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Abstract- The paper presents the properties of two types of 
neural networks: traditional neural networks and radial basis 
function (RBF) networks, both of which are considered as 
universal approximators. In this paper, the advantages and 
disadvantages of the two types of neural network architectures 
are analyzed and compared based on four different examples. 
The comparison results indicate approaches to be taken relative 
to the network model selection for practical applications. 
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I. INTRODUCTION 

As a very important member of computational intelligence, 
artificial neural networks (ANNs) which include 
backpropagation (BP) networks [1], radial basis function 
(RBF) networks [2], counterpropagation networks [3], 
Kohonen networks [4] and so on, show their strong expertise 
of data classification, pattern recognition and function 
approximation. Neural networks are applied for solving 
various problems in industrial applications, such as nonlinear 
control [5], image/audio signal processing [6-7], system 
diagnosis [8] and faults detection [9]. 

With the principle of “learning to behave”, traditional 
neural networks need to be well trained before applied for 
applications. Training data can be directly applied as network 
inputs, and the networks parameters, called “weights”, are 
adjusted iteratively according with the differences between 
desired network behaviors and actual network behaviors. 
traditional neural networks have various architectures and the 
most popular one is multiplayer perceptron (MLP) networks 
(Fig. 1a). Practically, MLP networks are very inefficient for 
solving problems. traditional neural networks with 
connections across layers, such as fully connected cascade 
(FCC) networks (Fig. 1b) and bridged multilayer perceptron 
(BMLP) networks (Fig. 1c), are much more powerful, and 
also require more challenging computations [10]. Fig. 1 
shows the minimum traditional neural network architectures 
for solving parity-7 problem. 

RBF networks have fixed three-layer architecture (Fig. 4) 
which consists of input layer, hidden layer and output layer. 
The input layer provides network inputs; the hidden layer 
remaps the input data in order to make them linearly 
separable; the output layer does linear separation. The special 
architecture determines that the design of RBF networks is 

normally organized in three steps: (1) find proper network 
size; (2) find proper initial parameters (centers and widths); 
(3) train the networks. 

 
 
 
 
 
 
                                                                                  (b) 
 
 
 
 
 
 
 
                     (a)                                                         (c) 

Fig. 1 Minimum BP networks to solve parity-7 problem: (a) standard MLP 
network; (b) FCC networks; (c) BMLP networks; Red dash lines are 
connections across layers 
 

Because of the similar layer-by-layer topology, it is often 
considered that RBF networks belong to MLP networks. It 
was proven that RBF networks can be implemented by MLP 
networks with increased input dimensions [11]. Except the 
similarities of topologies, RBF networks and MLP networks 
behaves very differently. First of all, RBF networks are 
simpler than MLP networks which may have more than three 
layers architectures, so the training process is generally faster 
than that of MLP networks. Secondly, RBF networks act as 
local approximation networks, because the network outputs 
are determined by specified hidden units in certain local 
receptive fields; while MLP networks work globally, since 
the network outputs are decides by all the neurons. Thirdly, it 
is essential to set correct initial states for RBF networks; 
while MLP networks use randomly generated parameters 
initially. Last and most importantly, the mechanisms of 
classification for RBF networks and MLP networks are 
different: RBF clusters are separated by hyper spheres; while 
in neural networks, arbitrarily shaped hyper surfaces are used 
for separation. In the simple two-dimension case as shown in 
Fig. 2, the RBF network in Fig. 2a separates the four clusters 
by circles or ellipses (Fig. 2b); while the neural network in 
Fig. 2c does the separation by lines (Fig. 2d). 
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(a)                                                     (b) 

 
(c)                                                     (d) 

Fig. 2 Different classification mechanisms for pattern classification in two-
dimension space: (a) RBF network; (b) Separation result of RBF network; (b) 
MLP network; (c) Separation result of MLP network 
 

In this paper, traditional neural networks and RBF 
networks are studied and compared based on four examples. 
With the comparison results, several clues are provided on 
network model selection for solving practical problems. 

The paper is organized as follows. In the section II, the 
basic concepts of traditional neural networks are introduced 
briefly. Section III presents the computational fundamentals 
of RBF networks. In section IV, traditional neural networks 
and RBF networks are tested and compared based on four 
examples. Section V is the conclusion. 
 

II. TRADITIONAL NEURAL NETWORKS 

Fig. 3 shows the basic unit of traditional neural networks, 
with N inputs and M outputs. 
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Fig. 3 Single neuron with N inputs and M outputs  
 

Computations related with the single neuron include: 
i) Net computation 
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Where: n is the index of inputs and weights, from 1 to N; wn is 
the weight on input xn; w0 is the bias weight. 

ii) Output computation 
( ) ( )netnetfym tanh==                       (2) 

Where: ym is the output of the neuron; f(•) is the activation 
function and normally chosen as sigmoidal shape. 

For more neurons interconnected together, the two basic 
computations (1) and (2) for each neuron remain the same; 
while the only difference is that the inputs of a neuron could be 
provided by either the outputs of neurons from previous layers 
or network inputs. 

Weight values are the only type of parameters and can be 
updated by learning algorithms. Based on error backpropagation 
procedure, various gradient algorithms are developed for 
traditional neural network learning. First order gradient 
methods [1] are stable, but very time consuming, and usually 
fail to converge to very small errors. Training speed and 
accuracy are significantly improved by applying second order 
gradient methods, such as Levenberg Marquardt algorithm [12] 
and neuron-by-neuron algorithm [13]. The recently developed 
algorithm in [14] inversed the traditional backpropagation 
procedure and improved the training efficiency for traditional 
neural networks with multiple outputs. 
 

III. RADIAL BASIS FUNCTION NETWORKS 

Fig. 4 shows the general form of RBF networks, with N 
inputs, L hidden units and M outputs. 
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Fig. 4 RBF network with N inputs, L hidden units and M outputs. 
 

The basic computations in the RBF network above include: 
i) Input layer computation 

At the input of hidden unit l, the input vector x is weighted 
by input weights wh: 
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Where: n is the index of input; l is the index of hidden units; 
xn is the n-th input; wh

n,l is the input weight between input n 
and hidden unit l. 

ii) Hidden layer computation 
The output of hidden unit l is calculated by: 
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Where: the activation function φl(•) for hidden unit l is 
normally chosen as Gaussian function; cl is the center of 
hidden unit l and σl is the width of hidden unit l. 
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iii) Output layer computation 
The network output m is calculated by: 
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Where: m is the index of output; wo
l,m is the output weight 

between hidden unit l and output unit m; wo
0.m is the bias 

weight of output unit m. 
From the basic computations (3), (4) and (5), one may 

notice that there are four types of parameters, input weight 
matrix wh, output weight matrix wo, center matrix c and width 
vector σ. Normally, the input weights are all set as “1”. The 
simple linear least squares (LS) method can only adjust the 
output weights and it performs for nonlinear cases. Iteratively 
LS method [15] improves the nonlinear performance of 
output layer. First order gradient methods [16] can adjust 
output weights, widths and centers during the training 
process, but they often take long time for convergence and 
have limited search ability. Kalman filter training algorithm 
[17] provides similar performance with first order gradient 
methods, but it improves the training speed significantly. 
Genetic algorithm [18] performs robust training and does not 
suffer from local minima problem, but it is very time and 
computation expensive, especially when parameter dimension 
is huge. The recently developed improved second order (ISO) 
method [19] performs efficient and powerful training, and can 
solve problems with very compact RBF networks. 
 

IV. COMPARISONS 

In this section, four problems are applied to test and 
compare the performance of traditional neural networks and 
RBF networks, from the points of architecture complexity, 
generalization ability and noise-tolerant ability. For 
traditional neural networks, the recently developed neuron-
by-neuron (NBN) algorithm [20-21] is applied for training; 
while for RBF networks, the improved second order (ISO) 
method [19] is used for parameter updating. 

The training/testing results are evaluated by the averaged 
sum square error calculated by: 
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Where: p is the index of patterns, from 1 to P, where P is the 
number of patterns; m is the index of outputs, from 1 to M, 
where M is the number of outputs. ep,m is the error at output m 
when training pattern p, calculated as the difference between 
desired output and associated actual output. 

The testing environment consists of: Windows 7 
Professional 32-bit operating system; AMD Athlon (tm) ×2 
Dual-Core QL-65 2.10GHz processor; 3.00GB (2.75GB 
usable) RAM; MATLAB 2007b platform. 

A. Forward-Kinematics   
Forward kinematics [22] is one of practical examples 

which are well-solved by neural networks. The two-link 
planar manipulator is modeled to determine the position and 

orientation of robot’s end effectors when the joint angles 
change (Fig. 5). 

 
Fig. 5 Two-link planar manipulator 
 

As shown in Fig. 5, in the two-dimension space, the end 
effector coordinates of the manipulator is calculated by 

( )βαα ++= coscos 21 LLx                           (7) 
( )βαα ++= sinsin 21 LLy                            (8) 

The data set of the two-dimensional forward-kinematics 
consist of 49 training patterns and 961 testing patterns which 
are generated from equations (7) and (8), with parameters α 
and β uniformly distributed in range [0, 3], and L1=30, L2=10. 
Figs. 6 and 7 below visualizes the training/testing points in 
both x and y dimensions. 

 
(a)                                               (b) 

Fig. 6 Data set in x-dimension: (a) 7×7=49 training patterns; (b) 31×31= 961 
testing patterns 
 

 
(a)                                               (b) 

Fig. 7 Data set in y-dimension: (a) 7×7=49 training patterns; (b) 31×31= 961 
testing patterns 
 

For traditional neural networks, all neurons are connected 
in FCC architectures, with randomly generated initial weights 
between [-1, 1]. For RBF network, randomly selected patterns 
are used as initial centers, and the weights and widths are 
randomly generated between (0, 1]. For each architecture, the 
testing is repeated for 100 times and the averaged trajectories 
of training/testing errors are presented in Figs. 8 and 9 below. 
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Fig. 8 X-dimension of forward kinematics: training/testing errors vs. the 
number of hidden units 
 

As shown in Fig. 6, in x-dimension of kinematics, there is a 
big but not regular peak. Comparison results in Fig 8 show 
that RBF networks obtained smaller training/testing error 
than traditional neural networks at first. While as the number 
of hidden units increase, traditional neural networks perform 
much better. 

 
Fig. 9 Y-dimension of forward kinematics: training/testing errors vs. the 
number of hidden units 
 

In y-dimension kinematics, there are no regular peaks and 
valleys (Fig. 7). As the comparison results shown in Fig. 9, 
traditional neural networks perform much better than RBF 
networks. As the number of hidden units increase, all errors 
decrease at first; however, the testing errors of trained 
traditional neural networks increase due to the over-fitting 
problem [23]. 

B. Peaks Function Approximation 
In the peaks function approximation problem, 20×20=400 

points (Fig. 10a) are applied as training set, in order to predict 
the values of 100×100=10,000 points (Fig. 10b) in the same 
range. The surface is generated by MATLAB function peaks 
and all training/testing points are uniformly distributed. 

 
(a)                                                      (b) 

Fig. 10 Peaks function approximation problem: (a) training data, 20×20=400 
points; (b) testing data, 100×100=10,000 points. 
 

Using RBF networks for approximating the peaks surface, 
since there are three peaks and two valleys, at least 5 hidden 
units are required. 

For traditional neural networks, FCC architectures are 
applied for training. Table I presents the experimental results. 
One may notice that, with the same 5 hidden units, 
feedforward neural network got more than 2 times larger 
training errors and more than two orders of magnitude larger 
testing errors than radial basis function network. 
 

TABLE I COMPARISON RESULTS OF RADIAL RBF NETWORKS AND 
TRADITIONAL NEURAL NETWORKS ON PEAKS SURFACE APPROXIMATION 

PROBLEM  
Architectures Training Errors Testing Errors 
RBF with 5 hidden units 0.0111 0.0120 
FCC with 4 hidden units 0.1361 1.3706 
FCC with 5 hidden units 0.0294 1.1834 
FCC with 6 hidden units 0.0040 1.1689 
FCC with 7 hidden units 0.0018 1.1713 
FCC with 8 hidden units 0.0010 1.1728 

 
Fig. 11 below shows the generalization results of two types 

of neural networks, both of which have 5 hidden units. 

 
(a)                                              (b) 

Fig. 11 Generalization results of neural networks with 5 hidden units: (a) 
traditional neural networks, testing error=1.1834; (b) RBF networks, testing 
error=0.0120 

C. Two-Spiral Problem 
Two-spiral problem [24] is considered as a very complex 

benchmark to evaluate the power and efficiency of training 
algorithms and network architectures. As shown in Fig. 12, 
the purpose of the two-spiral problem is to separate the 94 
twisted two-dimension points into two groups, marked as +1 
(blue circles) and -1 (red stars). 

 
Fig. 12 Two-spiral classification problem 
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Using traditional neural networks, the two-spiral problem 
can be solved very efficiently and the minimum number of 
required hidden units depends on network architectures. For 
example, using standard MLP architecture with one hidden 
layer, at least 33 hidden units are required for successful 
training. For MLP architecture with two hidden layers 
(assume they have the same number of neurons), at least 14 
hidden units are required for convergence [14]. The most 
efficient architecture, FCC networks, can solve two-spiral 
problem with only 7 hidden units [14]. Fig. 13 shows the 
generalization results of 13 hidden units in FCC networks. 

 
Fig. 13 Generalization result of FCC architecture with 13 hidden units 
 

 
Fig. 14 Generalization result of RBF network with 40 hidden units 
 

Using RBF networks, in order to reach the similar training 
error with the FCC architecture with 7 hidden units, at least 
40 hidden units are required. The generalization result is 
shown in Fig. 14. 

For the two-spiral classification problem, one may notice 
that, even using much less number of hidden units, traditional 
neural networks (Fig. 13) can get better classification results 
than RBF networks (Fig. 14). 

D. Character Image Recognition 
As shown in Fig. 15 below, for each column, there are 10 

character images from “A” to “J”, each of which consists of 
8×7=56 pixels with normalized Jet degree between -1 and 1 (-
1 for blue and 1 for red). The first column is the original 
image data without noise and used as training patterns; while 
the rest 7 columns, from the 2nd column to the 8th column, are 

noised and used as testing patterns. The strength of noise is 
calculated by: 

δ×+= iPNPi 0                                (9) 
Where: P0 is the original image in 1st column; NPi is the 
image data with i-th level noise; i is the noise level from 1 to 
7; δ is the randomly generated noise between [-0.5, 0.5]. 

The aim is to build neural networks based on the training 
patterns (1st column) and then test the networks with noised 
input data (from 2nd column to 8th column). For each noise 
level, the testing will be repeated for 100 times with 
randomly generated noise. 

 
Fig. 15 Character images with different noise levels from 0 to 7 in left-to-
right order (one data set in 100 groups) 
 

Using traditional neural networks, the MLP architecture 
56-10 is applied for training. The testing results on the trained 
network are presented in Table II below. One may notice that 
recognition errors appear when patterns with 2nd level noises 
are applied. 
 

TABLE II SUCCESS RATES OF THE TRAINED TRADITIONAL NEURAL 
NETWORK FOR CHARACTER IMAGE RECOGNITION 

   Data 
Char      

Noise 
level 1 

Noise 
level 2 

Noise 
level 3 

Noise 
level 4 

Noise 
level 5 

Noise 
level 6 

Noise 
level 7 

“A” 100% 99% 90% 70% 59% 44% 39% 
“B” 100% 100% 100% 95% 94% 84% 81% 
“C” 100% 98% 81% 52% 51% 45% 41% 
“D” 100% 97% 84% 64% 56% 34% 33% 
“E” 100% 100% 92% 70% 52% 48% 42% 
“F” 100% 95% 83% 71% 49% 36% 35% 
“G” 100% 96% 72% 58% 53% 34% 32% 
“H” 100% 94% 60% 50% 32% 32% 23% 
“I” 100% 100% 100% 95% 83% 76% 71% 
“J” 100% 100% 96% 81% 70% 54% 46% 

 
For RBF networks, 10 hidden units are chosen and their 

centers are corresponding to 10 characters, respectively. 
Applying the testing patterns, the performance of the trained 
RBF network is shown in Table III below. One may notice 
that recognition errors appear until 3rd level noised patterns 
applied. 
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TABLE III SUCCESS RATE OF THE TRAINED RBF NETWORK FOR CHARACTER 

IMAGE RECOGNITION 
   Data 
Char       

Noise 
level 1 

Noise 
level 2 

Noise 
level 3 

Noise 
level 4 

Noise 
level 5 

Noise 
level 6 

Noise 
level 7 

“A” 100% 100% 100% 100% 100% 97% 97% 
“B” 100% 100% 100% 99% 97% 96% 87% 
“C” 100% 100% 99% 98% 90% 88% 80% 
“D” 100% 100% 100% 98% 98% 95% 88% 
“E” 100% 100% 100% 95% 94% 76% 76% 
“F” 100% 100% 100% 97% 92% 83% 79% 
“G” 100% 100% 99% 96% 88% 81% 77% 
“H” 100% 100% 100% 100% 100% 98% 91% 
“I” 100% 100% 100% 100% 100% 100% 97% 
“J” 100% 100% 100% 100% 100% 99% 95% 

 

 
Fig. 16 Average recognition success rates of traditional neural networks and 
RBF networks under different levels of noised inputs 
 

Fig. 16 shows the average success rate of two types of 
neural network architectures. It can be seen that, RBF 
networks (red line) is more robust, and have better tolerant 
ability to input noises than traditional neural networks (blue 
line). 

 

V. CONCLUSION 

The paper presents the comparison of traditional neural 
networks and RBF networks based on four examples. 
According with the comparing results and properties of two 
types of neural networks, the conclusions below can be made 
to provide suggestions for network model selection: 

• For function approximation problems, RBF networks 
are specially recommended for surface with regular 
peaks and valleys, since efficient and accurate design 
can be obtained. While, for surfaces without regular 
peaks and valleys, traditional neural networks are 
preferred as a general model. 

• For classification problems, traditional neural 
networks can get better classification results with 
much more efficient networks than RBF networks. 

• For trained networks, RBF networks perform more 
robustly and tolerantly than traditional neural 
networks, when dealing with noised input data set.  
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