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ABSTRACT

This works departs from previously published results 
of the authors and focus on joint estimation and time 
evolution of the atmospheric backscatter profile and a 
range-independent lidar ratio by means of 1) adaptive 
extended Kalman filtering (EKF) and 2) non-linear least-
squares (NLSQ), under moderate-to-low signal-to-noise 
ratios (SNR<100 at the starting sounding range). A 
Rayleigh/Mie atmosphere and a calibrated lidar system are 
considered. Performance parameters studied are data 
sufficiency, tracking of the optical parameter time 
fluctuations, inversion errors, power estimation, and noise 
impact. The EKF inversion solution is, in turn, compared 
with Klett’s method as a reference. Finally, it is shown that 
the EKF outweighs the NSLQ in noisy environments.  

Index Terms—Lidar, inversion, Kalman filter, least-
squares.

1. INTRODUCTION 

Micro-pulse lidars usually operate with 5-40- J energy and 
kHz repetition rates to achieve 30-to-60-s time resolution 
and 30-to-75-m spatial resolution using photon-counting 
detection. In comparison to classic 0.1-1-J energy, 10-50-Hz 
repetition-rate laser sources this could represent a 2-to-30 
reduction factor in the SNR[5]. This motivates research on 
moderate-to-low SNR inversion methods. 

So far, independent inversion of the optical 
atmospheric parameters of interest, namely the aerosol 
extinction, the aerosol backscatter, and the lidar ratio has 
only been tackled by combining at least one elastic and one 
inelastic Raman channel, multiple zenith-angle elastic 
returns under the assumption of a homogeneously 
horizontally stratified atmosphere or by means of a HSRL 
(High Spectral Resolution Lidar).   

In the case of the elastic lidar equation, inversion of 
the sought-after optical parameters requires both the 
introduction of “a priori” correlation hypotheses between 

the extinction and the backscatter profiles such as a range-
dependent aerosol lidar ratio and a boundary calibration 
(Klett-Fernald-Sasano’s (KFS) method [1]). Besides, a 
temperature/pressure radiosonde measurement is used to 
estimate the molecular component. 

The fundamentals of data sufficiency, i.e., the classical 
question of how to retrieve two vector unknowns (the range-
dependent aerosol backscatter and a range-independent lidar 
ratio) from one single elastic equation are at the basis of all 
inversion algorithms. Alternatively to KFS, we ensure data 
sufficiency [3] by introducing the concept of data 
decimation of the backscatter profile and estimate the 
optical parameters using an EKF [2][4]. This is presented in 
Sect. 2. Cross-examination of EKF and NLSQ estimation 
results (and Klett’s solution) are discussed in Sect. 3, and 
conclusions remarks are given in Sect. 4. 

2. THE ESTIMATION PROBLEM 

2.1. Problem formulation and data sufficiency 

We depart from the single-scattering elastic lidar equation, 

where  and  stand for the extinction and backscatter, 
subcripts “aer” and “mol” stand for “aerosol” and 
“molecular” components, R is the range, minR  is the 
minimum sounding range (e.g., the range of full overlap in a 
biaxial system), and A is the equivalent system constant, 

which is defined as the product of the system constant ( 0A

[W·m3]) times the total transmissivity from R=0 to minR .
The two-way path molecular transmissivity is defined as 
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Under the approximation of a range-independent 
aerosol lidar ratio, C ( RRC aeraer ), the sought-
after quantities to estimate are the aerosol backscatter, 

Raer , and the lidar ratio, C. For data sufficiency (Sect. 1) 
there must be fewer unknowns than measurements and a 
decimated version of the aerosol backscatter is introduced. 
This is to say that the backscatter is estimated in less 
inversion cells than observation cells (i.e., the power-
measurement cells) following a M-to-1 ratio. Thus, if M is 
the decimation factor and R  is the spatial resolution of the 
power observables, only N/M aerosol backscatter 
components (each of them with an inversion spatial 
resolution RM ) are estimated. 

The state vector (vector of unknowns) to estimate is 

where k is a reminder of discrete (estimation) time kt .
The observation vector (or measurement vector) is the 

range-corrected lidar return power (Eq.(1)), at discrete 
spatial observation cells NiRi ..1, ,

where

and k  is the range-corrected observation noise. 
From Eqs.(1)-(6) above, the observation vector can be 

related to the state vector (unknowns) in terms of a N-
equation set containing N/M+1 unknowns (we drop 
subscript “aer” and replace “mol” by “m”): 

Note that the aerosol backscatter is assumed constant 
over adjacent spatial inversion cells of length RM .

Next, two different approaches are presented to solve 
Eq.(7) set above at each time kt  for the stave vector, kx ,
given as input the observation set, Kkzk ..1, .

2.2. The Extended Kalman Filter (EKF) approach 

In the EKF adaptive approach [2], as long as the filter 
iterates and assimilates a new measurement, kz , the state 
vector, kx , the estimated “a posteriori” error covariance 
matrix, kP , and the Kalman gain, kK , are recomputed, 

which enables the filter to correct its projection trajectory 
and to enhance its current estimation of the optical 
components, kx̂ . The filter takes into account the actual 
observables, kz  (Eq.(5)), a linearized observation model 

(
kk xx
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information provided by the user. The latter is cast into the 
filter in the form of an initial guess 0x̂ , a state-vector 
transition matrix k  and, three covariance matrices, 
namely, the state-noise covariance matrix, kQ , the initial “a 

priori” error covariance matrix, 0P , and the observation-
noise covariance matrix, kR . Details of a similar EKF are 
found in [3] with the following remarks/corrections: 1) The 
filter’s state-vector transition model has now been 
simplified to a random walk ( Ik ), 2) the state-noise 
covariance matrix model assumes now uncorrelated 
backscatter components, and, therefore, becomes the 
diagonal matrix, 

This new EKF model formulation is simpler and 
requires just basic inputs from the user’s side.   

2.3 The non-linear least-squares (NLSQ) approach 

In NLSQ, each succeeding inversion of Eq.(7), kxx ˆ , in 
response to an incoming observation, kzz , is completely 
independent from the others. Formally, we form the 
objective function x  and minimise its norm using a 
Levenberg-Marquardt’s algorithm in Matlab7. In short, 

2min)( x

lsq
xhzx  , (9)
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N xFxFxFxh ...,,,)( 21 .

3. SIMULATION RESULTS 

3.1. EKF vs. NLSQ performance 

The simulation considers Rmin=0.2 km, Rmax=4 km, 
planetary boundary layer, RPBL=3 km, and a 532-nm clear 
atmosphere (typ. aerosol lidar ratio, Ca=25 sr, typ. aerosol 
backscatter, a=4 10-3 km-1sr-1, molecular components 
following a US standard model). The simulated SNR goes 
from 100 at Rmin down to 2 at Rmax. With a spatial 
resolution, R =96.6 m, and e.g., decimation M=10, the 
range settings above yield 4 inversion cells (N/M=4) 
ranging from [0.20- 1.17], [1.17-2.15], [2.15-3.12], and 
[3.12-4] km (note that the first three backscatter cells, 1- 3,
lay on the boundary layer (PBL) while the last one, 4, lies 
on the pure molecular layer above). The initial state is 
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shown in Fig. 1. A total of 250 iterations are generated, 
where both the aerosol backscatter and the lidar ratio vary 
dynamically with time following a Gauss-Markov stochastic 
model similar to [3], Sect.3. 

Both the EKF and NLSQ estimators are initialized 
with 0000 ,,...,ˆ Cx , ( 113

0 104 srkma ,

aCC 5.00 =12.5sr (this simulates a 50% underestimation 
from the user’s side), and A=6.65 10-4 [W·km3] (Eq. (2)), a 
relatively modest figure for a short-range tropospheric lidar 
system. Additional EKF parameters are:  1) 

5
0

1 10;3..1,10
4

i
i

 in Eq.(8). This tells the 

filter that we expect 1-  backscatter fluctuations roughly 
about 10% of the initialization backscatter figure inside the 
PBL and virtually nil for 4 (molecular region); 2) 

0
110 CC . These values are not critical within less than 

a factor 10 approximately provided they impose reasonable 
“search” limits to the filter. 

For the “a priori” error covariance matrix, 0P , we use 
a similar model to Eq.(8), with initial uncertainties 

4..1,0, i
iP , CP, =10 sr. Finally, the observation-

noise covariance matrix has been initialized with an estimate 
of the simulated noise variance, 22 ,...,

1 Nnnk diagR .
Figs. 2-3 illustrate inversion results. They are very 

poor for the NLSQ estimator, particularly for the lidar ratio, 
which is stranded at the initialization value. In clear 
atmospheres, the lidar ratio is the most difficult parameter to 
estimate for the two-way path optical thickness leads to 
transmissivities close to unity. This causes low lidar-ratio 
sensitivity on the projected observables, kẑ . In contrast, the 
EKF shows outstanding tracking capabilities for all optical 
parameters. Consider e.g., 4 failing in the molecular level. 
After the first 50 iterations the filter tends to zero indicating 
that 4 is in an aerosol-free layer. It is the convenient way 
by which the filter combines past estimates and estimated 
errors with new incoming observables that yields excellent 
tracking results as time goes on. Now, if 1  is considered, 
both EKF and NLSQ estimates coincide, for 1  is the 
nearest inversion cell, therefore, with a high SNR. 

Likewise, Figs. 4-5 depict power estimation (i.e., kẑ ,
Eq.(5)). Again, the de-noising capability of the EKF 
becomes fairly evident in Fig.4b and Fig.5b. 

3.2. Comparison with Klett’s method 

Fig.6 compares last-iteration EKF estimates with Klett-
Fernald-Sasano’s (KFS) method (calibration range, Rcal=3.8
km) [1]. EKF errorbars have been computed from the 
diagonal of the error covariance matrix, kP  while KFS 
errorbars assimilate two error sources: 1) noise propagation 

at the calibration range, and 2) 50% user uncertainty in the 
assumed lidar ratio (C=12.5 sr instead of Ca=25 sr). In spite 
of the slowly time-varying atmosphere all 250 observations 
( kz ) have had to be time-averaged to enable KFS inversion, 
otherwise virtually unlimited errorbars are obtained.  

4. CONCLUSIONS 

Data sufficiency has been demonstrated in joint dynamic 
estimation of the aerosol backscatter profile and range-
independent lidar ratio from elastic lidar returns using a M-
to-1 decimated version of the aerosol backscatter profile. 

In clear atmospheres and low SNRs (<100) a simple 
random-walk EKF outweighs NLSQ estimation and enables 
good tracking of the sought-after optical parameters, 
inclusive of the lidar ratio. Main limitations are: 1) the need 
of a calibrated lidar system (work is under way to supersede 
this) and 2) an inversion spatial resolution M times poorer 
than the raw observation resolution. Here we note that 
Klett’s method also requires time averaging (if the scene is 
stationary) and/or spatial averaging to boost the SNR to 
suitable levels apt for inversion.   

5. ACKNOWLEDGEMENTS 

European Commission under the EARLINET-ASOS (EC 
Coordination Action) contract nº RICA-025991, and (EU Specific 
Support Action) contract nº 011863 (RIDS); European Space 
Agency (ESA) under the contract no. 21487/08/NL/HE, MCYT 
(Spanish Ministry of Science and Technology) and FEDER funds 
under the projects TEC2006-07850/TCM, Complementary Actions 
CGL2007-28871-E/CLI, CGL2006-26149-E/CLI, and CTM2006-
27154-E/TECNO. MCYT is also thanked for the Ramón y Cajal 
position hold by Dr. M. Sicard, and Generalitat de 
Catalunya/AGAUR for Mr. Md. Reba’s predoctoral fellowship. 

6. REFERENCES 

[1] J.D.Klett, "Lidar Inversion with variable backscatter/extinction 
ratios," Appl. Opt. 24, 1638-1643 (1985). 

[2] R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals 
and Applied Kalman Filtering (Wiley, New York, 1992). 

[3] F. Rocadenbosch, C. Soriano, A. Comerón, J.Mª. Baldasano, 
“Lidar Inversion Of Atmospheric Backscatter And Extinction-
To-Backscatter Ratios By Use Of A Kalman Filter,” Appl. Opt.
38 (15), 3175-3189 (1999). 

[4] B.J. Rye and R.M. Hardesty, "Nonlinear Kalman filtering 
techniques for incoherent backscatter LIDAR: Return Power 
and Log Power Estimation," Appl. Opt. 28, 3908-3917 (1989). 

[5] S. Lolli, L. Sauvage, I. Stachlewska, R. Coulter, R. Newsom, 
“Assessment of EZ lidar and ARM/SGP MPL lidar 
performances for qualitative and quantitative measurements of 
aerosol and clouds”, Geos. Rsch. Abstracts, 10, EGU2008-A-
11091, (2008). 

III - 1085



Figure 1. Initial state. (a) Atmospheric backscatter indexed by inversion cell no. 
(b) Synthesized range-corrected power return and related range-dependent SNR. 

Figure 2. Lidar ratio estimation. (Green) Simulated 
atmosphere, (red) EKF inversion, (cyan) EKF 1-
errorbars, (blue crosses) NLSQ estimation. 

Figure 3. Aerosol backscatter estimation. (a-d) (Green) Simulated atmospheric 
backscatter dynamics, (magenta) initial atmospheric state as a reference (Fig. 1a), 
(red) EKF estimates, (blue crosses) NLSQ estimates. 

Figure 4. Power return estimation (I). (a) Simulated 
range-corrected power returns, (b) De-noised EKF 
estimates (first estimates around time t=0-10 clipped 
for representation purposes) . 

Figure 5. Power return estimation (II). (a-d) (Green) Simulated atmospheric range-
corrected power returns, (red) EKF (range-corrected) power estimates, (blue 
crosses) NLSQ (range-corrected) power estimates. 

Figure 6. Comparison with Klett-Fernald-Sasano’s 
(KFS). (Red) KFS inversion using the 250 time-
averaged returns as input, (yellow) associated 
errorbars. (Dashed blue) last EKF inversion estimate 
(t=250), and (cyan) associated 1-  errorbars. 
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