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Abstract 
 
An integrated navigation information system must know 
continuously the current position with a good precision. 
The required performance of the positioning module is 
achieved by using a cluster of heterogeneous sensors 
whose measurements are fused. The most popular data 
fusion method for positioning problems is the extended 
Kalman filter. The extended Kalman filter is a variation 
of the Kalman filter used to solve non-linear problems. 
Recently, an improvement to the extended Kalman filter 
has been proposed, the unscented Kalman filter. This 
paper describes an empirical analysis evaluating the 
performances of the unscented Kalman filter and 
comparing them with the extended Kalman filter’s 
performances.  
 
 
1. Introduction 
 
An integrated navigation information system is an 
embedded system installed in a car which provides useful 
functionalities to the driver like trip planning, guidance, 
digital map and points of interest directory. The guidance 
module uses a planned trip to indicate the driver which 
road to take. To avoid giving bad turn direction, the 
system must know the localization of the vehicle 
precisely and continuously.  
 
GPS receiver can measure the position of the vehicle to 
the required precision. However, a GPS solution could be 
unavailable for several seconds because of the occlusions 
of satellite signals by high buildings or heavy foliages. 

Thus, a cluster of sensors including a GPS receiver is 
usually used.  Two other popular sensors are differential 
odometer and inertial measurement unit (IMU). A 
differential odometer measures the distance traveled by a 
vehicle and the current azimuth. An IMU measures the 
acceleration and the angular velocity along the axis of a 
Cartesian coordinate system.  With these two sensors, the 
position of the vehicle is reckoned by applying basic 
kinematics’ equations and and using an initial position 
obtained from another information source. The estimated 
position will eventually drift from the real position 
because of the accumulation of errors. So the position 
must be reset periodically with an absolute position like 
the position estimated by the GPS.    
 
A more complex fusion method than the reckon/reset 
positioning system described above is usually used to 
improve the precision of the estimation. These methods 
fuse continuously the available measurements in some 
optimal sense. The most popular method is the Kalman 
filter.  This method uses the a priori information on the 
sensor noises, the vehicle dynamic and the kinematics’ 
equations to compute recursively an optimal position 
which minimizes the mean square error. 
 
 
1.1 Previous Work 
 
The Kalman filter is an optimal linear estimator 
introduced in 1960 [1]. The filter is optimal when the 
process noise and the measurement noise can be 
modelized by white Gaussian noise. Non-linear problems 
can be solved with the extended Kalman filter (EKF) [2, 



3]. This filter is based upon the principle of linearizing the 
state transition matrix and the observation matrix with 
Taylor series expansions. The linearization can lead to 
poor performance and divergence of the filter for highly 
non-linear problems.  A recent improvement to the EKF 
is the unscented Kalman filter (UKF) [4].  The UKF 
approximates the probability density resulting from the 
non-linear transformation of a random variable instead of 
approximating the nonlinear functions with a Taylor 
series expansion. The approximation is done by 
evaluating the nonlinear function with a minimal set of 
carefully chosen sample points. The posterior mean and 
covariance estimated from the sample points are accurate 
to the second order for any nonlinearity [5]. If the priori 
random variable is Gaussian, the posterior mean and 
covariance are accurate to the third order for any 
nonlinearity [6].  
 
The architecture of a positioning system can be 
decentralized or centralized. In the centralized 
architecture, all the sensor measurements are fused by one 
fusion method only. So it is easy to compare the 
performance of two different fusion methods when the 
cluster of sensors is the same. This is the architecture that 
has been chosen for the empirical analysis presented here. 
The equations of a centralized extended Kalman filter for 
land navigation positioning system are described in [7].  
 
The extended Kalman filter has been very popular for 
land navigation system [8, 9, 10]. The extended Kalman 
filter can be replaced by better algorithms like the 
unscented Kalman filter. The first use of an unscented 
Kalman filter for land navigation positioning system is 
described in [11]. To our knowledge, only one paper has 
been recently written on the use of the unscented Kalman 
filter as the fusion method in an integrated navigation 
information system [12]. An unscented Kalman filter has 
also been used for GPS positioning [13]. The goal of the 
present paper is to analyse the performance improvement 
of the unscented Kalman filter over the extended Kalman 
filter for an integrated navigation information system. 
 
2 Methodology  
 
2.1 Simulation  
 
A simulator has been built to evaluate the performances 
of the unscented Kalman filter and the extended Kalman 
filter. The simulator has two parts. The first part computes 
the kinematics, the position and the attitude of a car 
travelling a route. The road segments are from the city of 
Calgary. The kinematics was computed as a function of 

the acceleration of a real vehicle measured while 
travelling on the route used in the simulator. The second 
part emulates the sensor measurements. The models of the 
different sensors are based on automotive grade real 
sensors. The measurements are then fused as depicted in 
figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The sensors’ measurements are distortioned by 
deterministic and random errors. A source of random 
errors can be described as a stochastic process. The 
simulator uses a random number generator to emulate 
random errors. The estimated position is the posteriori 
random variable resulting from the mathematical 
transformation of the stochastic processes which modelize 
the sensors’ imperfect measurements. The fusion method 
defines the mathematical transformation.  
 
100 Monte Carlo simulations has been run for each fusion 
method. For each sampling time, the estimated positions 
from the Monte Carlo simulations form the sampling 
distribution. There are 26639 measurement vectors for 
each Monte Carlo simulation. These sampling 
distributions approximate the truth continuous 
distributions of the posteriori random variables describing 
the estimated positions. The first moment of each 
sampling distribution has been computed and used for the 
computation  of the performance metrics.  
 
2.2 Algorithms 
 
The extended Kalman filter predicts the states of the 
random process with equation (1). The predicted states 
are updated with the measurements  in equation (2).  
 
 1 1 [ ] kk k k k k kx x w+ += Φ +    (1) 

 
 1 11 1[ ]k kk k k kz H x v+ ++ += +    (2)       
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where 1k kx + is the predicted process state vector, k kx is 

the estimated process state vector, 1k k+Φ is the discrete 

state transition matrix from k to k+1, kw  is the process 

noise vector, 1kz + is the measurement vector, 1k kH + is the 

observation matrix and 1kv + is the measurement noise 
vector.  
 
In our study, we have 13 states to describe the random 
process. A position-velocity-acceleration model is used 
for each component of the position [14]. The last four 
states include the slope, the pitch, the azimuth and the 
yaw velocities. The state transition matrix 1k k+Φ  is 

linear. Only the observation matrix 1k kH +  contains 

nonlinear equations, the most relevant for horizontal 
positioning is described by equation 3. 
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where Ra , Pa , Ya  are the acceleration vector 
components along the roll, the pitch and the yaw axis 
respectively, pΦ  and yΦ  are the euler angles for the 

pitch and the yaw axis respectively, Na , Ea , Da  are the 
acceleration along the north axis, the east axis and the 
down axis respectively.  
 
 
The extended Kalman filter approximates the non-linear 
matrix H based on the Taylor series expanded about the 
estimated state vector with 
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The linear approximation often introduces large errors in 
the estimated state vector and can lead to the divergence 
of the filter.  
 
The unscented Kalman filter is based on the unscented 
transformation, which is a method for reckoning the 
statistics of a random variable undergoing a non-linear 

transformation. A set of  2* χn + 1 weighted samples are 
deterministically chosen to capture the true mean and 
variance of the prior random variable.  
 
 x w vn n n nχ = + +  (5) 
 
where xn is the number of process states, wn is the 

dimension of kw  and vn is the dimension of kv .  
 
The unscented Kalman filter approximates the non-linear 
observation matrix by 
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where Wi are the weights, , 1

x
i k kχ + are the sigma points 

describing the prior predicted states and , 1
v
i kχ + are the 

sigma points describing the measurement noise.  
 
 
2.3 Results 
 
The two performance metrics are the accuracy/precision 
of the fusion and the computational time to perform the 
fusion. The accuracy  is evaluated by taking the Euclidian 
distance between the estimated position and the true 
position. The mean and the variance of the Euclidian 
distances for the whole simulation are reckoned. The 
variance describes the precision of the fusion method. The 
horizontal position is described by the tangential plane 
located at the real vehicle position whose coordinates are 
given by the latitude and the longitude. 
 
Table 1: Mean Position Error  

Component Gain (%) Ukf (m) Ekf (m) 
Latitude  -40.74 -1.52 -1.08
Longitude 11.25 2.92 3.29
Horizontal 3.60 7.76 8.05

 
Table 2 : Position Error Variance 

Component Gain (%) Ukf (m2) Ekf (m2) 
Latitude  12.77 40.10 45.97
Longitude -4.82 38.08 36.33
Horizontal 2.47 28.81 29.54

 
The unscented Kalman filter has slightly better results for 
horizontal positioning than the extended Kalman filter. In 



table 1, the estimated position is less biased for the 
unscented Kalman filter than for the extended Kalman 
filter. The results in table 2 shows that the unscented 
Kalman filter is more precise than the extended Kalman 
filter. 
 
For each estimated position the execution time taken by 
the fusion method  was recorded. Table 3 shows the mean 
computational time.  
 
Table 3 : Mean Computational Time 

Ekf (s) Ukf (s) Gain (%) 
0.0028 0.0658 -2250 

  
Contrary to the claim in [5, 6], the computational cost of 
the unscented Kalman filter is significantly greater than 
the computational cost of the extended Kalman filter. This 
is shown in table 3. The significant execution time 
difference is related to the number of times equations 1 
and 2 are evaluated for each fusion algorithm. With the 
unscented Kalman filter, these equations are evaluated 75 
times, once for each sigma point. With the extended 
Kalman filter, the Taylor series expansion of these 
equations are only evaluated once at each iteration. 
Furthermore, the Jacobian of the matrix H used in the 
Taylor series expansion is calculated only once because 
the observation equations are static. Thus the multiple 
computations of equations 1 and 2 by the unscented 
Kalman filter at each iteration is responsible for the larger 
computational cost.  
 
Table 4 : Horizontal position error when no GPS 
solution is available 

Statistical moment Gain (%) Ukf Ekf 
Mean (m) -2.03 21.63 21.20 
Variance (m^2) -10.02 599.63 545.03 

 
Surprisingly, the unscented Kalman filter is less 
performant than the extended Kalman filter when there is 
no GPS solution available. In that situation, the 
acceleration of the vehicle measured by the IMU is used 
to estimate the vehicle’s position described by equation 3.   
This equation represents the nonlinear transformation of 
the estimated states which are assumed to be Gaussian 
random variable in order to predict the IMU 
measurement. The performance of both filters depends on 
their capacity to estimated the mean of the resulting 
random variable. An empirical analysis has been made to 
evaluate this capacity. In this experiment, each state has 
been modelized by a discrete Gaussian random variable 
with 100 realizations distributed uniformely in the range 
of possible value with a 99% probability of realization. 

Each realization is present a number of times proportional 
to its probability of realization in the statistical data 
representing the probability function. Thus, 24060 
samples modelized each random variable. The nonlinear 
function described by equation 3 is then applied to these 
random variables and the means of the resulting random 
variables are computed. The same discrete random 
variables are  used with the Taylor series expansion of 
equation 3. In the extended Kalman filter, the 
linearization occurs around the states estimated at the 
previous iteration. The linearized equation is applied to 
the predicted states at the current time. The linearization 
error is directly proportional to the difference between the 
these estimated states and predicted states. For the 
empirical analysis, the mean variation between the 
estimated value and the predicted value obtained with the 
extended Kalman filter for one Monte Carlo simulation 
has been taken. Table 5 shows the variation between the 
real mean of the a posteriori probability density and the 
estimated mean of the a posteriori probability density 
obtained with the Taylor series expansion and the 
unscented Kalman filter. As can be seen, the unscented 
Kalman filter provides no significant improvement over 
the extended Kalman filter and even brings a deterioration 
for two acceleration components.  
 
Table 5 : Difference between the real mean and the 
estimated mean of the a posteriori density  
Estimated state EKF UKF 
Roll acceleration 0.0064 % 0.8070 % 
Pitch aceleration 0.0218 % 1.2876 % 

Yaw acceleration 0.2482 %  0.0754 %
 
The superiority of the unscented Kalman filter happens 
only when the variation between the predicted states and 
the estimated states is important. With the simulated data, 
approximatively 98% of the variations encountered are 
not important enough to generate a significant 
linearization error. This is due to the low dynamics of the 
vehicle.   
 
 
3 Conclusion 
 
The unscented Kalman filter has a slightly better 
performance than the extended Kalman filter when used 
as a fusion method in a positioning module of an 
integrated navigation information system. Unfortunatly, 
there is no gain of performance when there are no GPS 
solution available. An empirical analysis has 
demonstrated that the low dynamics of a vehicle make the 
potential linearization errors of the extended Kalman filter 



negligible. Futhermore, the computational time of the 
unscented Kalman filter is much greater than the 
computational time of the extended Kalman filter. One 
way to diminish the computational time of the UKF might 
be to use an decentralized architecture instead of a 
centralized one. In a decentalized architecture, the local 
filter for the IMU and the local filter for the differential 
odometer would be an UKF. The local filter for the GPS 
would be a standard linear Kalman filter.  
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