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Solutions of the time-dependent, mass-averaged Navier-Stokes equations are compared in detail with ex-
perimental results obtained on an axisymmetric "bump" model at a transonic Much number that produced an

extensive separated flow region, in addition, an inverse boundary method is evaluated for this type of flow. The
Cebeci-Smith algebraic and the Wileox-Rubesin two-equation turbulence models used in the Navier-Stokes
calculations both predict the maximum bouodary-layer displacement thickness generated by the interaction
reasonably well, with the details of the flow best described with the two-equation formulation. However, both
models predict a shock location substantially farther aft on the hump than observed experimentally. This error
in shock location was slightly less with the two-equation model (0.12 chord compared with 0.16 chord). In the
vicinity of the shock, the calculations predict a more rapid increase in turbulent shear stress than observed in the
experimental results; this more rapid increase is believed to be the cause of the poor predictions in shock
position.

Nomenclature

c = chord of bump

Cf = skin-friction coefficient, r.,/V:p®u_
k = kinetic energy of turbulence, (u' 2 + v' 2 + w' 2 )/2
L =length-scale function in two-equation turbulence

model

M = Much number

p = static pressure
p, = total pressure
Re = Reynolds number
R, = turbulence Reynolds number
t = thickness of bump
u = velocity in x direction

v = velocity in y direction
x = axial coordinate parallel to model axis

y =distance from model surface in direction per-
pendicular to model axis

y+ = normalized distance from model surface,

_(x) = nondimensional pressure gradient parameter
6 = boundary-layer thickness
6" = displacement thickness
"r" =exponential damping term in two-equation tur-

bulence model

# = molecular viscosity

ul = turbulent eddy viscosity
p = fluid density

rt = turbulent shear stress
r,, = wall shear stress

= turbulent dissipation rate

Subscripts

e = boundary-layer edge conditions
w = wall conditions
o, = freestream conditions
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Superscripts

( ) ' = fluctuating quantity
(_ = time-averaged quantity
( - ) = mass-averaged quantity

Introduction

N the past several years, considerable advances have beenmade in prediction of pressure distributions and,

accordingly, lift performance for lifting surfaces at transonic
conditions. However, accuracy of these methods deteriorates
as the interaction between the shock wave and turbulent

boundary layer on the suction side of the lifting surface

strengthens with increasing angle of attack or Much number.
In general, reasonably accurate predictions can be obtained if

the interaction is weak enough that boundary-layer separation

does not occur. When separation does occur, large
displacement effects can be introduced by the viscous flow to
produce a pronounced change in the resultant pressure
distribution. Hence, these viscous displacement effects must

be accurately predicted if a reasonably accurate surface
pressure distribution is to be obtained. Moreover, viscous
flow behavior must be accurately described if the correct

shock position is to be obtained, since the shock position is

closely coupled to the viscous flow under conditions of
separation.

The inaccuracies in predicted surface pressure distributions

for separated cases have been generally attributed to
inadequate modeling of the turbulent Reynolds stresses. 14

There also is some concern about whether the computational
grids used in these solutions were sufficiently fine to

adequately resolve the shock wave/boundary-layer in-
teraction regions.

A lack of comprehensive experimental data has made it

difficult to draw any firm conclusions about either the nature
of the inadequacies in the computational methods or the way
the predictions could be improved. Some recent experiments
have been conducted on airfoils in which turbulent Reynolds
stress data were obtained using laser velocimetry, s'' These

data, however, were not obtained in the immediate vicinity of
the separation point in any of the experiments because the
boundary layer was extremely thin at separation.
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Recently,anexperiment8wasconductedonanaxisym-
metric-flowmodeldesignedto simulatetheflowaboutan
airfoilattransonicconditions.Thismodelwasdeveloped
specificallytostudyindetailtheflowdevelopmentin the
immediatevicinityof flowseparationinducedbya shock
wave.Themodelconsistedofanannularcircular-arcbump
affixedtoathin-walledcylinderalignedwiththeoncoming
flow.Thecylinderextendedwellaheadofthebumptoallow
developmentofarelativelythickturbulentboundarylayerat
theleadingedgeof thebump.Theaxisymmetriccon-
figurationprovidedaflowthatwasfreeofthree-dimensional
effectsandfacilitatedacquisitionof near-surfacemeasure-
mentsby the laservelocimetertechnique.Detailed
measurementsofthemeanvelocities(streamwiseandvertical)
andtheturbulentReynoldsstressesfromupstreamof
separationthroughreattachment were obtained for

M** =0.875.

The objective of this paper is to provide additional insight
into the prediction of transonic separated flows by making

detailed comparisons of numerical solutions with the experi-
mental results of Ref. 8. Two numerical methods are used in

these comparisons: 1) solution of the mass-averaged Navier-
Stokes equations by the method of Ref. 9, and 2) solution of
the compressible boundary-layer equations by the inverse

method described in Ref. 10. Because of their general ap-
plicability to separated flows, the mass-averaged Navier-

Stokes equations are used primarily in these comparisons. The
inverse boundary-layer solutions are included because of their

potential advantages over Navier-Stokes equation solutions in

turbulent flow analysis; their most obvious advantage is a
substantial saving in computational time.

Solutions to the mass-averaged Navier-Stokes equations are
presented for two turbulence models: the algebraic Cebeci-
Smith II eddy-viscosity model and the Wilcox-Rubesin _2 two-

equation model. For the inverse boundary-layer method,

solutions are presented for the Cebeci-Smith eddy-viscosity
model only.

Description of the Experiment

A photograph of the flow model used in the experiment of

Ref. 8 is shown in Fig. 1; flow would be left to right. The thin-
walled cylinder, 15.2-cm o.d., extended 61 cm upstream of the
bump leading edge. The bump had a thickness t of 1.9 cm and
a chord length of 20.3 cm (2t/c_ 19070). Its leading edge was
joined to the cylinder by a smooth circular arc of radius 18.3
cm that was tangent to the cylinder at 3.33 cm upstream and
to the bump at 2.05 cm downstream of the intersection of the
arc of the bump with the cylinder. The streamwise distance x

in this paper is referenced to the leading edge of the bump,
excluding the fairing (i.e., the intersecting point of the arc of
the bump with the cylinder).

Fig. I Axisymmetric"bump" model.

The data utilized in this paper were obtained in the Ames

2 x 2-Foot Transonic Wind Tunnel, which is a closed-return,

variable-density, continuous-running tunnel with 2107o open
porous-slotted upper and lower walls. Test conditions were a

freestream Mach number of M** = 0.875 and a unit Reynolds

number Re/m = 13.6 x 106/m. With the long initial section of

the model and this unit Reynolds number, a fully developed
turbulent boundary layer was ensured without im-

plementation of a transition strip.
Local instantaneous velocity data were obtained with a two-

component laser velocimeter system (described in more detail
in Ref. 6) from which the turbulent Reynolds stresses and
kinetic energies were realized, as well as the local mean
velocities.

The data presented in this paper were reduced using the
two-dimensional weighting factor suggested in Ref. 13 to

correct for velocity biasing. In the experiment, the velocity
fluctuations in the cross-stream direction were not measured.

Thus, an assumption was necessary t9_ obtain the kinetic
energy of turbulencej =_K'2 + u'2 + w' e)/2; it was as-
sumed that w'e= (u'2+u'2)/2.

Numerical Methods
Navier-Slokes Solutions

The partial differential equations used to describe the mean

flowfield were the time-dependent, mass-averaged Navier-

Stokes equations for axisymmetric flow of a compressible
fluid. When the two-equation turbulence model was used,

these equations were augmented by two additional partial
differ_ential equations: one for the turbulence kinetic energy,
k= (u': +v': + w "2)/2, and another If'or the square of the

dissipation rate, J. Modeling constants were necessary in
both of these equations for closure.

Computations using the algebraic model were carried out

with and without the Cebeci-Smith pressure gradient
correction to the Van Driest damping constant. Only minor

variations were obtained, and the results presented herein
were obtained without this correction. A value of A ÷ = 26
was used for the Van Driest constant.

In the case of the Wilcox-Rubesin two-equation model, the
turbulent eddy viscosity _t, is expressed in terms of k and _:

l_,="i'p(k/_) (1)

In Eq. (1), 1'" is an exponential damping term dependent on a
turbulent Reynolds number R+ =p(_L)/#.. This Reynolds
number is based on a length scale of the turbulence L defined
as L=_/-k/_. Although longitudinal curvature terms are in-
cluded in the mean equations, no additional curvature terms
have been added to the model equations. The complete set of
equations solved, including the equations for the two tur-
bulence models employed, is described in Ref. 9.

The numerical procedure used was the basic explicit second-
order, predictor-corrector, finite-difference, time-splitting

method of MacCormack, _4 modified by the efficient explicit-
implicit-characteristic algorithm of Ref. 15. A description of
the method used, along with its adaptation to muhiequation
turbulence model equations, is contained Refs. 9 and 16. Also

contained in Refs. 9 and 16 is a description of the boundary
conditions and of the special procedures used for the tur-

bulence model variables and equations.
in the computational domain, a mesh was developed that

allowed different point spacing in each coordinate direction.
Normal to the flow direction, an exponentially stretched fine

point spacing was used to resolve that part of the flow where
viscous effects were important; the predominantly inviscid

outer flow was described using a uniform coarse point
spacing, in the flow direction, a variable-point spacing was

used, with most of the points concentrated along the aft
portion and immediately downstream of the circular-arc

bump. The number of points and the minimum spacing used
normal to the flow varied with the turbulence model. The
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distance of the first y mesh point from the model wall was

selected small enough so that the solutions were independent

of this spacing. For the algebraic model, the first mesh point
of the model was taken within the viscous sublayer (typically
within a minimumy + iy'4rwp,,/tt,, <4); for the two-

equation model, the minimum y+ required was smaller by a
factor of 10 or 20. Typical mesh sizes were 95 points in the
streamwise direction and 50 points normal to the model (with

30 to 35 points in the viscous layer). Transition from the

exponentially stretched fine mesh to coarse mesh occurred
near the outer edge of the viscous layer in the separated zone.
In the flow direction the mesh spacing varied from 0.3 cm
near the shock location to 5.0 cm far upstream and down-

stream.

The boundaries of the computational mesh extended in the
vertical direction from the model surface to the vicinity of the
wind-tunnel wall and in the flow direction from x= - 140 to

90 cm (x=0 at the bump leading edge). The upstream

boundary conditions were prescribed by uniform freestream
conditions. The downstream boundary was positioned far

enough aft of the interaction region that all the gradients in
the flow direction could be set to zero. This boundary con-
dition was verified by moving the location of this downstream

boundary and observing substantially unchanged numerical
results. The model surface was impermeable, and no-slip
boundary conditions were applied with a constant wall
temperature. Additional details concerning the boundary

conditions for the two-equation model near the model surface
are discussed in Ref. 9. At the outer boundary (the wind
tunnel wall), inviscid solid-wall boundary conditions were

used. Details concerning this procedure are contained in Ref.
3. Since the experimental tests were performed in a square test

section that had porous upper and lower walls, and because
the code calculates axisymmetric flow, several numerical
solutions were made for various solid-wall radii to ensure that

the calculated results were not significantly affected by the
walls. The calculated position of the shock wave and the

separated zone remained unchanged when the wall radius was
varied from 1.5 to 2.5 chords. The solutions presented are for
a wall radius at i.78 chords from the model centerline,

corresponding to a flow equivalent to that of the wind tunnel
test.

Inverse Boundary-La)'er Solutions

The numerical procedures of Ref. 10 were used to solve the
two-dimensional compressible boundary-layer equations. The

equations were solved in either the direct or the inverse mode,
using the generalized Galerkin method. For the direct mode,
which is applicable to attached flow, the pressure gradient

parameter #(x) was specified as in conventional boundary-
layer marching solutions. Conversely, for the inverse mode,

which is applicable to attached or separated conditions, the

wall shear (or, equivalently, the skin-friction coefficient C/)
was specified and 13(x) became part of the solution. The
method was fourth-order accurate in the direction normal to
the surface and second-order accurate in the streamwise

direction. To permit the computational domain to grow in the.
streamwise direction, the Levy-Lees-Dorodnitsyn trans-
formation was applied. With this transformation, good

resolution, normal to the surface, can be obtained near the
leading edge of a model, even though the boundary layer
becomes much thicker downstream.

In regions where the flow is attached, solutions were ob-
tained in a forward marching manner. Within the separation

zone, an iterative sweeping procedure employing locally
downwind differencing was used to account for upstream

influence. The method was not extended to treat axisymmetric
flows; however, errors associated with the neglect of trans-

verse curvature were sufficiently small for the present flow
case to allow an evaluation of the applicability of the method.

Solutions were obtained for 25 and 35 nodal points normal

to the surface. Near the surface, the nodal points were spaced
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logarithmically. In the outer two-thirds of the boundary layer,
the points were spaced quasi-uniformly to resolve the wake

flow. At midchord of the bump, the first nodal point was
located very near that for the Navier-Stokes, Cebeci-Smith

solution. With the Levy-Lee-Dorodnitsyn transformation, the
innermost grid point was approximately seven times closer to
the surface near the leading edge of the model. No essential

difference was observed between the 25- and 35-nodal-point
solutions.

Comparison of Navier.Stokes Solutions
with Experiment

The surface pressure distributions predicted from the
solution of the mass-averaged Navier-Stokes equations for the
Cebeci-Smith algebraic and the Wilcox-Rubesin two-equation

turbulence models are compared with the experimental
surface pressure distribution in Fig. 2. As shown in Fig. 2, the

predictions of shock location did not agree well with the
experiment. The Cebeci-Smith model and the Wilcox-Rubesin

model predict shock locations 0.16 and 0.12 chord lengths
downstream of the experiment, respectively. An error of this
magnitude in an airfoil application would most likely result in

a gross misprediction of the lift and moment. Included in Fig.
2 are the locations of the boundary-layer separation and
reattachment points (both predicted and measured).

The reason for the differences in the experimental and
predicted shock locations is believed to be attributable to the

inadequacies of these two turbulence models rather than to
any deficiencies in the experimental data or the computational
mesh used in the numerical solutions. To establish the validity

of the experimental pressure distribution, further testing of
this model was performed in a larger wind tunnel (the Ames
6 x 6 Foot Supersonic Wind Tunnel) where the influence of

the tunnel walls would with certainty be negligible. For the
same test conditions, in this larger facility, the shock location
was within I% chord of that observed in the Ames 2 × 2 Foot

Wind Tunnel. These tests were performed after the
publication of Ref. 17.

To confirm that the y mesh spacings were sufficiently fine
in the calculations, comparisons were made with a boundary-

layer solution obtained with the boundary-layer method of
Ref. 10. The specified pressure distribution was that predicted

from the mass-averaged Navier-Stokes solution, using the
Cebeci-Smith turbulence model. In the boundary-layer
solution, the same Cebeci-Smith turbulence model was used.

Excellent agreement was obtained between the boundary-
layer and the Navier-Stokes Cebeci-Smith model solutions

from near the leading edge of the model to just upstream of

the predicted shock location, where the boundary-layer
thickness becomes quite small due to the strong favorable

pressure gradient. The computed profiles just upstream of the
predicted shock location are compared in Fig. 3. It is at this
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point--just upstream of the shock--that the requirements on

the y mesh spacing are most critical. The computed profiles

are plotted with a logarithmic scale in y to expand the near-

wall region. As seen in Fig. 3, excellent agreement with the

boundary-layer solution, which is fourth-order accurate in y,

was obtained near the surface. The small differences near the

outer edge of the boundary layer are due to the increase in

static pressure of the potential flow with distance away from

the model.

A check was made to see if a finer streamwise mesh spacing

in the vicinity of the shock would produce any significant

change in shock position. Second solutions for both tur-

bulence models were obtained with a streamwise grid spacing

of 0.15 cm (approximately one-sixth the approaching
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boundary-layer thickness) in the region ofx/c from 0.5 to 0.8;

the shock position remained essentially unchanged.

For both streamwise grid spacings, the computational mesh

was sufficiently fine to produce a curved shock. If the

streamwise mesh spacing is too coarse, a normal shock will be

predicted, as demonstrated in Ref. 4.

Just upstream of the experimental shock location, both

turbulence models predict mean velocity profiles that com-

pare quite favorably with the experimental data as seen in Fig.

4a. The predicted profiles in Fig. 4a are essentially identical

except between y _0.05 and 0.25 cm. In this interval, the two-

equation model solution is in better agreement with the ex-

periment. The fullness of the boundary layer evident in Fig.

4a is a result of the strong favorable pressure gradient im-

posed on the boundary layer ahead. In Figs. 4b and 4c, the

calculated and measured turbulent shear stresses and kinetic

energies are compared. Note that u' u' rather than bu' v' is

used in the turbulent shear stress comparison. This con-

vention is used throughout the paper because it is the former

quantity that the laser velocimeter actually measures. Ex-

perimental results obtained at x/c=0.563 and 0.625 are

presented in Fig. 4. Between these two stations, the boundary-
layer properties changed only slightly in the calculations and

in the experiment, with the exception of the measured tur-

bulence properties in the outer part of the boundary layer.
This feature of the measurements will be discussed later. The

predicted turbulent shear stress and kinetic energy

distributions agreed well with the experiment in the region

very close to the model surface, where there exists a

significant mean velocity gradient. The maximum turbulent

shear stresses predicted by the Cebeci-Smith and the Wilcox-

Rubesin models were -3.2x10 -3 and -2.5x10 -3 ,

respectively, in this region. Unfortunately, the measurement

station nearest the wall was not sufficiently close to the model

surface for the maximum values of the actual flow to be

determined.

In the outer region of the boundary layer, significant shear

stresses and kinetic energies, which were not predicted by the

calculations, were measured. The fluctuations present in this

region are believed to be primarily due to nonstationary

compression waves rather than to turbulence fluctuations. A

part of the total shear stress in this region may be due to the

slow decay of the turbulent shear stress originally created by

the pressure rise near the leading edge of the bump; however,

the increase in shear stress that occurs between the two

stations in this outer region of the boundary layer appears to

be due to nonsteady compression waves, which would have

the effect of producing a negative u, v correlation. The jitter in

6

0 A EXPERIMENT

NAVIE R-STOKES
SOLUTIONS

C-S MODEL

------ W-R MODEL (_
To x/c = 0.563 =

x/c = 0.625
/

I

I

O_

0

0

0

0

0 &

.6 .8 1.0 0 I 2 3 0

U/Ue -u'v__ X 103

%

0

0

A

L_

0 A
0

_ _ P:_--_---o--4-- ..._
2 4 6 8

k/u 2 × 103

Fig. 4 Comparison with experiment upstream of shock: a) mean velocity; b) turbulent shear stress; c) turbulent kinetic energy,
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the compression waves is thought to be a result of the large-
scale fluctuations within the turbulent boundary layer. It does

not appear that these stresses play an important role in
separation since the progression toward separation occurs in

the near-wall region. When the surface pressure starts to rise,
the shear stress near the wall quickly grows to a level much

larger than that shown at the outer edge of the boundary
layers in Fig. 4b.

To the degree that boundary-layer conditions upstream of
the shock have been defined experimentally, and to within the

experimental accuracy of the measurements, the Wilcox-
Rubesin model appears to have accurately predicted the
actual boundary-layer properties in this region. Also,

although the mean velocity profile just upstream of the shock
was not predicted quite as well with the Cebeci-Smith model,

differences between the predicted and experimental results
were small. From the evidence presented, it would appear that

the poor predictions of the shock location were not due to an
inadequate definition of the boundary layer in the near-wall

region, immediately upstream of the shock.
To illustrate the global differences in the computed and

experimental viscous flows, a comparison is made (Fig. 5) of

displacement thickness 6". At the trailing edge, where the
displacement thickness reaches its maximum values, in both
the predictions and the experiment, agreement is reasonably

good. Notice that the predicted displacement thicknesses
increase at a significantly faster rate just downstream of the

shock than was observed in the experiment. Not too much

significance should be placed on any slight differences in the
predicted displacement thicknesses shown in Fig. 5, because
there is a degree of uncertainty in choosing the integration
limits when the boundary-layer thickness is not well defined.

Also, there is some uncertainty in the experimental

displacement thickness and shape factors upstream of the
shock because of the extremely thin boundary layer in this

region.
Development of the mean velocity, turbulent shear stress,

and turbulent kinetic energy profiles from upstream of the

experimental separation point through reattachment is shown
in Figs. 6, 7, and 8, respectively. Oil flow visualizations in-
dicated separation at x/c==0.7. In comparing these results,
recall that the shock locations for the two numerical solutions

differed considerably from that of the experiment. Also as a
consequence, the Mach number just upstream of the shock
was considerably higher in the calculations than in the ex-

periment (approximately 1.4 as compared with !.32). Thus,
the computed boundary layers incurred an overall pressure
rise substantially higher than that of the experiment. It is

instructive to note from the present comparisons that, with

the stronger shock, the two turbulence models do predict a
maximum boundary-layer thickness and deficit close to that

observed in the experiment. In contrast, mass-averaged
Navier-Stokes calculations t8 for a 64A010 airfoil section that

has a flat-top suction peak ahead of the shock severely un-

derpredicted the boundary-layer growth at stall with the shock
farther aft than experiment.

As evident from Figs. 6 and 7, the two-equation turbulence
closure model produced a solution that more closely

represents the experimental data. For instance, the mean
velocity profile shape in the separated region for the Wilcox-
Rubesin model is in much better agreement with the ex-

periment. Also, the slow decay of the Reynolds shear stress
downstream of reattachment is qualitatively predicted with

this model and not with the algebraic model. This result
differs from the solution presented in Ref. 17, which showed

the Wilcox-Rubesin model having a more rapid decay in shear
stress downstream of reattachment than the Cebeci-Smith

solution. This anomaly was a result of a programming error.

To prevent program instabilities during the time development
of the flow, the program artificially sets a maximum turbulent

kinetic energy as a function of the local boundary-layer
thickness. For the solution presented in Ref. 17, the program
calculated an incorrect boundary-layer thickness near reat-

tachment (an order of magnitude too small), resulting in

suppressed values of turbulent kinetic energy and shear stress
in this region.

The major difference between the calculations and the

experiment is in the rate at which the boundary-layer
properties change in the immediate vicinity of the shock. As
evident in Fig. 5, the displacement thickness in this region
increases much more rapidly in the calculations. This is also
true of the maximum turbulent shear stress within the

boundary layer, as graphically illustrated in Fig. 9. The
Cebeci-Smith model predicts an almost discontinuous rise in
turbulent shear stress at the shock, whereas the Wilcox-
Rubesin model solution shows a somewhat more gradual

increase as should be expected since that model is theoretically
formulated to account for nonequilibrium effects in the flow.

As seen in Fig. 9, however, the predicted rate of growth in the
turbulent shear stress at the shock is significantly greater than

that observed in the experiment. Also, the predicted shear

stress gradients Or_/Oy, in the inner part of the boundary
layer, tend to be larger in this region. Evidently, the actual
flow is not able to generate these larger shear stress gradients,

which allow the predicted boundary layers to negotiate a more

rapid rise in pressure. As a result, the shock in the experiment
is positioned well forward of the predicted shock locations.

Near separation there is a possibility that the normal stress

gradients are sufficiently large to produce a substantial in-
crease in the effective pressure gradient. The Wilcox-Rubesin
formulation makes provision for this by including an additive

pressure due to the kinetic energy of the turbulence in the two
momentum equations. Effects of the kinetic energy of tur-

bulence on the pressure are not taken into account in the
Cebeci-Smith model, but this apparently made no significant

difference.
In summary, that the more sophisticated two-equation

formulation does not predict substantially different flow

behavior than that predicted with the simple algebraic eddy-
viscosity model is somewhat discouraging. Local equilibrium
turbulence models, such as the Cebeci-Smith model, in

general tend to overpredict the turbulent boundary layer's
ability to negotiate strong adverse pressure gradients since
they do not account for the slow response of the larger tur-
bulent eddies. Thus, the prediction of the shock wave too far
aft with the Cebeci-Smith model was expected. However,
since the two-equation formulation attempts to account for

nonequilibrium effects of the turbulence, substantially better

agreement with the experiment was expected. The com-
parisons presented in this paper indicate that the Wilcox-
Rubesin model as presently formulated does not correctly

model these effects in the region of the shock.

On the optimistic side, the maximum displacement
thickness was predicted quite well with no modifications of
either turbulence model. This is believed to be one of the few

cases in which that has been accomplished for a flow with

extensive separation, without resorting to some extreme

modification (generally with little or no physical basis) of
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established turbulence models. Moreover, where the predicted

mean velocities are in relatively good agreement with the

experimental results, so are the predicted turbulent shear

stresses and kinetic energies.

Evaluation of Inverse Boundary-Layer Method

As noted in the introduction, the range of applicability of

the inverse boundary-layer method to separated flows is not

well established. One way to test the validity of the boundary-

layer approximations in separated-flow regions is to compare

inverse boundary layer results directly with solutions to the

Navier-Stokes equations. In this study, the Navier-Stokes

solution with the Cebeci-Smith turbulence model discussed

previously was used as the standard. To ensure a consistent

comparison, this same turbulence model was incorporated in

the boundary-layer method. An inverse boundary-layer
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Fig. 8 Turbulent kinetic energy comparison.
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solution with exactly the same skin-friction distribution as

that from the Navier-Stokes solution was desired. However,

due to some unknown stability problem in the inverse

boundary-layer method, a solution could not be obtained for

the exact wall-shear distribution predicted from the solution

of the time-averaged Navier-Stokes equations. In Fig. 10 the

wall-shear distribution for which a solution (designated as

solution A) was obtained is compared with that from the

Navier-Stokes solution. (Solution B will be discussed in the

following paragraph.) Overall, this solution agrees quite well
with that obtained from the Navier-Stokes equations. The

predicted displacement thicknesses and pressure distributions

are included in Fig. 10. In Fig. II, a comparison of mean

velocity profiles at some selected stations is given.

These results are extremely encouraging; however, it was

found that the same pressure distribution shown in Fig. 10

could be obtained with a different specified wall-shear

distribution. This nonuniqueness of the solution was

discovered when the wall-shear iteration procedure, described

in Ref. 10, was used to obtain convergence to the Navier-

Stokes solution pressure distribution from an arbitrary initial

guess of the wall shear. When this approach was taken, a

totally different flowfield was predicted. To verify that this
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did not result from surface pressure being an insensitive

parameter for use as a convergence criterion, a solution was

obtained using the predicted pressures of the inverse bound-

ary-layer solution A as the convergence criteria. A very

slightly negative wall shear in the separation bubble was used

as the initial guess, and the convergence criterion forp/pl was

set to 0.001. The results from this solution (designated

solution B), which are included in Fig. 10, clearly demonstrate

a nonuniqueness in solutions.

Self-similar solutions of the laminar boundary-layer

equations do exhibit two solutions for the same value of the

pressure gradient parameter B: an attached and a separated

solution. _9 To the authors' knowledge, however, two

solutions for the same pressure distribution have not been

obtained in any application of the inverse boundary-layer

method to non-self-similar separated flows.

In Ref. 17, it was postulated that the multiple-solution

behavior may have been a consequence of the Van Driest

damping term, however, subsequent solutions have been

obtained with the Van Driest damping removed which still

exhibit this nonuniqueness. From an application viewpoint,

fortunately, only one of the displacement thickness

distributions of Fig. iO can be compatible with a solution of

the outer inviscid flow. Thus, with a coupled inviscid-inverse

boundary-layer approach, the realization of solution B would

not be possible.

The present results suggest that the inverse boundary-layer

method can be a viable approach for analyzing shock-induced

separated flows. Of course, it will not be applicable for flows

where the pressure gradients across the viscosity layer play an

important role in the flow development. For the solutions to

the mass-averaged Navier-Stokes equations presented here,

this was not apparently the case.

Concluding Remarks

It has been attempted in this paper to perform very careful

mass-averaged Navier-Stokes calculations for a transonic

shock wave/boundary-layer interaction flow that has been

extensively documented experimentally and is free of un-

desirable three-dimensional effects and tunnel wall or

blockage effects. The goal was to obtain solutions with a

sufficiently refined computational mesh whereby any dif-

ferences observed between the solutions and the experiment
could be isolated to the turbulence closure models used in the

calculations, it is believed thai this goal was met and that the

relatively poor predictions of shock location obtained were

due to inadequacies in the immediate vicinity of the shock of

the two turbulence closure models used. Compared with the

experimental results, both models predict too rapid a rise in

the turbulent shear stress in this region, Overall, the Wilcox-

Rubesin two-equation model did better at describing the

response of the boundary layer to the shock wave than did the

Cebeci-Smith algebraic model. However, the results of the

present work indicate that there are still major improvements

needed in turbulence closure modeling before strong transonic

shock wave/boundary-layer interactions can be reliably

treated theoretically.

A secondary goal of this paper was to evaluate the inverse

boundary method, which because of the shorter com-

putational times of the method could prove extremely

valuable in separated-flow parametric studies. For the present

flow problem, it was found that the inverse boundary-layer

method could, for all practical purposes, provide the same

results obtained with the mass-averaged Navier-Stokes

equations. A nonuniqueness in solutions, however, was

observed of which any user of this method should be aware in

its application. The undesirable second solution, fortunately,

had a displacement thickness distribution that would be in-

compatible with an outer inviscid flow solution.
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