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can directly trigger a drought, unlike other natural hazards, with 
exacerbating factors such as overfarming, excessive irrigation, 
deforestation, and overexploiting available water (Wilhite 2000).

In order to monitor the dynamics of droughts, several indices have 
been developed, accommodating the different typologies of droughts. 
The main indices include the Palmer drought severity index (Palmer 
1965; Alley 1984), deciles (Gibbs and Maher 1967), the crop moisture 
index (Palmer 1968), the standardized precipitation index (McKee 
et al. 1993), the reconnaissance drought index (Tsakiris 2004), the 
Palmer hydrological drought index (Palmer 1965), the surface water 
supply index (Shafer and Dezman 1982; Tsakiris et al. 2007), and the 
standardized runoff index (Shukla and Wood 2008). Comprehensive 
lists of drought indices are reported in the following review papers: 
Heim (2002), Mishra and Singh (2010), and Dai (2011).

The standardized precipitation index (SPI) is the most com-

monly used drought index. It has been introduced by McKee et al.
(1993) for the quantification of meteorological droughts. Starting 
from time series of monthly precipitation, time series averaged at a 
moving window of 3, 6, 12, and 24 months are derived. Then the 
gamma distribution is commonly used to accommodate the statis-
tical variability of each time series. The application of the inverse of 
standard normal distribution to the gamma distribution gives a stan-
dard normal random variable, which represents the SPI (McKee 
et al. 1993). According to the time scale, the index is indicated 
as SPI1 for a time scale of 1 month, SPI3 for 3 months, and so on.

Guttman (1999) has applied six different probability distribu-
tions to long-term datasets and examined the impact of using the 
different distributions on the calculation of SPI. Haynes (2000) 
has investigated the effect of the length of precipitation record 
on the determination of the probability distributions. Guttman 
(1999) stated that at least 40–60 years are necessary for the sta-
bility of the parameters estimation in the central part of the distri-
butions, and that about 70–80 years of records are necessary for 
achieving the stability in the tails of the precipitation distributions.

Introduction

Drought is generally viewed as a sustained and regionally extensive 
occurrence of below-average natural water availability, either in 
the form of precipitation, river runoff, or groundwater (Beran 
and Rodier 1985). Droughts can be classified as (1) hydrological 
droughts if these involve periods of below-normal flow, and 
depleted reservoir storage; (2) meteorological droughts if these 
involve periods of below-normal precipitation; (3) agricultural 
droughts if the soil moisture is not sufficient to support crop 
growth; and (4) socioeconomical droughts when the low water sup-
ply affects society’s productive and consumptive activities (Dracup 
et al. 1980; Beran and Rodier 1985; Wilhite and Glantz 1987).

Drought is ranked first among other natural hazards (Mishra and 
Singh 2010). Drought differs from other natural hazards in several 
specifications (Wilhite 2000). First, the lack of a precise definition 
of drought is the main obstacle to its investigation. Second, iden-
tifying the onset and the end of a drought is difficult. Third, the 
spatial extension of a drought is difficult to determine; the impacts 
of droughts are nonstructural, and can interest large geographical 
areas more than other natural hazards. Fourth, human activities
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Wu et al. (2005) noted that if SPI is computed from different sample 
sizes, then inconsistent results could be obtained. This arises as a 
consequence of temporal changes in the parameters of probability 
distribution. Consequently, it is recommended to test different 
probability distributions when the length of data records is short 
(Mishra and Singh 2010).

Despite all the limitations, the SPI is widely used to 
es-tablish extreme dryness, or wetness, in precipitation time 
series (e.g., Vicente-Serrano 2006; Lopez-Moreno and Vicente-
Serrano 2008; Mo and Schemm 2008; Bordi et al. 2009; 
Bothe et al. 2010; Santos et al. 2010; Zhu et al. 2011; Sienz et al. 
2012). In anal-ogy to the SPI, recently two hydrological drought 
indices have been developed: the standardized streamflow 
index (SSI) (Nalbantis 2008), and the standardized runoff 
index (SRI). The first index considers as a variable of interest 
the monthly streamflow, while the second one considers the 
monthly runoff (Shukla and Wood 2008). Also, SSI and SRI can 
be calculated at different time scales (1, 3, 6, 12, and 24 months) 
according to the needs of the water re-source management. 
Drought indices are fundamental tools in assessing the effects 
of a drought and defining drought parameters including duration, 
severity, and interarrival time between two successive 
droughts. Understanding of the historical behavior of droughts 
is important in planning management of water resources and 
predicting and avoiding the potential damage of future droughts 
(Mishra and Singh 2010). Several authors (Kroll and Vogel 
2002; Yue and Wang 2004; McMahon et al. 2007; Nalbantis 2008; 
Shukla and Wood 2008; Madadgar and Moradkhani 2011; 
Vicente-Serrano et al. 2012) have stated that the log-normal 
distribution is the better choice to represent hydrological data.

The problem of selecting the appropriate probability distribution 
to fit monthly streamflow data has not been investigated in depth. 
Vicente-Serrano et al. (2012) have considered two different para-
metric methods to calculate the distribution of monthly streamflow, 
and evaluate the SSI, relative to the Ebro River in Spain. In the first 
method, the same probability distribution has been used for each 
month of the year, but with different parameters month by month. 
In the second method, the probability distribution for each month 
has been selected among a pool of six three-parameter distributions 
(namely, log-normal, Pearson type III, log-logistic, general extreme 
value, generalized Pareto, and Weibull) using the nonparametric 
Kolmogorov-Smirnov test, and the minimal orthogonal distance 
criteria.

Motivation

In literature, parametric approaches have been preferred to 
nonparametric methods for the calculation of drought indices. 
Although nonparametric methods are more flexible in application, 
because they do not require the specification of the probability dis-
tribution, problems of extrapolation have favored the application of 
parametric methods. Differences between parametric and nonpara-
metric calculations of drought indices are due to the fact that in the 
former method a probability distribution for the variable of interest 
must be assumed. In literature no studies quantify the differences 
between nonparametric and parametric methods on the evaluation 
of droughts.

Here SPI and SSI indices are evaluated at different time scales 
(1, 3, and 12 months) using both nonparametric and parametric 
approaches, and the mean percentage difference between the two 
approaches is calculated. The calculation is made considering the 
monthly time series at Roma Collegio Romano for precipitation, 
and at the Ripetta gauging station on the Tevere River for stream-

flow, both in the period 1921–2000. The parametric approach has

been implemented considering two possibilities: (1) a unique prob-
ability distribution for the variable of interest (gamma for precipi-
tation, and log-normal for streamflow) with parameters depending 
on the month of the year, and (2) the probability distribution, 
depending on the month of the year, selected from a pool of con-
tinuous distributions (Burr, Erlang, gamma, generalized gamma, 
inverse Gaussian, log-normal, Pearson, Weibull, and generalized 
extreme value) using the Kolmogorov-Smirnov goodness-of-fit 
test. In both cases, the parameters of probability distributions are 
calculated using the maximum likelihood method. The nonpara-
metric approach has been implemented using the Weibull plotting 
position to calculate the cumulative frequency.

Case Study

The case study considers two monthly time series in central Italy: 
Roma Collegio Romano (41°53′54″ N, 12°28′46″ E) for precipita-
tion, and Tevere River Basin at Ripetta (41°54′20″ N, 12°28′32″ E) 
for streamflow, relative to the period 1921–2000. Data are provided 
by the Regional Agency of Environmental Protection of the Lazio 
Region. The precipitation dataset presents some years missing: 
1928, 1934, 1937, 1942, and 1946. The streamflow dataset has only 
two months missing: August and September 1992. Note that 
authors have limited the period of observation to the 80 years 
1921–2000, even if the time series are longer. This is to avoid 
possible problems of nonhomogeneity in the two time series 
(Wijngaard et al. 2003). Pettit’s test (Pettit 1979) for homogeneity 
has been applied to data and both series can be considered homo-
geneous over the period 1921–2000, with a p-value equal to 0.959 
for precipitation, and equal to 0.972 for streamflow, always greater 
than the canonical significance levels (0.05, 0.1).

Materials and Methods

The variable Xd ¼ P̄ 
d; Q̄ 

d indicates, respectively, the mean precipi-
tation, or the average streamflow, in the time window d. The series
of mean values, over the time window d, are calculated

as X
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Let FðxÞ be the cumulative distribution of Xd. The standardized 
drought index Zd (here SPI or SSI according to Xd) is defined
as the inverse of cumulative standard normal distribution (Φ−1)

of FðxÞ

                                   Zd ¼ Φ−1½FðXdÞ� ð1Þ

According to Madadgar and Moradkhani (2011), as the thresh-
old level of drought Zd ¼ −1 is used. Thus, if Zd ≤ −1, then
drought conditions prevail, while if Zd > −1, normal, or wet, con-
ditions prevail. Consequently, it is possible to define the duration
of a drought, D, as the period during which the drought index is
continuously below the threshold level. The interarrival time,
T, is defined as the continuous period the index persists above
the threshold. The severity of a drought is defined as
S ¼ −

P

D
i¼1 ZdðiÞ, the cumulative value of the index in the drought

period.
The central problem in the calculation of Zd is the determination

of its distribution function, FðxÞ. It can be calculated using both
parametric and nonparametric approaches. In the parametric ap-
proaches, it is necessary to select a probability distribution for the
variable Xd, while in the nonparametric approach, the empirical cu-

mulative frequency gives an estimation of FðxÞ. Here the parametric
approach has been implemented considering two possibilities for the



choice of the probability distribution. The first parametric approach, 
denominated as P1, considers a unique probability distribution for 
the variable of interest [gamma for P̄ 

dðtÞ, and log-normal for 
Q̄ 

dðtÞ] with parameters depending on the month (t) of the year. 
The second parametric approach, denominated as P2, considers 
the probability distribution of the variable of interest depending 
on the month of the year, and is selected from a pool of continuous 
distributions using the Kolmogorov-Smirnov goodness-of-fit 
test. The probability distributions considered are nine: Burr, 
Erlang, gamma, generalized gamma, inverse Gaussian, log-normal, 
Pearson, Weibull, and generalized extreme value. The 
parameters of the probability distributions are determined using 
the maximum likeli-hood method (Kottegoda and Rosso 
1997). Note that the precipitation is characterized by a 
probability mass in zero, P0; thus,  its cumulative distribution 
function is a mixed distribution:

FðxÞ ¼  P0 þ ð1 − P0ÞFðxjx > 0Þ, where  Fðxjx > 0Þ is the distri-
bution of for strictly positive values of the variable (Blain 2012).
An estimate of P0 can be obtained as P0 ¼ N0=ðN þ 1Þ, where 
N0 is the number of zeros in a dataset composed by N observations.

The nonparametric approach, denominated as NP, has been 
implemented calculating the cumulative frequency through the 
Weibull plotting position formula (Kottegoda and Rosso 1997).
Let x1; x2; : : : ; xN be the sequence of N observations of the variable
Xd, with the relative order statistics xð1Þ ≤ xð2Þ ≤ · · ·≤ xðNÞ. For the

ith order statistics xðiÞ the cumulative frequency is FNðxðiÞÞ ¼
i=ðN þ 1Þ.

The Kolmogorov-Smirnov (K-S) test has been used here to mea-

sure the goodness of fit between a sample and a probability distri-

bution (Kottegoda and Rosso 1997). The Kolmogorov-Smirnov

statistic, denominated with DN , is the maximum distance, in abso-

lute value, between the empirical distribution function of the

sample and the cumulative distribution function. Mathematically

speaking it is calculated as DN ¼ supxjFNðxÞ − FðxÞj. By the

Glivenko-Cantelli theorem, if the sample comes from distribution

FðxÞ, then DN converges to 0 almost surely. The standard signifi-

cance level used in this paper is α ¼ 5%. The critical value ofDN is

reported in standard probability books (e.g., Kottegoda and Rosso

1997) under the hypothesis that the parameters of the probability

distribution are known. When the parameters are estimated from

data, as in this case, then the critical value ofDN must be calculated

via Monte Carlo simulation over a pool of 10,000 simulations as

indicated by Keutelian (1991).
Following Vicente-Serrano et al. (2012), among a pool of prob-

ability distributions, the one characterized by the smallest value of

the Kolmogorov-Smirnov statistic has been selected.
In order to show the differences between the nonparametric

method (NP) and the parametric ones (P1 and P2), as well as be-

tween P1 and P2, in the calculation of the two drought indices, the

authors evaluate for each of the three time scales, for each couple of

methods and for each variable, the percentage difference in abso-

lute value, Δ, in terms of duration D, severity S, and interarrival

time T. For example, ΔNP−P1
D ðjÞ ¼ 100 · ½jDNPðjÞ −DP1ðjÞj�=

DNPðjÞ represents the percentage difference, in absolute value,

between NP and P1 in terms of drought duration D, relatively

to the event j. Note that Δ takes into account the differences in

terms of duration, but also in terms of temporal allocation in the

year. Then, to summarize the differences, the mean value, Δ̄, is

evaluated.

Results

First the monthly time series of precipitation at Roma Collegio Ro-

mano were considered, and the average precipitation at the 3-month

and 12-month time scale was calculated. Then for each month (t) 
the authors (1) evaluated the probability mass in zero, P0; (2) esti-
mated the parameters of the cumulative distribution functions con-
sidered, both for P1 and P2 approaches, using the maximum 
likelihood method; (3) checked that the domain of the variable 
includes only nonnegative values, making, in contrary cases, a 
lower truncation of the distribution to avoid negative values; and 
(4) checked the agreement between each distribution and data using 
the Kolmogorov-Smirnov goodness-of-fit test as indicated by 
Keutelian (1991). In particular for the P2 approach, the probability 
distribution with the smallest value of the K-S statistic was selected. 
As an example, in Table 1 only the parameters’ values of the 
selected distributions, both for P1 and P2, were reported, relative to 
the time series of monthly precipitation. In particular, the second 
column reports the estimates of the parameters of gamma 3P, con-
sidered in the P1 approach. Columns 3–5 of Table 1 give, for the P2 
approach, respectively, the distribution for each month, se-lected 
with the K-S test, its cumulative distribution function, and the 
parameters’ estimates. The last column of Table 1 reports the 
monthly estimate of P0. For two months (July and August), P0 is 
significantly different from zero, for six months (January, February, 
April, May, October, and November) P0 is zero, and for the remain-

ing months (March, June, September, and December), P0 is slightly 
greater than zero. Note also that the value of the shift parameter, γ, 
of gamma 3P, is equal to zero for values of P0 different from zero,
while it is different from zero for the months where P0 ¼ 0.

Note that for January, and the P2 approach, the selected

distribution is generalized extreme value, with parameters μ ¼
49.53 mm, σ ¼ 35.16 mm, and k ¼ −0.11. In this case, the

domain of the variable X is upper bounded: x < μ − σ=k ¼
369 mm. To consider only nonnegative values, the authors have

operated a truncation of the generalized extreme value on the left

side, to restrict the variability of X to the interval 0 < x < μ − σ=k.
The conditional distribution Fðxjx> 0Þ is Fðxj0 < x < μ − σ=kÞ ¼
½FðxÞ − Fð0Þ�=½1 − Fð0Þ�. The truncation of the distribution is

performed in the following months for the P1 approach: January,

February, May, and October. Similarly, for the P2 approach, it is

performed in the following months: January, May, and October.
Successively, for each series of average precipitation, the cumu-

lative frequency is calculated month by month using the Weibull

plotting position.
Then SPI1, SPI3, and SPI12 are calculated using both paramet-

ric and nonparametric approaches. For each method it is verified

that the distribution of SPI1 (SPI3 and SPI12) is normal using

the K-S test, as suggested by Blain (2012). It is found that the test

is satisfied with a p-value greater than 0.1. Figs. 1–3 report, respec-

tively, SPI1, SPI3, and SPI12. Each figure is divided in three

panels. The top panel shows the calculation of SPI using the

NP approach reporting the drought months in black, and the no-

drought months in gray. The intermediate panel gives the differen-

ces between P1 and NP, i.e., SPI(P1)–SPI(NP), while the bottom

panel gives the differences between P2 and NP, i.e., SPI(P2)–SPI

(NP). In the intermediate and bottom panels, the differences are

reported with the following legend of colors: light gray if

fSPIðNPÞ>−1∩ SPIðPÞ>−1g or if fSPIðNPÞ ≤ −1 ∩ SPIðPÞ ≤
−1g, and black if fSPIðNPÞ > −1 ∩ SPIðPÞ ≤ −1g or if

fSPIðNPÞ ≤ −1 ∩ SPIðPÞ > −1g, where P indicates P1 or P2.
From Figs. 1–3, it is possible to see that the SPI differences be-

tween the parametric and nonparametric approach are in the range

(–2, þ1). The parametric approaches show more extreme values of

the SPI (i.e., < − 2 and >2) than the nonparametric one. Fig. 4 re-

ports the couples (T; S) in the left panels, and the couples (D; S) in

the right panels, identified using the nonparametric approach (open

circle), P1 (cross), and P2 (solid circle), for SPI1 in the top panels,



SPI3 in the intermediate panels, and SPI12 in the bottom panels.

Fig. 4 gives an idea, for each meteorological drought, if there is

agreement or not among the different approaches. For example,

in the top right panel, the couple (D ¼ 5, S ¼ 7.5) is identified

by the nonparametric method but not by the two parametric ap-

proaches. Conversely, the couple (D ¼ 3, S ¼ 6) is considered

by the NP and P2 methods but not by P1. To quantify the differ-

ences between nonparametric and parametric approaches, as well

as between the two parametric approaches, in terms of duration,

and interarrival time between two successive droughts, and se-

verity, Table 2 reports the mean values of percentage differences

in absolute value.
From Table 2, it is possible to see how the greatest differences

are in terms of severity. In particular the mean value of percentage

differences in absolute value, between nonparametric and paramet-

ric approaches, is quite small in terms of T (∼1–2%) and D

(∼6–12%), while in terms of S, it is ∼30–175%. The differences

evaluated choosing P1 rather than P2 are quite similar in D

and T, while in terms of S, they are smaller using P2, with

3-month and 12-month time scales. The fact that the differences

between parametric and nonparametric approaches are smaller in

correspondence of the P2 approach is not to be considered a rule,

because the selection of the probability distribution in P2 has been

done minimizing the statistic DN , i.e., the maximum difference in

absolute value between the theoretical and the empirical distribu-

tion function, not considering the other differences or the mean

value of the differences. Thus, it is possible that in some cases

the differences between parametric and nonparametric approaches

are smaller in correspondence of the P1 approach.
The mean value of the percentage differences in absolute value

between the two parametric approaches is quite small in terms of T

(∼1–1.5%) and D (∼6–10%), while in terms of S, it is ∼30–40%.

Note that the differences tend to reduce as the time scale increases

from 1 to 12 months, as expected.
Here the monthly time series of streamflow at the gauging sta-

tion of Ripetta the Tevere River Basin is analyzed, and the average

precipitation at Roma Collegio Romano at the 1-month, 3-month,

and 12-month time scale is calculated. For each month the authors

(1) estimated the parameters of the cumulative distribution func-

tions considered, for P1 and P2 approaches, using the maximum

likelihood method; (2) checked that the domain of the variable in-

cludes only nonnegative values, making, in contrary cases, a lower

Table 1. Parameter Estimates of Selected Cumulative Distribution of Monthly Precipitation at Roma Collegio Romano for P1 and P2 Approaches

Month

P1 P2

P0

Parameters estimates of

gamma 3P FðxÞ ¼
Γðx−γÞ=β ðαÞ

ΓðαÞ Distribution

Cumulative distribution

function

Parameters

estimates

1 α ¼ 6.33 Generalized extreme value FðxÞ ¼ exp½−ð1þ kzÞ−1=k� k ¼ −0.14 0.000

β ¼ 16.19 z ¼ x−μ
σ

σ ¼ 36.42

γ ¼ –36.13 μ ¼ 49.77

2 α ¼ 1.71 Weibull 3P FðxÞ ¼ 1 − exp½−ðx−γ
β
Þα� α ¼ 1.37 0.000

β ¼ 37.36 β ¼ 68.58

γ ¼ −0.89 γ ¼ 0.16

3 α ¼ 2.65 Generalized extreme value FðxÞ ¼ exp½−ð1þ kzÞ−1=k� k ¼ –0.04 0.013

β ¼ 20.78 z ¼ x−μ
σ

σ ¼ 28.11

γ ¼ 0 μ ¼ 40.17

4 α ¼ 2.33 Weibull 3P FðxÞ ¼ 1 − exp½−ðx−γ
β
Þα� α ¼ 1.53 0.000

β ¼ 22.82 β ¼ 56.18

γ ¼ 0.44 γ ¼ 3.05

5 α ¼ 1.64 Weibull 3P FðxÞ ¼ 1 − exp½−ðx−γ
β
Þα� α ¼ 1.33 0.000

β ¼ 28.33 β ¼ 49.64

γ ¼ –1.36 γ ¼ –0.53

6 α ¼ 0.99 Gamma 3P FðxÞ ¼
Γðx−γÞ=βðαÞ

ΓðαÞ α ¼ 1.06 0.013

β ¼ 32.74 β ¼ 30.31

γ ¼ 0 γ ¼ 0

7 α ¼ 0.44 Generalized extreme value FðxÞ ¼ exp½−ð1þ kzÞ−1=k� k ¼ 0.47 0.158

β ¼ 31.85 z ¼ x−μ
σ

σ ¼ 7.02

γ ¼ 0 μ ¼ 3.89

8 α ¼ 0.66 Generalized extreme value FðxÞ ¼ exp½−ð1þ kzÞ−1=k� k ¼ 0.34 0.105

β ¼ 38.83 z ¼ x−μ
σ

σ ¼ 13.76

γ ¼ 0 μ ¼ 10.73

9 α ¼ 1.66 Generalized gamma FðxÞ ¼
Γ
ðx=βÞk

ðαÞ

ΓðαÞ k ¼ 1.59 0.039

β ¼ 41.06 α ¼ 0.81

γ ¼ 0 β ¼ 88.84

10 α ¼ 1.86 Generalized extreme value FðxÞ ¼ exp½−ð1þ kzÞ−1=k� k ¼ 0.01 0.000

β ¼ 56.43 z ¼ x−μ
σ

σ ¼ 59.42

γ ¼ 0 μ ¼ 69.87

11 α ¼ 1.47 Burr FðxÞ ¼ 1 − ½1þ ðx
β
Þα�−k k ¼ 253.09 0.000

β ¼ 64.27 α ¼ 1.61

γ ¼ 11.76 β ¼ 3728.5

12 α ¼ 2.44 Generalized extreme value FðxÞ ¼ exp½−ð1þ kzÞ−1=k� k ¼ 0.05 0.013

β ¼ 34.02 z ¼ x−μ
σ

σ ¼ 39.72

γ ¼ 0 μ ¼ 58.01

Note: The last column gives, for each month, the estimated probability of zero precipitation; the symbol Γ indicates the gamma function, Γ• the incomplete

gamma function; Φ the cumulative distribution function of the standard normal distribution.



truncation of the distribution to avoid negative values; and

(3) checked the agreement between each distribution and data using

the Kolmogorov-Smirnov goodness-of-fit test as indicated by

Keutelian (1991). In particular for P2 approach, the probability dis-

tribution with the smallest value of the K-S statistic was selected.

Table 3 gives the parameters’ values of the selected distributions,

both for P1 and P2, relative to the time series of monthly streamflow.

In particular, the second column reports the estimates of the param-

eters of log-normal 3P, used in the P1 approach. Note that the value

of the shift parameter, γ, of log-normal 3P, is always positive, except

for August. Columns 3–5 of Table 3 give, for the P2 approach, re-

spectively, the distribution for each month, its cumulative distribu-

tion function, and the parameters’ estimates. The truncation of the

distribution was performed only in August for the P1 approach.

Fig. 2. SPI3 for Roma at Collegio Romano

Fig. 1. SPI1 for Roma at Collegio Romano



Successively, for each of the three series of average streamflow

(at time scales of 1, 3, and 12 months), the cumulative frequency

was calculated month by month using the Weibull plotting posi-

tion. Then SSI1, SSI3, and SSI12 were calculated using both

parametric and nonparametric approaches, and verified that

SPI1 (SPI3 and SPI12) is normally distributed using the K-S test.

Also in this case the test is satisfied with a p-value always greater

than 0.1.

Fig. 4. Couples (T, S) and (D, S), for SPI1 in the top panel, SPI3 in the intermediate panel, and SPI12 in the bottom panel, identified using both

nonparametric and parametric approaches

Fig. 3. SPI12 for Roma at Collegio Romano



Figs. 4–7 report, respectively, SSI1, SSI3, and SSI12. Each

figure is divided in three panels: the top panel shows the calculation
using the NP approach, reporting the drought months in black and
the no-drought months in gray. The intermediate panel gives the

SSI differences between P1 and NP, i.e., SSI(P1)–SSI(NP), while
the bottom panel gives the SSI differences between P2 and NP,

i.e., SSI(P2)–SSI(NP). In the intermediate and bottom panels,

the differences are reported with the following legend of colors:

light gray if fSSIðNPÞ > −1 ∩ SSIðPÞ > −1g, or if fSSIðNPÞ
≤ −1 ∩ SSIðPÞ ≤ −1g, and black if fSSIðNPÞ > −1 ∩ SSIðPÞ
≤ −1g or if fSSIðNPÞ ≤ −1 ∩ SSIðPÞ > −1g, where P indicates

P1 or P2.
The visual comparison shows how the SSI differences between

parametric and nonparametric approaches are in the range (−1,

þ2), with more extreme values of the index (i.e., < − 2 and >2)

associated with parametric approaches. Fig. 8 reports the couples

(T, S) in the left panels, and the couples (D, S) in the right panels,

identified using the nonparametric approach (open circle), P1

(cross), and P2 (solid circle), for SSI1 in the top panels, SSI3 in

the intermediate panels, and SSI12 in the bottom panels. Fig. 8

gives an idea, for each hydrologic drought, if there is agreement

or not among the different approaches.
Table 4 reports the mean values of SSI differences in ab-

solute value between nonparametric and parametric approaches,

as well between the two parametric approaches, in terms of

Table 2. Mean Value of Percentage SPI Differences in Absolute Value

between Nonparametric and Parametric Approaches

d

Δ̄NP−P1 Δ̄NP−P2 Δ̄P2−P1

D (%) T (%) S (%) D (%) T (%) S (%) D (%) T (%) S (%)

1 11.8 1.9 141.9 12.1 2.0 174.6 9.6 1.6 30.4

3 11.0 1.9 42.3 11.2 1.9 34.7 7.4 1.2 33.0

12 7.2 1.2 54.6 6.0 1.0 33.6 5.9 1.0 41.3

Note:D = drought duration; d = time scale in months; NP = nonparametric;

P1 and P2 = parametric; S = severity; T = interarrival time between two

successive droughts; Δ̄ = absolute value.

Table 3. Parameter Estimates of Selected Cumulative Distribution of Monthly Streamflow for Tevere River Basin at Ripetta Using P1 and P2 Approaches

Month

P1 P2

Parameters estimates

of log-normal 3P

FðxÞ ¼ Φ
�

lnðx−γÞ−μ
σ

�

Distribution Cumulative distribution function

Parameters

estimates

1 σ ¼ 0.53 Weibull 3P FðxÞ ¼ 1 − exp½−ðx−γ
β
Þα� α ¼ 1.38

μ ¼ 5.79 β ¼ 5,955.80

γ ¼ 1,197.80 γ ¼ 3,265.10

2 σ ¼ 0.47 Erlang 3P FðxÞ ¼
Γðx−γÞ=β ðmÞ

ΓðmÞ m ¼ 2.00

μ ¼ 8.99 β ¼ 3,254.00

γ ¼ 0.00 γ ¼ 98.83

3 σ ¼ 0.49 Inverse Gaussian 3P FðxÞ ¼ Φ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ=ðx − γÞ
p

ðx−γ
μ

þ 1Þ� þ

Φ½−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ=ðx − γÞ
p

ðx−γ
μ

þ 1Þ� expð2λ=μÞ

λ ¼ 31,688.00

μ ¼ 8.84 μ ¼ 8,068.80

γ ¼ 1,104.10 γ ¼ 857.03

4 σ ¼ 0.39 Inverse Gaussian 3P FðxÞ ¼ Φ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ=ðx − γÞ
p

ðx−γ
μ

þ 1Þ� þ

Φ½−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ=ðx − γÞ
p

ðx−γ
μ

þ 1Þ� expð2λ=μÞ

λ ¼ 44,515.00

μ ¼ 8.72 μ ¼ 6,769.70

γ ¼ 836.64 γ ¼ 707.93

5 σ ¼ 0.64 Weibull 3P FðxÞ ¼ 1 − exp½−ðx−γ
β
Þα� α ¼ 1.29

μ ¼ 8.11 β ¼ 3,562.40

γ ¼ 2,764.10 γ ¼ 3,500.00

6 σ ¼ 0.45 Pearson 5 FðxÞ ¼ 1 −
Γβ=xðαÞ

ΓðαÞ α ¼ 12.31

μ ¼ 8.04 β ¼ 57,568.00

γ ¼ 1,648.70

7 σ ¼ 0.21 Gamma 3P FðxÞ ¼
Γðx−γÞ=βðαÞ

ΓðαÞ α ¼ 21.24

μ ¼ 8.33 β ¼ 200.56

γ ¼ 0.00 γ ¼ 0.00

8 σ ¼ 0.09 Gamma 3P FðxÞ ¼
Γðx−γÞ=βðαÞ

ΓðαÞ α ¼ 21.75

μ ¼ 9.09 β ¼ 177.60

γ ¼ –5,122.30 γ ¼ 0.00

9 σ ¼ 0.49 Burr FðxÞ ¼ 1 − ½1þ ðx
β
Þα�−k k ¼ 0.43

μ ¼ 7.59 α ¼ 11.59

γ ¼ 2,045.70 β ¼ 3,556.10

10 σ ¼ 0.73 Generalized gamma FðxÞ ¼
Γ
½ðx−γÞ=β�k

ðαÞ

ΓðαÞ k ¼ 0.49

μ ¼ 7.61 α ¼ 6.54

γ ¼ 2,773.05 β ¼ 46.06

γ ¼ 2,931.80

11 σ ¼ 0.69 Generalized Gamma FðxÞ ¼
Γ
½ðx−γÞ=β�k

ðαÞ

ΓðαÞ k ¼ 0.49

μ ¼ 8.29 α ¼ 7.24

γ ¼ 2,325.10 β ¼ 77.39

γ ¼ 2,639.20

12 σ ¼ 0.47 Weibull 3P FðxÞ ¼ 1 − exp½−ðx−γ
β
Þα� α ¼ 1.34

μ ¼ 8.99 β ¼ 6,603.30

γ ¼ 0.00 γ ¼ 2,957.50

Note: The symbol Γ• is the incomplete gamma function; Φ is the cumulative distribution function of the standard normal distribution.



duration, interarrival time between two successive droughts, and
severity.

From Table 4, it is possible to see that for SSI, similarly to the
SPI analysis, the greatest differences are in terms of severity.
The mean value of percentage differences in absolute value be-
tween nonparametric and parametric approaches is quite small
in terms of T (∼1–3%) and D (∼7–13%), while in terms of S, it

is ∼35–80%. The differences calculated using P1 rather than P2

are quite similar, and are smaller using P2, in correspondence of
1-month and 3-month time scales. The mean value of the percent-
age differences in absolute value between the two parametric ap-
proaches is quite small in terms of T (∼1%), andD (∼6–8%), while
in terms of S, it is ∼20–100%.

Last, Tables 2 and 4 are compared in order to identify differen-
ces passing from SPI to SSI, i.e., from a meteorological to a hydro-

logical drought index. From Tables 2 and 4, it is possible to see how

Fig. 5. SSI1 for Tevere River Basin at Ripetta

Fig. 6. SSI3 for Tevere River Basin at Ripetta



the mean values of the percentage differences in absolute value

between nonparametric and parametric approaches, in terms of

T and D, are very similar and in the range 8–10%. In terms of

S, the mean values for SPI are higher in respect to the ones found

for SSI. This difference can be explained by the different type of

variable considered in SPI and SSI: the monthly precipitation is a

variable with a mixed distribution, while the monthly streamflow

for the case study (Tevere at Ripetta) does not present masses in
zero (P0).

Conclusions

This paper presents a first comparison between parametric and non-
parametric approaches for the calculation of two drought indices,

Fig. 7. SSI12 for Tevere River Basin at Ripetta

Fig. 8. Couples (T, S) and (D, S), for SSI1 in the top panel, SSI3 in the intermediate panel, and SSI12 in the bottom panel, identified using both

nonparametric and parametric approaches



the standardized precipitation index, and the standardized stream-
flow index, at three time scales: 1, 3, and 12 months. In literature,
the parametric approaches are generally preferred to nonparametric
methods, for the extrapolation problems presented by the latter
ones, even if the former ones can suffer problems of probability
distribution misspecification.

Here two commonly used parametric approaches are consid-
ered: P1, with a unique probability distribution for the variable
of interest with parameters depending on the month of the year,
and P2, with the probability distribution depending on the month
of the year and selected among a pool of continuous probability
distributions using the Kolmogorov-Smirnov test. In addition, a
nonparametric approach NP is implemented, in which the cumula-
tive distribution function is approximated by the Weibull plotting
position.

The present study is based on two monthly time series, 80 years
long: Roma Collegio Romano for precipitation, and Tevere River
Basin at Ripetta for streamflow, both of them in the period 1921–
2000. The differences between parametric and nonparametric
approaches, as well as between the two parametric methods in the
calculation of the drought indices, at the three time scales, are sum-
marized in terms of the mean value of percentage differences in
absolute value, relative to three drought characteristics: duration,
severity, and interarrival time between two successive droughts.

From the analysis of the two time series, the authors find that the
differences between parametric and nonparametric approaches are
more evident in terms of severity, and less in terms of duration and
interarrival time, i.e., more on drought entity, and less on drought
identification.

In particular, the mean value of percentage differences in abso-
lute value is, in terms of severity, ∼30–175% for SPI, and ∼30–80%
for SSI, depending on the time scale considered. In terms of du-
ration, it is ∼6–13%, while in terms of interarrival time it is
∼1–3%, both for SPI and SSI. The differences between the two
parametric approaches, in SPI and SSI, are quite similar in terms
of duration (∼6–10%) and interarrival time (∼1–2%), while in
terms of severity they are ∼30–40% for SPI, and ∼20–100%

for SSI.
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