
Comparison between Traditional Neural Networks
and Radial Basis Function Networks

Tiantian Xie, Hao Yu and Bogdan Wilamowski

Electrical and Computer Engineering, Auburn University
tzx0004@auburn.edu, hzy0004@auburn.edu, wilam@ieee.org

Abstract- The paper presents the properties of two types of
neural networks: traditional neural networks and radial basis
function (RBF) networks, both of which are considered as
universal approximators. In this paper, the advantages and
disadvantages of the two types of neural network architectures
are analyzed and compared based on four different examples.
The comparison results indicate approaches to be taken relative
to the network model selection for practical applications.

Keywords- neural networks, radial basis function networks

I. INTRODUCTION

As a very important member of computational intelligence,
artificial neural networks (ANNs) which include
backpropagation (BP) networks [1], radial basis function
(RBF) networks [2], counterpropagation networks [3],
Kohonen networks [4] and so on, show their strong expertise
of data classification, pattern recognition and function
approximation. Neural networks are applied for solving
various problems in industrial applications, such as nonlinear
control [5], image/audio signal processing [6-7], system
diagnosis [8] and faults detection [9].

With the principle of “learning to behave”, traditional
neural networks need to be well trained before applied for
applications. Training data can be directly applied as network
inputs, and the networks parameters, called “weights”, are
adjusted iteratively according with the differences between
desired network behaviors and actual network behaviors.
traditional neural networks have various architectures and the
most popular one is multiplayer perceptron (MLP) networks
(Fig. 1a). Practically, MLP networks are very inefficient for
solving problems. traditional neural networks with
connections across layers, such as fully connected cascade
(FCC) networks (Fig. 1b) and bridged multilayer perceptron
(BMLP) networks (Fig. 1c), are much more powerful, and
also require more challenging computations [10]. Fig. 1
shows the minimum traditional neural network architectures
for solving parity-7 problem.

RBF networks have fixed three-layer architecture (Fig. 4)
which consists of input layer, hidden layer and output layer.
The input layer provides network inputs; the hidden layer
remaps the input data in order to make them linearly
separable; the output layer does linear separation. The special
architecture determines that the design of RBF networks is

normally organized in three steps: (1) find proper network
size; (2) find proper initial parameters (centers and widths);
(3) train the networks.

 (b)

 (a) (c)

Fig. 1 Minimum BP networks to solve parity-7 problem: (a) standard MLP
network; (b) FCC networks; (c) BMLP networks; Red dash lines are
connections across layers

Because of the similar layer-by-layer topology, it is often
considered that RBF networks belong to MLP networks. It
was proven that RBF networks can be implemented by MLP
networks with increased input dimensions [11]. Except the
similarities of topologies, RBF networks and MLP networks
behaves very differently. First of all, RBF networks are
simpler than MLP networks which may have more than three
layers architectures, so the training process is generally faster
than that of MLP networks. Secondly, RBF networks act as
local approximation networks, because the network outputs
are determined by specified hidden units in certain local
receptive fields; while MLP networks work globally, since
the network outputs are decides by all the neurons. Thirdly, it
is essential to set correct initial states for RBF networks;
while MLP networks use randomly generated parameters
initially. Last and most importantly, the mechanisms of
classification for RBF networks and MLP networks are
different: RBF clusters are separated by hyper spheres; while
in neural networks, arbitrarily shaped hyper surfaces are used
for separation. In the simple two-dimension case as shown in
Fig. 2, the RBF network in Fig. 2a separates the four clusters
by circles or ellipses (Fig. 2b); while the neural network in
Fig. 2c does the separation by lines (Fig. 2d).

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7

+1

+1

+1

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Input 7

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7

+1
+1

978-1-4244-9312-8/11/$26.00 ©2011 IEEE 1194

∑

∑

∑

∑

(a) (b)

(c) (d)

Fig. 2 Different classification mechanisms for pattern classification in two-
dimension space: (a) RBF network; (b) Separation result of RBF network; (b)
MLP network; (c) Separation result of MLP network

In this paper, traditional neural networks and RBF
networks are studied and compared based on four examples.
With the comparison results, several clues are provided on
network model selection for solving practical problems.

The paper is organized as follows. In the section II, the
basic concepts of traditional neural networks are introduced
briefly. Section III presents the computational fundamentals
of RBF networks. In section IV, traditional neural networks
and RBF networks are tested and compared based on four
examples. Section V is the conclusion.

II. TRADITIONAL NEURAL NETWORKS

Fig. 3 shows the basic unit of traditional neural networks,
with N inputs and M outputs.

)(xf
wN

Fig. 3 Single neuron with N inputs and M outputs

Computations related with the single neuron include:
i) Net computation

∑
=

+=
N

n
nn wwxnet

1
0 (1)

Where: n is the index of inputs and weights, from 1 to N; wn is
the weight on input xn; w0 is the bias weight.

ii) Output computation
() ()netnetfym tanh== (2)

Where: ym is the output of the neuron; f(•) is the activation
function and normally chosen as sigmoidal shape.

For more neurons interconnected together, the two basic
computations (1) and (2) for each neuron remain the same;
while the only difference is that the inputs of a neuron could be
provided by either the outputs of neurons from previous layers
or network inputs.

Weight values are the only type of parameters and can be
updated by learning algorithms. Based on error backpropagation
procedure, various gradient algorithms are developed for
traditional neural network learning. First order gradient
methods [1] are stable, but very time consuming, and usually
fail to converge to very small errors. Training speed and
accuracy are significantly improved by applying second order
gradient methods, such as Levenberg Marquardt algorithm [12]
and neuron-by-neuron algorithm [13]. The recently developed
algorithm in [14] inversed the traditional backpropagation
procedure and improved the training efficiency for traditional
neural networks with multiple outputs.

III. RADIAL BASIS FUNCTION NETWORKS

Fig. 4 shows the general form of RBF networks, with N
inputs, L hidden units and M outputs.

∑

∑

∑

()s1ϕ

()sLϕ

()s2ϕ

()s3ϕ

h
lnw ,

o
mlw ,

Fig. 4 RBF network with N inputs, L hidden units and M outputs.

The basic computations in the RBF network above include:
i) Input layer computation

At the input of hidden unit l, the input vector x is weighted
by input weights wh:

[]h
lNN

h
lnn

h
l

h
ll wxwxwxwx ,,,22,11 ,=s (3)

Where: n is the index of input; l is the index of hidden units;
xn is the n-th input; wh

n,l is the input weight between input n
and hidden unit l.

ii) Hidden layer computation
The output of hidden unit l is calculated by:

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

l

ll
ll σ

ϕ
2

exp
cs

s (4)

Where: the activation function φl(•) for hidden unit l is
normally chosen as Gaussian function; cl is the center of
hidden unit l and σl is the width of hidden unit l.

1195

iii) Output layer computation
The network output m is calculated by:

() o
m

L

l

o
mlllm wwo ,0

1
, +=∑

=

sϕ (5)

Where: m is the index of output; wo
l,m is the output weight

between hidden unit l and output unit m; wo
0.m is the bias

weight of output unit m.
From the basic computations (3), (4) and (5), one may

notice that there are four types of parameters, input weight
matrix wh, output weight matrix wo, center matrix c and width
vector σ. Normally, the input weights are all set as “1”. The
simple linear least squares (LS) method can only adjust the
output weights and it performs for nonlinear cases. Iteratively
LS method [15] improves the nonlinear performance of
output layer. First order gradient methods [16] can adjust
output weights, widths and centers during the training
process, but they often take long time for convergence and
have limited search ability. Kalman filter training algorithm
[17] provides similar performance with first order gradient
methods, but it improves the training speed significantly.
Genetic algorithm [18] performs robust training and does not
suffer from local minima problem, but it is very time and
computation expensive, especially when parameter dimension
is huge. The recently developed improved second order (ISO)
method [19] performs efficient and powerful training, and can
solve problems with very compact RBF networks.

IV. COMPARISONS

In this section, four problems are applied to test and
compare the performance of traditional neural networks and
RBF networks, from the points of architecture complexity,
generalization ability and noise-tolerant ability. For
traditional neural networks, the recently developed neuron-
by-neuron (NBN) algorithm [20-21] is applied for training;
while for RBF networks, the improved second order (ISO)
method [19] is used for parameter updating.

The training/testing results are evaluated by the averaged
sum square error calculated by:

∑∑
= =

=
P

p

M

m
mpe

MP
E

1 1

2
,

11
 (6)

Where: p is the index of patterns, from 1 to P, where P is the
number of patterns; m is the index of outputs, from 1 to M,
where M is the number of outputs. ep,m is the error at output m
when training pattern p, calculated as the difference between
desired output and associated actual output.

The testing environment consists of: Windows 7
Professional 32-bit operating system; AMD Athlon (tm) ×2
Dual-Core QL-65 2.10GHz processor; 3.00GB (2.75GB
usable) RAM; MATLAB 2007b platform.

A. Forward-Kinematics
Forward kinematics [22] is one of practical examples

which are well-solved by neural networks. The two-link
planar manipulator is modeled to determine the position and

orientation of robot’s end effectors when the joint angles
change (Fig. 5).

Fig. 5 Two-link planar manipulator

As shown in Fig. 5, in the two-dimension space, the end
effector coordinates of the manipulator is calculated by

()βαα ++= coscos 21 LLx (7)
()βαα ++= sinsin 21 LLy (8)

The data set of the two-dimensional forward-kinematics
consist of 49 training patterns and 961 testing patterns which
are generated from equations (7) and (8), with parameters α
and β uniformly distributed in range [0, 3], and L1=30, L2=10.
Figs. 6 and 7 below visualizes the training/testing points in
both x and y dimensions.

(a) (b)

Fig. 6 Data set in x-dimension: (a) 7×7=49 training patterns; (b) 31×31= 961
testing patterns

(a) (b)

Fig. 7 Data set in y-dimension: (a) 7×7=49 training patterns; (b) 31×31= 961
testing patterns

For traditional neural networks, all neurons are connected
in FCC architectures, with randomly generated initial weights
between [-1, 1]. For RBF network, randomly selected patterns
are used as initial centers, and the weights and widths are
randomly generated between (0, 1]. For each architecture, the
testing is repeated for 100 times and the averaged trajectories
of training/testing errors are presented in Figs. 8 and 9 below.

1196

Fig. 8 X-dimension of forward kinematics: training/testing errors vs. the
number of hidden units

As shown in Fig. 6, in x-dimension of kinematics, there is a
big but not regular peak. Comparison results in Fig 8 show
that RBF networks obtained smaller training/testing error
than traditional neural networks at first. While as the number
of hidden units increase, traditional neural networks perform
much better.

Fig. 9 Y-dimension of forward kinematics: training/testing errors vs. the
number of hidden units

In y-dimension kinematics, there are no regular peaks and
valleys (Fig. 7). As the comparison results shown in Fig. 9,
traditional neural networks perform much better than RBF
networks. As the number of hidden units increase, all errors
decrease at first; however, the testing errors of trained
traditional neural networks increase due to the over-fitting
problem [23].

B. Peaks Function Approximation
In the peaks function approximation problem, 20×20=400

points (Fig. 10a) are applied as training set, in order to predict
the values of 100×100=10,000 points (Fig. 10b) in the same
range. The surface is generated by MATLAB function peaks
and all training/testing points are uniformly distributed.

(a) (b)

Fig. 10 Peaks function approximation problem: (a) training data, 20×20=400
points; (b) testing data, 100×100=10,000 points.

Using RBF networks for approximating the peaks surface,
since there are three peaks and two valleys, at least 5 hidden
units are required.

For traditional neural networks, FCC architectures are
applied for training. Table I presents the experimental results.
One may notice that, with the same 5 hidden units,
feedforward neural network got more than 2 times larger
training errors and more than two orders of magnitude larger
testing errors than radial basis function network.

TABLE I COMPARISON RESULTS OF RADIAL RBF NETWORKS AND
TRADITIONAL NEURAL NETWORKS ON PEAKS SURFACE APPROXIMATION

PROBLEM
Architectures Training Errors Testing Errors
RBF with 5 hidden units 0.0111 0.0120
FCC with 4 hidden units 0.1361 1.3706
FCC with 5 hidden units 0.0294 1.1834
FCC with 6 hidden units 0.0040 1.1689
FCC with 7 hidden units 0.0018 1.1713
FCC with 8 hidden units 0.0010 1.1728

Fig. 11 below shows the generalization results of two types

of neural networks, both of which have 5 hidden units.

(a) (b)

Fig. 11 Generalization results of neural networks with 5 hidden units: (a)
traditional neural networks, testing error=1.1834; (b) RBF networks, testing
error=0.0120

C. Two-Spiral Problem
Two-spiral problem [24] is considered as a very complex

benchmark to evaluate the power and efficiency of training
algorithms and network architectures. As shown in Fig. 12,
the purpose of the two-spiral problem is to separate the 94
twisted two-dimension points into two groups, marked as +1
(blue circles) and -1 (red stars).

Fig. 12 Two-spiral classification problem

1197

Using traditional neural networks, the two-spiral problem
can be solved very efficiently and the minimum number of
required hidden units depends on network architectures. For
example, using standard MLP architecture with one hidden
layer, at least 33 hidden units are required for successful
training. For MLP architecture with two hidden layers
(assume they have the same number of neurons), at least 14
hidden units are required for convergence [14]. The most
efficient architecture, FCC networks, can solve two-spiral
problem with only 7 hidden units [14]. Fig. 13 shows the
generalization results of 13 hidden units in FCC networks.

Fig. 13 Generalization result of FCC architecture with 13 hidden units

Fig. 14 Generalization result of RBF network with 40 hidden units

Using RBF networks, in order to reach the similar training
error with the FCC architecture with 7 hidden units, at least
40 hidden units are required. The generalization result is
shown in Fig. 14.

For the two-spiral classification problem, one may notice
that, even using much less number of hidden units, traditional
neural networks (Fig. 13) can get better classification results
than RBF networks (Fig. 14).

D. Character Image Recognition
As shown in Fig. 15 below, for each column, there are 10

character images from “A” to “J”, each of which consists of
8×7=56 pixels with normalized Jet degree between -1 and 1 (-
1 for blue and 1 for red). The first column is the original
image data without noise and used as training patterns; while
the rest 7 columns, from the 2nd column to the 8th column, are

noised and used as testing patterns. The strength of noise is
calculated by:

δ×+= iPNPi 0 (9)
Where: P0 is the original image in 1st column; NPi is the
image data with i-th level noise; i is the noise level from 1 to
7; δ is the randomly generated noise between [-0.5, 0.5].

The aim is to build neural networks based on the training
patterns (1st column) and then test the networks with noised
input data (from 2nd column to 8th column). For each noise
level, the testing will be repeated for 100 times with
randomly generated noise.

Fig. 15 Character images with different noise levels from 0 to 7 in left-to-
right order (one data set in 100 groups)

Using traditional neural networks, the MLP architecture
56-10 is applied for training. The testing results on the trained
network are presented in Table II below. One may notice that
recognition errors appear when patterns with 2nd level noises
are applied.

TABLE II SUCCESS RATES OF THE TRAINED TRADITIONAL NEURAL
NETWORK FOR CHARACTER IMAGE RECOGNITION

 Data
Char

Noise
level 1

Noise
level 2

Noise
level 3

Noise
level 4

Noise
level 5

Noise
level 6

Noise
level 7

“A” 100% 99% 90% 70% 59% 44% 39%
“B” 100% 100% 100% 95% 94% 84% 81%
“C” 100% 98% 81% 52% 51% 45% 41%
“D” 100% 97% 84% 64% 56% 34% 33%
“E” 100% 100% 92% 70% 52% 48% 42%
“F” 100% 95% 83% 71% 49% 36% 35%
“G” 100% 96% 72% 58% 53% 34% 32%
“H” 100% 94% 60% 50% 32% 32% 23%
“I” 100% 100% 100% 95% 83% 76% 71%
“J” 100% 100% 96% 81% 70% 54% 46%

For RBF networks, 10 hidden units are chosen and their

centers are corresponding to 10 characters, respectively.
Applying the testing patterns, the performance of the trained
RBF network is shown in Table III below. One may notice
that recognition errors appear until 3rd level noised patterns
applied.

1198

TABLE III SUCCESS RATE OF THE TRAINED RBF NETWORK FOR CHARACTER

IMAGE RECOGNITION
 Data
Char

Noise
level 1

Noise
level 2

Noise
level 3

Noise
level 4

Noise
level 5

Noise
level 6

Noise
level 7

“A” 100% 100% 100% 100% 100% 97% 97%
“B” 100% 100% 100% 99% 97% 96% 87%
“C” 100% 100% 99% 98% 90% 88% 80%
“D” 100% 100% 100% 98% 98% 95% 88%
“E” 100% 100% 100% 95% 94% 76% 76%
“F” 100% 100% 100% 97% 92% 83% 79%
“G” 100% 100% 99% 96% 88% 81% 77%
“H” 100% 100% 100% 100% 100% 98% 91%
“I” 100% 100% 100% 100% 100% 100% 97%
“J” 100% 100% 100% 100% 100% 99% 95%

Fig. 16 Average recognition success rates of traditional neural networks and
RBF networks under different levels of noised inputs

Fig. 16 shows the average success rate of two types of
neural network architectures. It can be seen that, RBF
networks (red line) is more robust, and have better tolerant
ability to input noises than traditional neural networks (blue
line).

V. CONCLUSION

The paper presents the comparison of traditional neural
networks and RBF networks based on four examples.
According with the comparing results and properties of two
types of neural networks, the conclusions below can be made
to provide suggestions for network model selection:

• For function approximation problems, RBF networks
are specially recommended for surface with regular
peaks and valleys, since efficient and accurate design
can be obtained. While, for surfaces without regular
peaks and valleys, traditional neural networks are
preferred as a general model.

• For classification problems, traditional neural
networks can get better classification results with
much more efficient networks than RBF networks.

• For trained networks, RBF networks perform more
robustly and tolerantly than traditional neural
networks, when dealing with noised input data set.

REFERENCES
[1] D. E. Rumelhart, G. E Hinton and R. J. Williams, "Learning

Representations by Back-Propagating Errors," Nature, vol. 323, pp.
533-536, 1986.

[2] J. Moody and C. J. Darken, "Fast Learning in Networks of Locally-
Tuned Processing Units," Neural Computation, vol. 1, no. 2, pp. 281-
294, 1989.

[3] R. Hecht-Nielsen, "Counterpropagation Networks," Appl. Opt.
26(23):4979-4984, 1987.

[4] A. G. Ivakhnenko and J. A. Mueller, "Self-Organizing of Nets of
Active Neurons," System Analysis Modeling Simulation, vol. 20, pp.
93-106, 1995.

[5] K. Derr and M. Manic, “Wireless based object tracking based on neural
networks”, ICIEA 2008, 3rd IEEE Conference on Industrial
Electronics and Applications, Singapore, June 3-5, pp.308-313, 2008.

[6] Y. J. Lee, J. Yoon, "Nonlinear Image Upsampling Method Based on
Radial Basis Function Interpolation," IEEE Trans. on Image
Processing, vol. 19, issue 10, pp. 2682-2692, 2010.

[7] F. Moreno, J. Alarcón, et al., "Reconfigurable Hardware Architecture
of a Shape Recognition System Based on Specialized Tiny Neural
Networks With Online Training," IEEE Trans. on Industrial
Electronics, vol. 56, no. 8, pp. 3253-3263, 2009.

[8] O. Linda and M. Manic, “Online Spatio-Temporal Risk Assessment for
Intelligent Transportation Systems.” IEEE Trans. On Intelligent
Transportation Systems, vol. 12, no. 1, pp. 194-200, 2011.

[9] S. Huang and K. K. Tan, "Fault Detection and Diagnosis Based on
Modeling and Estimation Methods," IEEE Trans. on Neural Networks,
vol. 20, issue 5, pp. 872-881, Apr. 2009.

[10] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G. Dundar, "Computing
Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural
Networks," IEEE Trans. on Industrial Electronics, vol. 55, no. 10, pp.
3784-3790, Oct. 2008.

[11] B. M. Wilamowski, R. C. Jaeger, "Implementation of RBF Type
Networks by MLP Networks," IEEE International Conference on
Neural Networks, Washington DC, June 3-6, 1996, pp. 1670-1675.

[12] M. T. Hagan, M. B. Menhaj, "Training Feedforward Networks with the
Marquardt Algorithm," IEEE Trans. on Neural Networks, vol. 5, no. 6,
pp. 989-993, Nov. 1994.

[13] B. M. Wilamowski and H. Yu, "Improved Computation for Levenberg
Marquardt Training," IEEE Trans. on Neural Networks, vol. 21, no. 6,
pp. 930-937, June 2010.

[14] B. M. Wilamowski and H. Yu, "Neural Network Learning Without
Backpropagation," IEEE Trans. on Neural Networks, vol. 21, no.11, pp.
1793-1803, Nov. 2010.

[15] B. M. Wilamowski, "Modified EBP Algorithm with Instant Training of
the Hidden Layer," Proceedings of Industrial Electronic Conference
(IECON'97), New Orleans, November 9-14, 1997, pp. 1097-1101.

[16] N. B. Karayiannis, "Reformulated Radial Basis Neural Networks
Trained by Gradient Descent," IEEE Trans. Neural Networks, vol. 10,
issue 3, pp. 657-671, Aug. 2002.

[17] D. Simon, "Training Radial Basis Neural Networks with the Extended
Kalman Filter," Neurocomputing, vol. 48, pp. 455-475, 2002.

[18] B. A. Whitehead and T. D. Choate, "Cooperative-Competitive Genetic
Evolution of Radial Basis Function Centers and Widths for Time Series
Prediction," IEEE Trans. on Neural Networks, vol. 7, no. 4, pp. 869-
880, July, 1996.

[19] H. Yu, T. T. Xie, B. M. Wilamowski and J. Hewlett, "Fast and Efficient
Second Order Method for Training Radial Basis Function Networks,"
IEEE Trans. on Neural Networks. (submitted)

[20] H. Yu and B. M. Wilamowski, "Fast and efficient and training of neural
networks," in Proc. 3nd IEEE Human System Interaction Conf. HSI
2010, Rzeszow, Poland, May 13-15, 2010, pp. 175-181.

[21] H. Yu and B. M. Wilamowski, "Efficient and Reliable Training of
Neural Networks," in Proc. 2nd IEEE Human System Interaction
Conf. HSI 2009, Catania, Italy, May 21-23, 2009, pp. 109-115.

[22] A. Malinowski and H. Yu, "Comparison of Embedded System Design
for Industrial Applications," IEEE Trans. on Industrial Informactics.
(accepted for publication)

[23] B. M. Wilamowski, “Neural Network Architectures and Learning
Algorithms: How Not to Be Frustrated with Neural Networks,” IEEE
Industrial Electronics Magazine, vol. 3, no. 4, pp. 56-63, Dec. 2009.

[24] H. Yu and B. M. Wilamowski, "C++ Implementation of Neural
Networks Trainer," 13-th International Conference on Intelligent
Engineering Systems, INES09, Barbados, April 16-18, 2009.

1199

