nb are, respectively,

the number of profiles and the number of bins used for

averaging. Hence, the shot noise after the average pro-

cess is �Av � �shot � E�1. Typically, Np � 60 and Nb �

17 at 2 km, so E equals 32. It is noted that the resulting

temporal and vertical resolutions after averaging are

comparable with those applied in previous lidar studies

of MLD (Matthias et al. 2004). In the present analysis,

�Av is reduced to negligible values compared to the

uncertainty contributions described below.

Based on calculations and test calibrations (Ruffieux

FIG. 5. (left to right) Mean RCS, mean GS and Var, temperature and �, and ��/�h. The first (from ground level) black horizontal line

intersects the y axis at the SBL top level. The dashed line intersects the RL top level. The other two solid lines intersect with the y axis

at the level of the NALs above the RL top. All the lines pass through the heights computed by the GS method.
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and Joss 2003), the radiosonde-measured values of air

temperature are assigned, for the cases selected in this

study, with an error �T equal to 0.2 K. This means

computing � by the Poisson equation, an error of �0.3

K AGL, and an error of �0.34 K at 5 km AGL. Taking

the larger error (in absolute value) �� � 0.34 K, this

corresponds to a maximum altitude uncertainty of

about �H� � �60 m.

Possible uncertainty sources affecting lidar and ra-

diosonde comparisons could be the geographic distance

between Neuchâtel and Payerne, the difference in the

time duration of the two measurements (on average 1 h

for the lidar and several minutes for the radiosonde

ascent), and the bias induced by using two different

methods, GS and Var.

The area of Payerne is expected to be affected by a

similar local circulation as that of the area of Neuchâtel.

The aerological station is 20 km south of Neuchâtel on

the lake’s opposite shore. During night, the lake pres-

ence modifies the SBL by engendering breeze circula-

tion in both Neuchâtel and Payerne. When the wind

blows from the NW, elevated aerosol layers are ad-

vected from the Jura toward Neuchâtel. In a mean

northwesterly flow of 10 m s�1, this aerosol layer may

be advected from Neuchâtel to Payerne in about 30

min. Following these considerations, we assume that

the geographic distance between the two sites does not

introduce major uncertainties in this study.

While lidar-computed altitudes result from an aver-

age over 1 h, radiosoundings are spot measurements of

only a few minutes of duration carried out during the

central part of the lidar observation. An estimation of

the induced uncertainty is given by the altitude varia-

tions of the minimum and the maximum of single GSi

and Vari profiles, respectively, during lidar measure-

ment. Some representative cases have been taken from

the database to compute the differences in altitude be-

tween the highest and lowest extremes of both GSi and

Vari observed during the 1-h interval. For each method

(either GS or Var) and for each type of measurement

(noon or midnight) a mean value of these differences

represents an estimation of the uncertainty; for mid-

night or noon (subscripts m or n, respectively) this is

indicated by the symbol �m(n). Because �m(n) is com-

puted for each lidar method, we have a total of four

uncertainties: �m(n),GS(Var). The four obtained � values

are as follows: �n,GS � 340 m, �n,Var � 240 m, �m,GS �

110 m, and �m,Var � 90 m.

The fact that the � values are larger for the noon

cases shows that during noon measurements the differ-

FIG. 6. First 3 km AGL of RCS time–altitude cross section during the 1-h lidar measurement

(from 2330 to 0030 UTC) on 13 Aug 2001. White solid and dashed lines represent the RL

temporal evolutions as computed, respectively, by single GSi and Vari profiles. Vertical and

temporal resolutions are, respectively, 12 m and 60 s.
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ence between the lowest and highest observed ML top

is larger than that in the midnight cases. At Neuchâtel’s

latitude, summer is the season in which the ML may

reach a maximum depth in the early afternoon, at

around 1500 CET (1400 UTC). This means that at noon

the ML is still growing. We assume then that the prin-

cipal reason for determining the large � value at noon is

due to the contribution of summer cases; that is, during

noon measurements we may expect a larger discrep-

ancy between the radiosonde and the lidar.

There is no a priori reason for either one of the two

methods to be closer to the “true” value than the other

(here the true value is determined by ��/�h). In Fig. 7

and Fig. 8, histograms show frequencies of the differ-

ences between the altitudes retrieved from GS and Var

in noon and midnight cases, respectively. We assume

that the differences MLDGS � MLDVar and RLGS �

RLVar distribute according to the standard normal den-

sity function. The Gaussian Fx,�,� is superimposed to

the histograms, where on the x axis there are the

MLDGS � MLDVar and RLGS � RLVar differences; �

and � are, respectively, the mean value and the stan-

dard deviation of the x values. The standard deviation

represents the uncertainty in evaluating the MLD and

the RL height using either the GS or Var method.

The approximated normal distributions show a mean

positive shift for both noon and midnight cases. For

noon cases, the mean value � is 22 m, and the standard

deviation � is 47 m. For midnight cases, � is 13 m and

� is 31 m. The results show that “zero” is the most

frequently obtained value for both the noon and mid-

night cases; hence, zero is the statistic mode of the dis-

tributions. The positive values of � lead to conclusion

that the heights computed by the GS method are sta-

tistically higher than the heights computed by the Var

method. The resulting bias is bm(n) � � � �, where the

subscripts m and n have the same meaning as for �m(n).

The total uncertainty is then

Utot � bx � �x,y �2, �6�

where x � m or n (for midnight or noon measurements)

and y � GS or Var (depending on the selected lidar

method). The values of � are used in the correlation

plots (Figs. 9a–10b) to express the amplitude of the

error bars ��m,n,GS,Var/2. Error bars also appear on al-

titudes as retrieved from ��/�h values in Figs. 9a–10b,

with amplitudes equal to �60 m.

c. Correlation between lidar methods and potential

temperature

Correlations are shown in Figs. 9a–11b. All data dis-

tributions are linearly fitted without forcing the line to

pass through the axis origin. The line equations in the

plots have the form y � ax � b. Correlation coefficients

have to be interpreted in respect to the offset b and

slope a. Both parameters are due to the combined pres-

ence of bias bm(n) and statistical under- and overesti-

mates introduced by the use of GS and Var. An over-

estimate means that the height computed by GS or Var

is higher than the one retrieved from ��/�h, and vice

versa for an underestimate. Investigation of x and y

values for which GS or Var overestimate ��/�h is done

by studying the relation y/x � 1.

1) GS AND �

The correlation between MLDGS and MLD� for the

noon cases is illustrated in Fig. 9a. Measurements from

FIG. 7. Histogram of MLDGS � MLDVar noon values; x-axis

resolution is 60 m, equal to the GS and Var vertical resolution at

1 km.

FIG. 8. Histogram of RLGS � RLVar midnight values; x-axis

resolution is 60 m, equal to the GS and Var vertical resolution at

1 km.
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the data collection are representative for different sea-

sons as well as for various atmospheric conditions in

terms of temperature, humidity, wind, and pressure.

Nevertheless, the data points in Fig. 9a are distributed

closely around the linear fit with a correlation coeffi-

cient R2 � 0.96 (error bars are ��n,GS/2). This demon-

strates that convective MLD obtained from lidar and

radiosonde methods are statistically well correlated, in-

dependently from the difference in synoptic conditions.

Data between 0.5 and 1.5 km distribute fairly homoge-

neously and represent 75% of the cases. Relative to

��/�h, GS provides a statistical overestimate of the

MLD for altitudes up to 1.8 km (linear fit: y � 0.98x �

0.03).

The correlation between RLGS and RL� for the mid-

night cases is shown in Fig. 9b. Two-thirds of the data

distribute between 0.4 and 1 km. Correlation coefficient

R2 is equal to 0.90; the offset is 73 m and the slope is

0.92, with error bars ��m,GS/2. From these parameters it

is found that GS underestimates the height of the RL

top for ranges above 0.96 km. Examining the distribu-

tion in the plot, we see that the data are split at about

40% above and 60% below this range.

2) VAR AND �

Figures 10a and 10b present the correlation between

Var and ��/�h, respectively, for the noon and midnight

cases. Error bars have the same meaning as in Figs. 9a

and 9b, but with the different values ��n,Var/2 in Fig.

10a and ��m,Var/2 in Fig. 10b. The correlation coeffi-

cient R2 in Fig. 10a equals 0.97, a value slightly higher

than for the (GS, ��/�h) noon correlation. The night-

time correlation coefficient is again lower than that of

the daytime, with a value of R2 � 0.88. In Fig. 10a, Var

overestimates the MLD value for altitudes below 1.1

km (40% of the data). In Fig. 10b, the overestimate

occurs for altitudes below 0.7 km (30% of the data). In

both daytime and nighttime correlation plots, GS esti-

mations of MLD and RL height are statistically higher

FIG. 9. (a) Correlation between MLD computed by GS and

��/�h for 61 noon cases. Error bar amplitude �,n,GS on y values is

equal to 340 m; error bars on x values have amplitudes equal to

2�H� � 120 m; correlation coefficient is 0.96. The slope and the

offset of the fit line are 0.98 and 0.028 km, respectively. (b) Cor-

relation between RL computed by GS and ��/�h for 37 midnight

cases. Error bar amplitude �m,GS on y values is equal to 110 m;

error bars on x values have amplitudes equal to 2�H� � 120 m;

correlation coefficient is 0.92. The slope and the offset of the fit

line are 0.944 and 0.063 km, respectively.

FIG. 10. (a) Correlation between MLD computed by Var and

��/�h for 61 noon cases. Error bar amplitude �n,Var on y values is

equal to 240 m; error bars on x values have amplitudes equal to

2�H� � 120 m; correlation coefficient is 0.90. The slope and the

offset of the fit line are 0.924 and 0.073 km, respectively. (b)

Correlation between RL computed by Var and ��/�h for 37 mid-

night cases. Error bars amplitude �m,Var on y values is equal to 90

m; error bars on x values have amplitudes equal to 2�H� � 120 m;

correlation coefficient is 0.88. The slope and the offset of the fit

line are 0.932 and 0.057 km, respectively.
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than those computed by Var for most of the altitude

intervals. This is consistent with the positive bias bm,n

shown in Figs. 7 and 8.

3) HEIGHT OF NOCTURNAL AEROSOL LAYERS

For the determination of NAL height we select the

altitude of the higher Var maximum, that is, the one

likely matching the top of the NAL (see Fig. 2b). The

uncertainty resulting from the variation of the single

NAL heights computed during the 1-h average is indi-

cated by �m,GS,Var and determines the amplitude of the

error bars in the correlation plots (see Figs. 11a and

11b). As for the MLD and RL determination, for NAL

the values of �m,GS and �m,Var also come from an aver-

age of the vertical differences between the highest and

the lowest peak of GSi and Vari during 1 h for some

representative case. The obtained values for �m,GS and

�m,Var are 80 and 140 m, respectively. The value of Utot

for NAL heights has the same expression as in Eq. (6),

where the bias bm,n is replaced by bm computed from

the distribution in Fig. 12.

As shown in Figs. 11a and 11b, NAL heights distrib-

ute mainly between 0.8 and 1.8 km. The retrieved cor-

relation coefficients R2 are comparable—0.925 for (GS,

��/�h) and 0.926 for (Var, ��/�h). In the altitude interval

of 0.8–1.8 km, the linear fit of (GS, ��/�h) provides an

underestimate of NAL height for altitudes above 1.16

km, that is, in 65% of the cases. In the same altitude

interval, Var maxima give an overestimate of the NAL

height because it is detected by ��/�h, for altitudes

above 0.87 km, that is, 80% of the cases. In accordance

to this, the mean value of the distribution of differences

between NALGS and NALVar in Fig. 12 is negative.

This shows that the levels of Var maxima are statisti-

cally higher than the levels of GS minima.

5. Conclusions

This study presents a comparison between backscat-

ter lidar and radiosonde temperature methods for the

determination of the ABL stratification. Measurements

were performed in different synoptic conditions, but

always in the cloud-free low troposphere. The retrieved

lidar MLD for daytime and the heights of RL and NAL

for nighttime have been compared to the heights of

temperature inversion layers detected by radiosound-

ing. A total of 98 cases (61 for daytime, 37 for night-

time) have been statistically evaluated.

For daytime the correlation coefficient R2 � 0.96

when comparing the lidar gradient method (GS) with

the radiosonde potential temperature gradient (��/�h).

A similar value (0.97) is obtained when correlating the

lidar variance method (Var) with ��/�h.

FIG. 11. (a) Correlation between NAL computed by GS and

��/�h for 37 midnight cases. Error bar amplitude �m,GS on y values

is equal to 80 m; error bars on x values have amplitudes equal to

2�H� � 120 m; correlation coefficient is 0.92. The slope and the

offset of the fit line are 0. 944 and 0.063 km, respectively. (b)

Correlation between NAL computed by Var and ��/�h for 37

midnight cases. Error bar amplitude �m,Var on y values is equal to

140 m; error bars on x values have amplitudes equal to 2�H� �

120 m; correlation coefficient is 0.92. The slope and the offset of

the fit line are 1.005 and 0.001 km, respectively.

FIG. 12. Histogram of NALGS � NALVar values; x-axis resolution

is 60 m, equal to the GS and Var vertical resolution at 1 km.
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For nocturnal cases the correlation coefficients are

slightly lower, R2 � 0.90 for (GS, ��/�h) and R2 � 0.88

for (Var, ��/�h). The lower values of R2 during night-

time are due to the aerosol multilayer structure present

immediately above the RL top, which makes its height

detection more difficult.

The top altitude of NAL detected by the lidar instru-

ment is in good agreement with the � vertical profiles.

The correlation coefficients are R2 � 0.92 for (GS, ��/

�h) and R2 � 0.93 for (Var, ��/�h).

As we see, the correlation between lidar and radio-

sonde methods in detecting MLD, RL, and NAL

heights always has coefficients greater than 0.88 for

both day- and nighttime. The combination of the lidar

signal gradient and the variance allows for unambigu-

ous identification of the MLD in convective conditions,

as well as the aerosol stratification, including RL and

NAL heights in nocturnal stable ABL. The evaluation

of these altitudes is done by a simple and efficient al-

gorithm that consents automated data processing. This

is an advantage when performing continuous long-term

lidar measurements of the ABL development. In sum-

mary, this study shows that the heights of the ML dur-

ing daytime, and the RL and NAL during nighttime,

can be retrieved directly from backscatter lidar data

and may be related to the ABL structure as represented

by the temperature profile.
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APPENDIX

List of Acronyms and Symbols

Following is a list of the acronyms and symbols used

in text, listed in alphabetic order.

ABL Atmospheric boundary layer

AGL Above ground level

ASL Above sea level

CET Central European Time

EARLINET European Aerosol Research Lidar Net-

work

EC European Commission

EZ Entrainment zone

FOV Field of view

FT Free troposphere

GS Gradient signal

ML Mixed layer

MLD Mixed layer depth

NAL Nocturnal aerosol layer

NE Northeast

NW Northwest

RCS Range-corrected signal

RL Residual layer

SBL Stable boundary layer

SW Southwest

UTC Universal coordinated time

Var Variance

W West

� Potential temperature

�� Statistical error on potential temperature

�H� Total uncertainty on �-computed heights
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