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Abstract.

Background: Atrial fibrillation (AF) is the most commonly experienced arrhythmia

and it increases the risk of stroke and heart failure. The challenge in detecting

the presence of AF is the occasional and asymptomatic manifestation of the

condition. Long-term monitoring can increase the sensitivity of detecting intermittent

AF episodes, however that being either cumbersome or invasive and costly

with electrocardiography (ECG). Photoplethysmography (PPG) is an unobtrusive

measuring modality enabling heart rate monitoring, and promising results have been

presented in detecting AF. However, there is still limited knowledge about the

applicability of the PPG solutions in free-living conditions. Methods: In this study, we

compared inter-beat interval derived features for AF detection between ECG and wrist-

worn PPG. The data consisted of 24-hour ECG, PPG, and accelerometer measurements

from 27 patients (8 AF, 19 non-AF). In total, seven features (Shannon entropy,

Root Mean Square of Successive Differences (RMSSD), normalized RMSSD, pNN40,

pNN70, sample entropy, and coefficient of sample entropy (CosEn)) were compared.

Body movement was measured with the accelerometer and used with three different

thresholds to exclude PPG segments affected by movement. Results: CosEn resulted

as the best performing feature from ECG with Cohens kappa 0.95. When the strictest

movement threshold was applied, the same performance was obtained with PPG

(kappa = 0.96). In addition, pNN40 and pNN70 reached similar results with the same

threshold (kappa = 0.95 and 0.94), but were more robust with respect to movement

artifacts. The coverage of PPG was 24.0–57.6% depending on the movement threshold

compared to 92.1% of ECG. Conclusion: The inter-beat interval features derived from

PPG are equivalent to the ones from ECG for AF detection. Movement artifacts

substantially worsen PPG-based AF monitoring in free-living conditions, therefore

monitoring coverage needs to be carefully selected. Wrist-worn PPG still provides a

promising technology for long-term AF monitoring.

Keywords: Atrial fibrillation, Electrocardiography, Photoplethysmography, Movement
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1. Introduction

Atrial fibrillation (AF) is the most commonly experienced arrhythmia. It affects 1-2% of

the general population and the prevalence is expected to increase in the coming years.

AF increases the risk of stroke, heart failure, hospitalization, and death. (Camm &

et al. 2010)

AF is a progressive disease which starts with occasional events, called paroxysmal

AF, and slowly progresses to persistent and permanent AF (Camm & et al. 2010). The

challenge in early detection of AF is the occasional nature of the events, but also that

AF can be asymptomatic. In a group of patients with paroxysmal AF, the episodes were

more often asymptomatic than accompanied with symptoms (Page, Wilkinson, Clair,

McCarthy & Pritchett 1994).

The standard practice for diagnosing AF is with electrocardiography (ECG).

However, ECG has its limitations. The sensitivities of 12-lead ECGs and transtelephonic

ECGs are between 30–40% whereas for 24/48-hour Holters 44–60% (Rosero, Kutyifa,

Olshansky & Zareba 2013). The added value of prolonged continuous monitoring for

diagnosing AF has been shown when monitoring survivors from cryptogenic stroke

either continuously with an insertable cardiac monitor (ICM) compared to Holter

screening (Sanna & et al. 2014)(Brachmann, Morillo, Sanna, Di Lazzaro, Diener,

Bernstein, Rymer, Ziegler, Liu & Passman 2016). In a 3-year period, 8 times more

patients were diagnosed with AF with an ICM compared to the Holter control group.

Implantable devices are costly and require surgical procedures whereas Holter monitors

can cause irritation from the electrodes, are cumbersome to wear, thus not suitable

for long-term monitoring. Therefore, there is a demand for more convenient long-term

monitoring solutions for diagnosing AF.

Photoplethysmography (PPG) is an unobtrusive measurement modality which

enables measuring of different physiological parameters, such as heart rate (Allen

2007)(Valenti & Westerterp 2013)(van Andel, Ungureanu, Aarts, Leijten & Arends

2015). Use of PPG for AF detection has been studied with different technologies, such

as with smartphones (Lee, Reyes, McManus, Mathias & Chon 2012)(McManus, Lee,

Maitas, Esa, Pidikiti, Carlucci, Harrington, Mick & Chon 2013)(Chong, McManus &

Chon 2015)(Chan, Wong, Poh, Pun, Leung, Wong, Wong, Poh, Chu & Siu 2016)(Schäck,

Harb, Muma & Zoubir 2017), with finger probes in a clinical environment (Shan,

Tang, Huang, Lin, Huang, Lai & Wu 2016)(Tang, Huang, Hung, Shan, Lin, Shieh,

Lai, Wu & Jeng 2017) and with wrist-worn devices (Lemay, Fallet, Renevey, Sol,

Pruvot & Vesin 2016)(Bonomi, Schipper, Eerikäinen, Margarito, Aarts, Babaeizadeh,

Morree & Dekker 2016)(Nemati, Ghassemi, Ambai, Isakadze, Levantsevych, Shah &

Clifford 2016)(Shashikumar, Shah, Li, Clifford & Nemati 2017)(Corino, Laureanti,
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Ferranti, Scarpini, Lombardi & Mainardi 2017)(Pantelopoulos, Faranesh, Milescu,

Hosking, Venkatraman & Heneghan 2017).

Wrist-worn PPG devices are easy to use and comfortable to wear, therefore

providing a promising solution for long-term monitoring. Although the wrist-worn

PPG based AF detection algorithms showed promising classification performance, so far

there is limited knowledge about their applicability to free-living conditions where the

measurements are affected by various type of movement artifacts. The majority of the

studies have been conducted in fairly controlled conditions and with short measurements

up to 10 minutes (Lemay et al. 2016)(Nemati et al. 2016)(Shashikumar et al.

2017)(Corino et al. 2017) with only two exceptions. Pantelopoulos et al. (Pantelopoulos

et al. 2017) have presented results with overnight measurements and in our previous

study we presented a Markov-model approach when using 24-hour data (Bonomi

et al. 2016).

The aim of this study is to compare state-of-the-art inter-beat interval (IBI) derived

features commonly used for AF detection from ECG and PPG in free-living conditions.

Information about body movement is used to investigate the effect of movement artifacts

to their discriminative power during daily living.

2. Methods

2.1. Data

The dataset for the analysis was collected in patients scheduled for a 24-hour Holter

measurement. Patients were contacted by a cardiologist and given at least one week

to consider the participation to the study. The participants gave a written informed

consent before the start of the measurements. The dataset was collected in the Catharina

Hospital, Eindhoven, The Netherlands.

The data consisted of 24-hour ECG measurement with a 12-lead Holter monitor

(H12+, Mortara, Milwaukee, WI, USA), PPG, and 3-axis accelerometer measurements

from the non-dominant wrist with a data logging device equipped with the Philips

Cardio and Motion Monitoring Module (CM3 Generation-3, Wearable Sensing

Technologies, Philips, Eindhoven). The PPG sensor was based on reflective mode using

two green light LEDs. The sampling frequency of both PPG and accelerometry was 128

Hz and the dynamic range of the accelerometer was ± 8 g.

For syncronization purposes, at the start of the measurement, the event button of

the Holter monitor was pressed and data logger tapped at the same time instant. During

the recording period patients marked in a diary the daily activities, possible symptoms,

and medication intake. At the end of the measurement, patients returned to the hospital

and the same syncronization procedure was repeated. Recording devices were detached

and the diary was handed in. Information about the daily activities in the diary was

not used in this study. In addition, baseline characteristics, medical characteristics, and

information about medication were collected.
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The ECG data were visually analyzed by a clinical expert using an automated

rhythm detection software (Veritas, Mortara, Milwaukee, WI, USA). The software

extracted beat times from the ECG and identified every beat either to normal,

supraventricular premature beat (SVPB), ventricular premature beat (VPB), AF, paced,

artifact, or unknown. The rhythm was then confirmed or corrected by the expert. The

raw ECG data was not available for further research purposes, and therefore the beat

times and beat labels were used in the data analysis.

In total 30 patients were recruited. 8 patients had continuous AF, 19 patients

normal rhythm with premature beats, 2 patients atrial flutter, and one patient had a

very noisy ECG reference. The patients with atrial flutter and very noisy ECG reference

were excluded from the analysis. The patient characteristics of the remaining 27 patients

are presented in table 1.

Table 1. Patient characteristics.

Baseline characteristics AF (N = 8) non-AF (N = 19)

Sex, male, n (%) 5 (62.5) 10 (52.6)

Age, years, M ± SD (range) 69 ± 11 (43 – 79) 67 ± 13 (34 – 87)

Height, cm, M ± SD (range) 166.5 ± 8.6 (152 – 179) 171.8 ± 8.7 (151 – 185)

Weight, kg, M ± SD (range) 86.5 ± 26.6 (71 – 149) 83.2 ± 20.3 (52 – 113)

BMI, kg/m2, M ± SD (range) 30.9 ± 7.5 (24.6 – 48.1) 27.9 ± 5.5 (20.2 – 39.3)

Medical characteristics

Structural heart disease

Coronary artery disease, n (%) 1 (12.5) 3 (15.8)

Heart failure, n (%) 1 (12.5) 1 (5.3)

Heart valve disease, n (%) 0 (0) 1 (5.3)

Risk factor

Hypertension, n (%) 4 (50.0) 4 (21.0)

Hyperlipidemia, n (%) 0 (0) 0 (0)

Diabetes Mellitus, n (%) 2 (25.0) 0 (0)

Obstructive sleep apnea, n (%) 1 (12.5) 0 (0)

Medication

Beta-blocker, n (%) 6 (75.0) 9 (47.4)

Calcium channel blocker, n (%) 4 (50.0) 3 (15.8)

Statin, n (%) 3 (37.5) 8 (42.1)

Anti-arrhythmic drug class I, n (%) 1 (12.5) 5 (26.3)

Anti-arrhythmic drug class III, n (%) 1 (12.5) 2 (10.5)

Digoxin, n (%) 2 (25.0) 1 (5.3)

Anticoagulation, n (%) 8 (100) 15 (79.0)
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2.2. Preprocessing and data synchronisation

The raw PPG data was downsampled from 128 Hz to 64 Hz and bandpass filtered

to range from 0.3 to 5 Hz. The pulses were detected by identifying fiducial points in

the PPG waveform, i.e. the troughs, by detecting local minima. For finding the local

minima, the points where the first derivative goes from negative to positive were selected.

To prevent detecting too many local minima, an adaptive threshold was used to exclude

locally insignificant ones. The threshold was obtained by filtering the bandpass-filtered

PPG signal with a first order lowpass filter (time constant 125 ms). The search for the

minima was enabled only when the PPG signal was below the threshold. Additionally,

maximum magnitude of acceleration, after removal of gravity, was assessed every second

from the accelerometer. If a threshold of 0.1 g was exceeded, the local minima in that

period were not considered.

The time between the PPG fiducial points was used to calculate the inter-pulse

intervals (IPI). Similarly, the inter-beat intervals (IBI) were calculated from the ECG

as the time difference between the beat times given by the Holter software. The raw

ECG signal was not available for further data analysis purposes.

The IBI and IPI series were recorded with different devices each of which having

their own clock. The clocks may exhibit a time-offset and may run at different speeds,

i.e. there might be a drift. For synchronising the IBI and IPI series, first a set of short

IPI subsequences was taken from the full IPI sequence. For each IPI subsequence from

this set, the best matching position in the IBI sequence was determined. Each match

gave a time-offset between the start time of the IPI subsequence and the start time of

the best matching position in the IBI sequence. From these time-offsets the clock offset

and drift were determined. In addition, the accelerometer signal was aligned based on

the offset defined by the fit. In figure 1 example sequences of 30s of PPG signal and

corresponding IBIs and IPIs during sinus rhythm, AF, and movement are presented.

2.3. Features

In total seven IBI derived features for AF detection from the literature were compared

in this study. The features are pNN40, pNN70, Shannon entropy (ShE), Root Mean

Square of Successive Differences (RMSSD), normalized RMSSD (nRMSSD), sample

entropy (SampEn), and coefficient of sample entropy (CosEn). Prior to computing the

features, outlier IBIs/IPIs were discarded by removing the ones < 200 ms and > 2200

ms.

In the study of Corino et al. (Corino et al. 2017) a wide range of features from PPG

were analyzed for AF detection. The percentage of differences of successive IBIs that

exceed 40 ms or 70 ms (pNN40 and pNN70) were found to be the best discriminative

feature combination.

Shannon entropy is an entropy estimate often used to determine regularity of

an IBI sequence to distinguish AF (Lee et al. 2012)(McManus et al. 2013)(Chong

et al. 2015)(Schäck et al. 2017). The values in the sequence, in this case IBIs or IPIs,
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Figure 1. Examples of 30s segments of PPG signals (above) and corresponding IBIs

and IPIs (below) during sinus rhythm (a), atrial fibrillation (b), and movement (c).
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are divided in bins and the probability p(i) of a value being in the bin i is

p(i) =
n(i)

l − noutliers

. (1)

n(i) is the number of values in the bin i, l length of the sequence, and noutliers the

number of outliers in the sequence. The bins were equally spaced in the range from 200

ms to 2200 ms. After having the probabilities for every bin, ShE can be calculated as

follows

ShE = −
N∑
i=1

p(i)
log(p(i))

log(N)
, (2)

where N is the number of bins. We used 16 bins as that has been shown to be

the minimum number of bins to obtain a reasonable accuracy (Dash, Chon, Lu &

Raeder 2009).

RMSSD and nRMSSD are features used to assess the beat-to-beat variability

and have been studied for AF detection from PPG (Lee et al. 2012)(McManus

et al. 2013)(Chong et al. 2015)(Corino et al. 2017)(Schäck et al. 2017). RMSSD of

an IBI sequence of a length l is

RMSSD =

√√√√√ 1

l − 1

l−1∑
j=1

(IBI(j + 1) − IBI(j))2 (3)

The nRMSSD is the RMSSD divided by the mean IBI (or IPI) of the sequence.

SampEn assesses the similar patterns in a sequence, lower value indicating more

self-similarity. SampEn is the negative natural logarithm of the conditional probability

that two sequences that match with each other at m points, i.e. the difference between

the two sequences of length m is smaller than tolerance r, they also match when m + 1

points are compared. SampEn was calculated according to (Richman & Moorman 2000)

SampEn = −ln(A/B) = −ln(A) + ln(B), (4)

where A is the number of matches with template length m+ 1 and B is the number of

matches with length m. m was set to 1, and r 0.25 times the standard deviation of the

sequence in line with (Corino et al. 2017).

CosEn is an entropy estimate proposed by Lake and Moorman (Lake & Moorman

2011) that is optimized for AF detection and calculated as

CosEn = SampEn + ln(2r) − ln(mean(IBI)), (5)

where r is the tolerance used for computing SampEn.

The features were computed in sliding time windows of 30s, 60s, and 120s with a

30s shift. Windows that had less than 20, 40, and 80 intervals for 30s, 60s, and 120s

window, respectively, were excluded from the analysis. For the computation of SampEn

and CosEn, the window needed to contain at least 9 consecutive IBIs after removing

outliers, otherwise the window was excluded.
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2.4. Movement intensity

The information from the accelerometer was used to evaluate the movement of the wrist.

Movement intensity was defined as

Movement intensity =
3∑

ax=1

[
1

lacc

lacc∑
i=1

(acc(i)ax −max)2
]

(6)

where ax is the axis of the accelerometer, lacc the length of acceleration sequence, and

max the mean acceleration over the sequence on that axis.

Movement intensity was used in the feature computation to discard windows

exceeding a predefined movement threshold. Three different thresholds were set for

comparison: 75%ile, 50%ile, and 25%ile of the movement distribution of all patients.

2.5. Performance metrics

The discriminative power of the features was determined with the following performance

metrics: sensitivity, specificity, accuracy, positive predictive value (PPV), F1-score and

Cohen’s kappa. When TP being true positives, TN true negatives, FP false positives,

and FN false negatives, sensitivity, specificity, accuracy, and PPV are calculated as

follows:

Sensitivy =
TP

TP + FN
, (7)

Specificity =
TN

TN + FP
, (8)

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

and

PPV =
TP

TP + FP
. (10)

F1-score is a harmonic mean of precision (PPV) and recall (sensitivity) and is based

on the efficiency score of Van Rijsbergen (van Rijsbergen 1979)

F1-score = 2 · PPV · sensitivity
PPV + sensitivity

. (11)

Cohen’s kappa (Cohen 1960) is a measure describing the inter-rater agreement of

two categorical variables. Kappa is calculated with the following formula

κ =
po − pe
1 − pe

= 1 − 1 − po
1 − pe

, (12)

where po is the observed agreement and pe the chance agreement. po is calculated

the same way as accuracy and is the percentage of true observations from all the

observations. The chance agreement pe is

pe =
1

N2
all

∑
k

nk1nk2, (13)
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where k is the class, N number of observations, and nki the number of times rater i

predicted class k. In our case, the two raters are the reference and the output of the

automatic classification based on the feature.

2.6. Cross-validation

The cut-off values for AF detection for every feature were determined by leave-one-

subject-out cross-validation. The data from one subject were held for testing whereas

the data from the remaining 26 subjects were used for training. Due to the imbalance

in the number of subjects between the AF and non-AF groups, the data from AF group

were upsampled in the training set to balance the class distribution.

The cut-off value for every feature with every window length and movement

intensity threshold was determined in the training set by using Receiver Operating

Characteristics (ROC) curve and Youden index (Youden 1950). Figure 2 is an example

of the ROC curves and operative points defined by the Youden index during the training

phase with features computed from ECG with 30s window and when data of one patient

have been left for testing. For every defined cut-off value, the procedure of holding data

for testing from one patient was repeated 27 times.
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Figure 2. An example of ROC curves during the training phase with features

computed from ECG with a 30s window. The black squares on the curve are the

operative points defined by the Youden index.

3. Results

The AF classification performance of every feature was calculated by aggregating the

results obtained with the test data from every round of cross-validation. The results
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were computed with ECG by varying the window length and with PPG by varying both

the window length and movement threshold. Cohen’s kappa was selected as the metric

to compare the performance of individual features, since it is a metric not affected by the

imbalance between the two classes, i.e. AF and non-AF. For the comparison between

features computed from ECG, figure 3 shows a histogram of kappa for every feature

when varying the window length. Based on this comparison, CosEn is the strongest

feature from ECG with kappa 0.901–0.950. For every feature the longest window gave

the best performance.

ShE RMSSD nRMSSD pNN40 pNN70 SampEn CosEn
Features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
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Figure 3. Cohen’s kappa of features computed from ECG with different window

lengths.

The effect of the movement threshold to PPG derived features was compared using

a 120s window. Furthermore, for comparing the effect of the window length, the strictest

movement threshold (25%ile) was used. Figure 4 shows on the left a histogram of kappa

of the features when window length is kept constant but movement threshold varies.

On the right, there is a histogram when movement threshold is kept constant and

window length varies. When the movement threshold is set to reject more movement,

the performance increases for all the features. The results of varying the window length

are in line with the results from ECG and with a longer window length better kappa

is obtained. CosEn is again one of the strongest features with kappa120s(25%ile) 0.956,

but additionally pNN40 and pNN70 appear as strong features for AF classification from

PPG with kappa120s(25%ile) 0.953 and 0.945, respectively.

Restricting sufficiently the accepted amount of movement resulted in an increase in

the performance. However, when windows for feature computation are discarded from

the analysis due to the movement, the coverage, which is defined as the percentage of

30s instants with a feature value, also decreases. In figure 5, the mean coverage of all
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Figure 4. Cohen’s kappa of features computed from PPG with different movement

thresholds using 120s window (a) and window lengths using 25%ile threshold (b).

patients with ECG and PPG when varying the movement threshold is presented with

all the different window lengths. On average, the coverage with ECG with different

window lengths is 92.1%. With PPG the average coverage with no movement threshold,

75%ile, 50%ile, and 25%ile thresholds is 57.6%, 54.9%, 45.4%, and 24.0%, respectively.

The movement thresholds are determined separately for different window lengths and

therefore varying the window length does not significantly influence the coverage.
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Figure 5. Mean overage of ECG and PPG with different movement thresholds and

window lengths.

CosEn resulted as the best feature from both from ECG and PPG with 25%ile

threshold when kappa was compared. Table 2 shows sensitivity, specificity, PPV,
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accuracy, kappa, and F1-score of CosEn with both ECG and PPG when varying window

length and movement threshold. When the 25%ile threshold is used, the classification

performance with PPG approaches the results with ECG with all the metrics. With 60s

and 120s window, the results with PPG are at the level of ECG. Figure 6 shows kappa

with CosEn and pNN40 from PPG as a function of movement threshold compared to

how the coverage changes when the movement threshold is changed. Kappa with CosEn

from ECG is marked as a reference, since it was the highest kappa obtained with ECG.

It is visible how kappa increases when the movement threshold is stricter and both

CosEn and pNN40 from PPG eventually reach the same kappa as with ECG. With

higher movement thresholds pNN40 performs better, thus being more robust against

movement artifacts. On the contrary to kappa, coverage decreases when excluding more

movement from the analysis.

Table 2. Performance with CosEn from PPG and ECG with different window lengths

and movement thresholds.

Window Sensitivity Specificity PPV Accuracy Kappa F1-score

ECG 0.981 0.950 0.886 0.958 0.901 0.931

PPG - no th 0.952 0.819 0.684 0.857 0.691 0.796

30s PPG - 75%ile th 0.950 0.829 0.695 0.864 0.703 0.803

PPG - 50%ile th 0.960 0.866 0.746 0.893 0.761 0.839

PPG - 25%ile th 0.968 0.934 0.855 0.944 0.867 0.908

ECG 0.980 0.971 0.931 0.973 0.936 0.955

PPG - no th 0.942 0.884 0.773 0.901 0.777 0.849

60s PPG - 75%ile th 0.948 0.890 0.784 0.907 0.791 0.858

PPG - 50%ile th 0.959 0.916 0.829 0.929 0.837 0.889

PPG - 25%ile th 0.975 0.968 0.928 0.970 0.929 0.951

ECG 0.983 0.978 0.948 0.980 0.951 0.965

PPG - no th 0.959 0.898 0.798 0.916 0.810 0.871

120s PPG - 75%ile th 0.960 0.901 0.805 0.919 0.816 0.876

PPG - 50%ile th 0.966 0.919 0.839 0.934 0.849 0.898

PPG - 25%ile th 0.984 0.980 0.955 0.981 0.956 0.970

4. Discussion

In this study, we compared for the first time commonly used IBI-features derived from

ECG and PPG for AF detection in free-living conditions with 24-hour measurements.

CosEn resulted as the most powerful individual feature from ECG and with strict

movement threshold from PPG reaching high sensitivity, specificity, and kappa with both

measurement modalities. With the 25%ile threshold for movement, pNN40 calculated

from PPG gave similar kappa (0.952) compared to CosEn (0.956). When accepting more

movement, pNN40 performed better, therefore being more robust. Even without using
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Figure 6. Increase of kappa with CosEn and pNN40 from PPG and decrease of

coverage as a function of movement threshold. No movement threshold was applied

when computing kappa with CosEn from ECG, but for easier comparison it is marked

as a line of reference.

the movement information the coverage was substantially reduced by the movement

artifacts, being on average 58% compared to the 92% with ECG. During high intensity

movement the pulses were not detected from the PPG and these segments were excluded

from the analysis even without using any movement threshold. This also explains why

the coverage and performance remain at the same level when 75%ile threshold was

applied.

The results indicate that when periods of PPG data affected by movement are

discarded from the analysis, i.e. when we expect stable measurement conditions and

better signal quality, the PPG works equally well as ECG Holter measurement. The

impact of presence of simulated muscle artifact noise on the performance of IBI-based AF

detection algorithms for ECG has been previously studied by Oster & Clifford (2015).

They showed a linear increase in the performance when SNR increased. In large part

our result are in line with their findings. Reducing the movement artifacts had the

highest impact on specificity and PPV, thus reducing the false positives. However, on

the contrary to the results of Oster & Clifford (2015) also sensitivity improved. In our

current study, the movement thresholds were not optimized in terms of trade-off between

classification performance and coverage. That is left for further research. One option

could also be to incorporate movement or signal quality information to the classification

model as a feature (Nemati et al. 2016)(Shashikumar et al. 2017) to further improve

accuracy and increase coverage.

We compared only individual features to make a more objective comparison between

measurement modalities, i.e. ECG and PPG. Alternatively, we could have compared the
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AF detection of a classification model combining either ECG or PPG derived features.

With the current way, the comparison is independent from the choice of the feature

combination and classification model. These choices might be different when optimized

for ECG and PPG, depending also whether PPG is affected by movement artifacts or

not. Better classification performance could be possibly obtained when more features are

combined. Therefore the classification performance obtained with an individual feature

is not intended to reflect the maximum performance that is possible to obtain with PPG

in free-living conditions. Especially, adding information beyond IBI-derived features,

such as morphology features (Schäck et al. 2017)(Pantelopoulos et al. 2017) and spectral

features (Shashikumar et al. 2017), could possibly further boost the performance.

There are some limitations in the study. The dataset was not large enough to divide

the data in a separate training and an unseen test set, and therefore results with cross-

validation are presented. There is an imbalance between the two classes which affects

some of the performance metrics, such as accuracy, PPV, and F1-score. Therefore, these

metrics are not comparable to the results obtained in other studies with balanced class

distributions. In addition, the division into two groups was made solely based on the

rhythm, i.e. whether AF was present or not, and the patient characteristics between

these groups resulted to be slightly different. However, in such a small dataset, the

possible influence of these differences to the results is difficult to assess.

Another limitation of the study is that all the patients with AF had continuous

AF. Ideally, the aim was to measure events of paroxysmal AF, but no paroxysmal

AF was detected in our study population. It was not possible to determine before

the measurement if a patient would have a paroxysmal event during the measurement

period. This also reflects the current problem with 24-hour Holter monitoring that

rare events are missed, if they occur outside the monitoring period (Rosero et al. 2013).

Therefore, with the current dataset it is not possible to assess how accurately paroxysmal

events are detected and whether the window length influences that. Nevertheless, this

is the first study comparing ECG and PPG for AF detection during daily life and the

results, even with only continuous AF, are promising. Further studies with prolonged

PPG measurements to multiple days or weeks, which is difficult and uncomfortable to

measure with a Holter, can most likely better capture subjects with paroxysmal events

to the study population and give information about their detection with PPG.

As mentioned earlier, even when the movement intensity was not considered in the

analysis, the coverage of the rhythm classification with PPG was on average 58% due to

the inability to detect pulses. When adding the assessment of movement intensity, the

coverage reduced even more. This causes a limitation for the use of IBI-based methods

for continuous monitoring to detect paroxysmal events which might occur during the

periods when coverage is lost. The detection of these AF events would be therefore partly

dependent on the frequency, duration, and daily distribution of the events. However,

the lost coverage could be compensated with prolonged monitoring period up to weeks

or even months. The impact of lost coverage on the sensitivity of detecting paroxysmal

events and the added value of prolonged monitoring with PPG should be assessed with
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further studies. Moreover, development of methods to improve the coverage could help

to overcome the issue with data loss.

In general, the comparison between performance of different algorithms developed

for AF detection from PPG is difficult. Algorithms are developed in different settings,

and with datasets having different characteristics, e.g. AF vs. subjects with sinus

rhythm and AF vs. subjects with other rhythms, such as presence of premature

contractions. We have previously shown that results from one measurement setting

and patient group are not directly applicable to another setting and patient group with

different characteristics (Eerikäinen, Dekker, Bonomi, Vullings, Schipper, Margarito,

Morree & Aarts 2017). In addition, the amount of data points to compute a feature,

i.e. window length, which is not equal between different solutions, influences the results.

This was also shown in the work of Tang et al. (2017) when comparing models using

1-minute, 2-minute, and 10-minute data.

5. Conclusion

Comparable results in AF detection are possible to obtain with PPG and ECG when

using a single feature and when discarding PPG signals during movement identified

with the accelerometer. On the one hand this leads to a limited coverage, but on the

other hand PPG devices can be worn for much longer periods than ECG recorders

compensating for the lost coverage. The prolonged monitoring period might have an

added value in detecting paroxysmal AF. Therefore, wrist-worn PPG devices provide a

promising solution for long-term monitoring of AF. Future studies should be performed

to assess the impact of the coverage loss on the sensitivity of detecting paroxysmal AF

events.
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