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ABSTRACT:

The extraction and description of keypoints as salient image parts has a long tradition within processing and analysis of 2D images.

Nowadays, 3D data gains more and more importance. This paper discusses the benefits and limitations of keypoints for the task of fusing

multiple 3D point clouds. For this goal, several combinations of 3D keypoint detectors and descriptors are tested. The experiments are

based on 3D scenes with varying properties, including 3D scanner data as well as Kinect point clouds. The obtained results indicate

that the specific method to extract and describe keypoints in 3D data has to be carefully chosen. In many cases the accuracy suffers

from a too strong reduction of the available points to keypoints.

1. INTRODUCTION

The detection and description of keypoints is a well studied sub-

ject in the field of 2D image analysis. Keypoints (also called

interest points or feature points) are a subset of all points, that ex-

hibit certain properties which distinguish them from the remain-

ing points. Depending on the used operator keypoints have a high

information content, either radiometrically (e.g. contrast) or ge-

ometrically (e.g. cornerness), they only form a small fraction

of the whole data set, they can be precisely located, and their ap-

pearance as well as location is robust to spatial and/or radiometric

transformations.

Two dimensional keypoints have been used in many different

applications from image registration and image stitching, to ob-

ject recognition, to 3D reconstruction by structure from motion.

Consequently, keypoint detectors are a well studied field within

the 2D computer vision, with representative algorithms like SIFT

(Lowe, 2004), SURF (Bay et al., 2006), MSER (Matas et al.,

2004), or SUSAN (Smith and Brady, 1997)), to name only few of

the available methods.

Nowadays, the processing and analysis of three-dimensional data

gains more and more importance. There are many powerful algo-

rithms available, that produce 3D point clouds from 2D images

(e.g. VisualSFM (Wu, 2011)), or hardware devices that directly

provide three-dimensional data (e.g. MS-Kinect). Keypoints in

3D provide similar advantages as they do in two dimensions. Al-

though there exist considerably less 3D than 2D keypoint detec-

tors, the number of publications proposing such approaches in-

creased especially over the last years. Often 2D keypoint detec-

tors are adapted to work with 3D data. For example, Thrift (Flint

et al., 2007) extends the ideas of SIFT and SUSAN to the 3D case

and also Harris 3D (Sipiran and Bustos, 2011) is an adapted 2D

corner detector.

Previous publications on the evaluation of different 3D keypoint

detectors focus on shape retrieval (Bronstein et al., 2010) or 3D

object recognition (Salti et al., 2011). These works show that key-

point detectors behave very differently in terms of execution time

and repeatability of keypoint detection under noise and transfor-

mations. This paper investigates the advantages and limits of 3D

keypoint detectors and descriptors within the specific context of
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Figure 1: Point cloud fusion

point cloud fusion: Two or more point clouds are acquired from

the same scene but provided within their own, local coordinate

system as illustrated in Figure 1(a). The system automatically

performs a chain of successive pairwise registrations and thus

aligns all point clouds into a global coordinate system (see Fig-

ure 1(b)). The resulting fused point cloud can then be used in

subsequent tasks like surface reconstruction (see Figure 1(c)). In

order to registrate two point clouds a rigid transformation con-

sisting of a translation and rotation is computed by a state-of-the-

art combination of a keypoint-based coarse alignment (Rusu et

al., 2008) and a point-based fine alignment (Chen and Medioni,

1992, Besl and McKay, 1992, Rusinkiewicz and Levoy, 2001).

The experiments are based on ten different data sets acquired

from three different 3D scenes. Different combinations of key-

point detectors and descriptors are compared with respect to the

gain in accuracy of the final fusion results.

2. POINT CLOUD FUSION

The focus of this paper is the comparison of 3D keypoint de-

tectors and descriptors. The application scenario in which this

comparison is carried out is the task of point cloud fusion. This

section briefly explains the process applied to fuse point clouds

with pairwise overlapping views into a single point cloud. This

process is also known as point cloud registration or alignment.
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In a first step a fully connected graph is built. Each node corre-

sponds to one of the given point clouds. Each edge is assigned

with a weight, that is inverse proportional to the number of key-

point-based correspondences between the two corresponding point

clouds. A minimal spanning tree defines the order, in which mul-

tiple pairwise fusion steps are carried out. The subsequent, suc-

cessive application of the estimated transformations as well as a

final global fine alignment leads to a final, single point cloud.

Figure 2: Pairwise point cloud fusion pipeline

Figure 2 shows the processing chain to align two point clouds as

it is used in this paper. Both acquired point clouds are prepared

by several filters that reject large planes, isolated points, as well

as points far away. The prepared point clouds are used to com-

pute a rigid transformation matrix that consists of a rotation and

a translation. The transformation matrix is applied to the original

source point cloud to align it with the original target point cloud

into a common coordinate system.

The alignment is based on a first coarse feature-based alignment

and a subsequent fine point-based alignment using ICP. The fea-

ture-based alignment uses the computed feature descriptors of the

points in both point clouds to establish point correspondences be-

tween similar points. From these set of point correspondences be-

tween both point clouds, a transformation is computed that aligns

the corresponding points in a least-squares sense. This coarse

pre-alignment is necessary, since ICP in the second step performs

only a local optimization and can only correctly registrate two

point clouds with small differences in rotation and translation.

3. 3D KEYPOINT DETECTION

An explicit keypoint estimation reduces the set of points for which

point descriptors have to be calculated and decreases the number

of possible correspondences. In this paper Normal Aligned Ra-

dial Feature (NARF) and a 3D adaption of SIFT are used as they

represent two interesting as well as complementary approaches

to detect 3D keypoints in point clouds.

3.1 NARF

The Normal Aligned Radial Feature (NARF) keypoint detector

(Steder et al., 2011) has two major characteristics: Firstly, NARF

extracts keypoints in areas where the direct underlying surface

is stable and the neighborhood contains major surface changes.

This causes NARF keypoints to be located in the local environ-

ment of significant geometric structures and not directly on them.

According to the authors this characteristic leads to a more ro-

bust point descriptor computation. Secondly, NARF takes ob-

ject borders into account, which arise from view dependent non-

continuous transitions from the foreground to the background.

Thus, the silhouette of an object has a profound influence on the

resulting keypoints.

Figure 3: NARF keypoint computation

Figure 3 shows the major steps of the NARF keypoint detection.

The point cloud is transformed into a range image to perform

a heuristic-based detection of object borders. The range values

within a local neighborhood of size s around every image point p
are ordered by their 3D distances to p. From this ordered set

dM is selected as mean distance with dM = (0.5 · (s + 1))2.

Four score values sright, sbottom, sleft, and stop are computed

by Equation 1, which represent the possibility of a border in the

corresponding direction. The point p is marked as a border point,

if the score of any direction exceeds a specified threshold.

si = max
(

0, 1 −
dM

di

)

(1)

where di is the average distance from p to its next three direct

point neighbors in direction i ∈ {right, bottom, left, top} of

the range image. The normal vector of border points and the

principal curvature of non-border points are used to detect in-

terest points. They are determined by the main direction α of

surface change and a weight w. The normal vector of a border

point p is projected onto a plane perpendicular to the vector be-

tween the viewpoint and p, where it is used to compute the main

direction α. The weight is set to w = 1. In the case of a non-

border point p, the direction of maximal curvature is projected

onto a plane perpendicular to the vector between the viewpoint

and p. The resulting angle defines the main direction α and the

corresponding curvature is set as the weight w.

An interest score I(p) is defined for every point p, which is based

on all neighboring points {n0, ..., nk} of p within a radius of σ,

which do not have a border in between:

I(p) = I1(p) · I2(p) (2)

I1(p) = min
i

(

1 − wni
max

(

1 −
10 · ‖p − ni‖

σ
, 0

))

(3)

I2(p) = max
i,j

(

f(ni) · f(nj)
(

1 − | cos
(

αni
− αnj

)

|
))

(4)

f(n) =

√

wn

(

1 −

∣

∣

∣

∣

2 · ‖p − n‖

σ
− 0.5

∣

∣

∣

∣

)

(5)

All points with an interest value higher than a user specified thresh-

old are marked as the keypoints of the point cloud. Figure 4

shows the NARF keypoints in an example scene.
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Figure 4: Point cloud with NARF keypoints

3.2 3D-SIFT

The Scale Invariant Feature Transform (SIFT, (Lowe, 2004)) orig-

inally developed for 2D images was adapted by the community

of the Point Cloud Library (PCL) to 3D point clouds (Rusu and

Cousins, 2011) by replacing the role of the intensity of an pixel in

the original algorithm by the principal curvature of a point within

the 3D cloud.

Figure 5: 3D-SIFT keypoint computation

Figure 5 gives an overview of the major steps of the 3D-SIFT

keypoint detection. The 3D-SIFT keypoints are positioned at the

scale-space extrema of the Difference-of-Gaussian (DoG) func-

tion. The used Gaussian scale-space is created by downsampling

with voxelgrid filters of different sizes and a blur filter by per-

forming a radius search for each point p and then computing the

new intensity as weighted average of the found neighbors. For

each two adjacent point clouds a new DoG point cloud is com-

puted. All points of the resulting DoG point cloud have the same

position as in the involved point clouds, but their intensity val-

ues represent the difference of the intensity values of the original

points. The DoG is a good approximation of the scale-normalized

Laplacian of the Gaussian function, which can be used to gener-

ate stable keypoints. A point is marked as keypoint candidate if it

has the highest or lowest DoG value among all its k nearest point

neighbors within its own, as well as in its lower and upper DoG

point cloud neighbors. Finally, all keypoints in areas with low

curvature values are rejected to get stable results. Figure 6 shows

the resulting keypoints of 3D-SIFT when applied to an example

point cloud.

4. 3D KEYPOINT DESCRIPTION

3D keypoint descriptors deliver a description of the local environ-

ment of a point within the point cloud. This description often only

depends on geometric characteristics. But there are also point de-

scriptors, which additionally use color information. Points in dif-

ferent point clouds with a similar feature descriptor are likely to

Figure 6: Point cloud with 3D-SIFT keypoints

represent the same surface point. By establishing those point cor-

respondences, a transformation is estimated that aligns the two

point clouds. A point descriptor must deliver an accurate and ro-

bust description of the local environment of the point to avoid

wrong matches which decrease the accuracy of the alignment.

A good feature descriptor should be robust against noise, fast

to compute, fast to compare, and invariant against rotation and

translation of the point cloud (Lowe, 2004).

In (Arbeiter et al., 2012) the object recognition capabilities of

different feature descriptors are evaluated. The work of (Salti

et al., 2011) shows that not all feature descriptor and keypoint

detector combinations deliver good results. In this paper Point

Feature Histograms (PFH) and Signature of Histograms of Ori-

entations (SHOT) with their variants are used. They are chosen

because they represent common feature descriptors and behave

differently in computation time and accuracy.

4.1 Point Feature Histograms

Figure 7: PFH descriptor computation for one point

The Point Feature Histograms (PFH) descriptor was developed in

2008 (Rusu et al., 2008). Besides the usage for point matching,

the PFH descriptor is used to classify points in a point cloud, such

as points on an edge, corner, plane, or similar primitives. Figure 7

shows an overview of the PFH computation steps for each point p
in the point cloud.

Figure 8: Darboux frame between a point pair [Rus09]

A Darboux frame (see Figure 8) is constructed between all point

pairs within the local neighborhood of a point p. The source

point ps of a particular Darboux frame is the point with the smaller
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angle between its normal and the connecting line between the

point pair ps and pt. If ns/t is the corresponding point normal,

the Darboux frame u, v, w is constructed as follows:

u = ns (6)

v = u ×
pt − ps

‖pt − ps‖
(7)

w = u × v (8)

Three angular values β, φ, and θ are computed based on the Dar-

boux frame:

β = v · nt (9)

φ = u · (pt − ps)/d (10)

θ = arctan(w · nt, u · nt) (11)

d = ||pt − ps|| (12)

where d is the distance between ps and pt.

The three angular and the one distance value describe the relation-

ship between the two points and the two normal vectors. These

four values are added to the histogram of the point p, which shows

the percentage of point pairs in the neighborhood of p, which

have a similar relationship. Since the PFH descriptor uses all

possible point pairs of the k neighbors of p, it has a complexity

of O(n · k2) for a point cloud with n points.

The FPFH variant is used to reduce the computation time at the

cost of accuracy (Rusu, 2009). It discards the distance d and

decorrelates the remaining histogram dimensions. Thus, FPFH

uses a histogram with only 3 · b bins instead of b4, where b is the

number of bins per dimension. The time complexity is reduced by

the computation of a preliminary descriptor value for each point p
by using only the point pairs between p and its neighbors. In a

second step it adds the weighted preliminary values of the neigh-

bors to the preliminary value of each point. The weight is defined

by the Euclidean distance from p to the neighboring point. This

leads to a reduced complexity of O(nk) for the FPFH descriptor.

The PCL community also developed the PFHRGB variant (PCL,

2013), which additionally uses the RGB values of the neighbor-

ing points to define the feature descriptor. The number of bins

of the histograms is doubled. The first half is filled based on

the point normals. The second half is computed similar to the

description above, but uses RGB values of the points instead of

their 3D information.

4.2 Signature of Histograms of Orientations

In 2010 an evaluation of existing feature descriptors led to the

conclusion, that one of the hardest problems of the evaluated de-

scriptors is the definition of a single, unambiguous and stable lo-

cal coordinate system at each point (Tombari et al., 2010). Based

on this evaluation the authors proposed a new local coordinate

system and the Signature of Histograms of Orientations (SHOT)

as a new feature descriptor (Tombari et al., 2010). An overview

of the computation steps for each point p in the point cloud is

visualized in Figure 9. The first three steps consist of the compu-

tation of a local coordinate system at p. The n neighbors pi of a

point p are used to compute a weighted covariance matrix C:

C =
1

n

n
∑

i=1

(r − ‖pi − p‖) · (pi − p) · (pi − p)T
(13)

where r is the radius of the neighborhood volume.

Figure 9: SHOT descriptor computation for one point

An eigenvalue decomposition of the covariance matrix results in

three orthogonal eigenvectors that define the local coordinate sys-

tem at p. The eigenvectors are sorted in decreasing order by their

corresponding eigenvalue as v1, v2, and v3, representing the X-,

Y -, and Z-axis. The direction of the X-axis is determined by the

orientation of the vectors from p to the neighboring points pi:

X =

{

v1 , if |S+
x | ≥ |S−

x |
−v1 , otherwise.

(14)

S+
x = {pi|(pi − p) · v1 ≥ 0} (15)

S−

x = {pi|(pi − p) · v1 < 0} (16)

The direction of the Z-axis is similarly defined. The direction for

the Y -axis is determined via the cross product between X and

Z. This local coordinate system is used to divide the spatial en-

vironment of p with an isotropic spherical grid. For each point pi

in a cell the angle ξi = pi · p is computed between the points

normal and the normal of p. The local distribution of angles is

subsequently described by one local histogram for each cell.

If the spherical grid contains k different cells with local histograms

and each histogram contains b bins, the resulting final histogram

contains k·b values. These values are normalized to sum to one in

order to handle different point densities in different point clouds.

Color-SHOT (Tombari et al., 2011) includes also color informa-

tion. Each cell in the spherical grid contains two local histograms.

One for the angle between the normals and one new histogram,

which consists of the sum of absolute differences of the RGB

values between the points.

5. PERSISTENT FEATURES

Persistent features are another approach to reduce the number of

points in a cloud. It is published together with the PFH descriptor

and is strongly connected to its computation (Rusu et al., 2008).

In a first step the PFH descriptors are computed at multiple in-

creasing radii ri for all points of the point cloud. A mean his-

togram µi is computed from all PFH point histograms at radius ri.

For each point histogram of radius ri the distance to the corre-

sponding mean histogram µi is computed. In (Rusu et al., 2008)

the authors propose to use the Kullback-Leibler distance as a dis-

tance metric. However, for this paper the Manhattan distance is
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used, since it led to better experimental results within the here

discussed application scenario. Every point whose distance value

in one radius is outside the interval of µi ± γ · σi is marked as a

persistent point candidate. The γ value is a user specified value

and σi is the standard deviation of the histogram distances for ra-

dius ri. The final persistent point set contains all points, which

are marked at two radii ri and ri+1 as persistent point candidates.

Figure 10 shows an example of the resulting point cloud after

a persistent feature computation. No additional filtering steps are

used in this example and all 111, 896 points of the original point

cloud are used. The FPFH descriptor was computed at three dif-

ferent radii of 3.25cm, 3.5cm, and 3.75cm and γ = 0.8.

Figure 10: Point cloud before (left) and after (right) the persistent

features computation

6. EXPERIMENTS

This section compares the quantitative as well as qualitative per-

formance of different keypoint detector and descriptor combi-

nations. Three different scenes are used to create ten 3D test

datasets, which are used in the following experiments. While the

Happy Buddha model was generated by a laser scan, the table and

station test sets were acquired by the Microsoft Kinect device. If

a test set name has the suffix n-ks, the individual n point clouds

are acquired by different kinect sensors, while the suffix n-pc in-

dicates that the same sensor at different positions was used.

Table scenes as in Figure 11(a) are common test cases for point

cloud registration methods. Each of the individual point clouds

used here contains approximately 307, 200 points.

The station scene (see Figure 11(c)) contains a model of a train

station. The major problem regarding the fusion algorithm is its

symmetric design. Two test sets were created from this scene.

Each point cloud contains approximately 307, 200 points.

The third scene is the Happy Buddha model shown in Figure 11(b)

of the Stanford 3D Scanning Repository (Stanford, 2013). These

point clouds were created with a laser scanner and a rotating ta-

ble. Compared to the point clouds of a Kinect sensor, the laser

scans contain little noise and are more accurate. But the resulting

point clouds contain no color information. Four point cloud test

sets were created from the Happy Buddha dataset. The test sets

Buddha-0-24, Buddha-0-48, and Buddha-0-72 contain two point

clouds. These three test sets contain the point cloud scan at the

0◦ position of the rotating table and the point cloud at the 24◦,

48◦, and 72◦ position, respectively. The test set Buddha-15pc
contains 15 point clouds from a 360◦ rotation. Each point cloud

of the Happy Buddha laser scan contains about 240, 000 points.

6.1 Quantitative Comparison of Keypoint Detectors

Both keypoint detectors presented in Section 3. use different ap-

proaches to define interesting points in a point cloud. The NARF

detector converts the captured point cloud into a 2D range image

and tries to find stable points, which have borders or major sur-

face changes within the environment. This results in keypoints,

(a) Table-10pc

(b) Buddha-15pc(c) Station-10pc

Figure 11: Example datasets

which depend on the silhouette of an object. In contrast, 3D-

SIFT uses scale space extrema to find points, which are likely to

be recognized even after viewpoint changes. The user specified

parameters of both methods are empirically set to values, which

led to reasonable results in all test cases. The 3D-SIFT detector

has more parameters and is slightly more complex to configure.

The resulting set of keypoints differ significantly. Examples of

NARF and 3D-SIFT keypoints are shown in Figure 4 and Fig-

ure 6, respectively. In both cases the same input point cloud

with 111, 896 points is used. Table 1 summarizes, that the 3D-

SIFT detector marks more keypoints than the NARF detector.

Both keypoint detectors mostly ignore the center of the table

plane and mark many points at the table border. In addition,

3D-SIFT strongly responds to object borders and major surface

changes, while NARF mostly reacts to keypoints near object bor-

ders. The 3D-SIFT detector has a considerably higher runtime

than the NARF detector. The median runtime of NARF for this

point cloud is about 0.05 sec, while 3D-SIFT needs about 2 sec.

NARF 3D-SIFT

number of keypoints 146 2838
median runtime 0.046sec 1.891sec

Table 1: Quantitative comparison of NARF and 3D-SIFT results

6.2 Quantitative Comparison of Keypoint Descriptors

The PFH and SHOT descriptor mainly differ in their way to de-

fine local coordinate systems. Both feature descriptors have in

common, that they use the differences of point normals in the

neighborhood to create a feature histogram as descriptor. The

free parameters are set to the proposed values of the original pub-

lications of the algorithms.

The radius of the neighboring point search is especially crucial.

If the point cloud contains a lot of noise, then the radius should be

increased to obtain stable results. But the neighbor search radius

has a significant impact on the runtime of the feature descriptor.

The graph in Figure 12 compares the median runtime values of

20 iterations on a system with a Xeon E3 − 1230V 2 processor.

The input point cloud is a downsampled version of the table scene

point cloud in Figure 4 containing 11, 276 points. As the diagram

shows, the runtime of the PFH and PFHRGB algorithm increases

quadratically with the search radius while it only grows linearly

for FPFH, SHOT, and Color-SHOT. Another important character-

istic of the presented feature descriptors is the number of bins of

the histogram for each point. If the histogram of a point contains
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Figure 12: Runtime of point descriptors

many bins, it is more expensive to find the most similar point in

another point cloud. For a fast matching procedure, less bins are

preferable. The FPFH descriptor is best suited for time-crucial

applications, since it is not only fast to compute, but also consists

only of 33 histogram bins per point.

6.3 Comparison of the Detector-Descriptor-Combinations

All possible keypoint detector and descriptor combinations are

used to fuse the point clouds of all described test sets by the

above explained fusion pipeline. All tests are performed with

and without the persistent feature computation as well as with 10
and 100 iterations of the ICP algorithm. The persistent features

are computed using the FPFH descriptor at three different radii

of 3.25cm, 3.5cm, and 3.75cm and an γ = 0.8. The varia-

tion of the number of ICP iterations allows to observe the impact

of ICP and to deduce the quality of the feature-based alignment.

All remaining parameters of the point cloud fusion algorithm are

set to reasonable values for each test scene. Due to the reason

that the Happy Buddha scene contains only a single object with

little noise, the distance, plane, and outlier filter are skipped for

the corresponding test sets. As the PFHRGB and Color-SHOT

descriptor use color information, which are not available for the

Happy Buddha scene, the total number of tests in the correspond-

ing cases is six. In all other cases, all ten tests are performed.

For the first part of the following discussion, a rather subjec-

tive performance measure is used: A result of a test is classified

as correct, if it contains no visible alignment error. The follow-

ing tables contain the aggregated results of the performed tests.

Tables 2-3 show the percentage of correct results with 10 and

100 ICP iterations, respectively, as well as the overall time of

the fusion process. The top part of each table contains the re-

sults without and the lower part with the computation of persis-

tent features. Each row contains the results of a different feature

descriptor and each column represents the results with the speci-

fied feature detector. Column “None” represents the case, when

no keypoint detector is applied.

The most important conclusion of these results is, that the pro-

posed fusion pipeline using the FPFH descriptor with no feature

detection and without the computation of persistent features out-

performs all other tested combinations. This combination is able

to produce correct results for all test sets with 100 iterations of

ICP and has a comparatively low computation time. At almost

all cases, the combinations using no feature detector have a bet-

ter or at least equal success rate than combinations using NARF

or 3D-SIFT. There are different reasons possible why feature de-

tectors lead to inferior results. One important aspect is that the

Without persistent features

None NARF 3D-Sift

FPFH 90.0% 00.0% 30.0%
0.82s 0.50s 0.74s

PFH 70.0% 10.0% 40.0%
2.08s 0.50s 0.87s

PFHRGB 66.7% 00.0% 33.3%
5.27s 0.55s 1.57s

SHOT 20.0% 00.0% 10.0%
22.94s 0.53s 1.82s

Color-SHOT 00.0% 00.0% 16.7%
105.69s 0.70s 8.87s

With persistent features

None NARF 3D-Sift

FPFH 40.0% 10.0% 10.0%
1.17s 1.00s 1.05s

PFH 60.0% 10.0% 40.0%
1.70s 0.99s 1.17s

PFHRGB 16.7% 33.3% 16.7%
2.99s 0.69s 1.21s

SHOT 20.0% 20.0% 00.0%
11.26s 1.06s 1.62s

Color-SHOT 16.7% 00.0% 16.7%
50.72s 0.83s 3.91s

Table 2: Runtime and subjective results (10 ICP iterations)

Without persistent features

None NARF 3D-Sift

FPFH 100.0% 20.0% 40.0%
1.56s 1.69s 1.75s

PFH 90.0% 30.0% 50.0%
2.87s 1.79s 1.84s

PFHRGB 66.7% 33.3% 33.3%
6.53s 2.31s 2.92s

SHOT 50.0% 10.0% 20.0%
24.13s 1.82s 3.15s

Color-SHOT 50.0% 16.7% 33.3%
130.33s 2.21s 10.44s

With persistent features

None NARF 3D-Sift

FPFH 50.0% 30.0% 20.0%
1.71s 1.60s 1.85s

PFH 60.0% 30.0% 50.0%
2.18s 1.66s 1.68s

PFHRGB 33.3% 33.3% 16.7%
3.85s 1.43s 2.07s

SHOT 20.0% 20.0% 20.0%
11.79s 1.78s 2.25s

Color-SHOT 66.7% 00.0% 33.3%
56.64s 1.97s 5.04s

Table 3: Runtime and subjective results (100 ICP iterations)

global point cloud graph used in the fusion process produces bet-

ter point cloud pairs for the pairwise registration, if more points

are used. Especially the 3D-SIFT feature detector performs well

at test sets with only two point clouds, but failed at nearly all test

sets with more than two point clouds. The NARF detector shows

a similar effect.

In general, the NARF detector does not seem to be a good key-

point detector for point clouds of a Kinect sensor or of point

clouds that contain only a single object. NARF uses the borders

of objects to detect feature points, but a Kinect sensor generates
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blurred object boundaries due to its working principle and a ro-

tation of a single object can result into major silhouette changes.

This leads to very different keypoint positions between the point

clouds and to a bad initial alignment of the point clouds. Increas-

ing the number of ICP iterations sometimes leads to the correct

result. Using the optional persistent feature step leads in nearly all

combinations with the NARF detector to better or at least equal

success rates. The reason is that the persistent feature computa-

tion generates more homogenous object borders, which lead to

less different NARF keypoint positions between the point clouds.

Using a descriptor of the PFH family delivers for most combi-

nations a higher success rate than combinations using SHOT or

Color-SHOT. Based on the results of the Happy Buddha scene

it can be concluded that at least the FPFH descriptor and PFH

descriptor tolerate larger viewpoint changes than the SHOT de-

scriptor. In contrast to the PFH and FPFH descriptor, the SHOT

descriptor is not able to produce a correct result at the Buddha-

0-72 test set for any combination. From the used test sets, the

Buddha-15pc is the most challenging. The algorithm needs to

create 14 point cloud pairs from the 360◦ scan in order to fuse

all point clouds. If one point cloud pair does not have a suf-

ficiently large overlap, the fusion result will be incorrect. The

FPFH and PFH descriptor in combination with no persistent fea-

tures computation and without a keypoint detection are able to

find all 14 directly adjacent point cloud pairs and produce a cor-

rect fusion result. The SHOT descriptor leads to one not directly

adjacent pair of point clouds, but still produced the correct result

with 100 ICP iterations. All other combinations do not lead to

adequate point cloud pairs and produced wrong fusion results.

The results of the Table-2ks and Table-4ks test sets reveal one

problem of the PFHRGB and the Color-SHOT feature descrip-

tors. These sets contain significant color differences between the

point clouds, which were acquired by different Kinect devices.

Except for one combination, the PFHRGB and the Color-SHOT

feature descriptors produced incorrect results. The feature de-

scriptor variants, which only use the geometry but no color in-

formation, delivered correct results for more combinations. As a

consequence, the RGB cameras of different Kinect devices should

be calibrated, if the feature descriptor uses color information.

Tables 2-3 also contain the mean runtimes in seconds of all tests

with 10 and 100 ICP iterations, respectively. As test platform a

Windows 8 64bit system with a Xeon E3-1230V 2 processor was

used. The values in these tables are intended to show the relative

runtime changes between the different test parameters. Not ap-

parent in these tables is the increase in computation time due to a

larger number of point clouds or more points per point cloud.

The persistent feature computation is able to notably decrease

the computation speed, especially if there are many points and

a feature descriptor with many dimensions is used. This is the

case at pipeline combinations, which are using no keypoint detec-

tor or the 3D-SIFT feature detector together with the PFHRGB,

SHOT, or Color-SHOT descriptor. Under these circumstances

the point descriptor computation and the point descriptor match-

ing between the point clouds need more computation time than

the persistent feature computation. But except for several of the

NARF detector combinations and for the combination of the Color-

SHOT descriptor without a feature detector, the computation of

persistent features mostly decreases the success rate. The choice

of an additional persistent feature computation step is a trade-off

between a faster computation speed and a higher success rate. A

similar trade-off is made by the selection of the number of ICP

iterations. There is no test case, where 100 ICP iterations led to

a wrong result, if the result was already correct at 10 ICP iter-

ations. But there are many cases with an increased success rate

with more ICP iterations. Especially the combinations using the

NARF keypoint detector and without the persistent feature com-

putation benefit from more ICP iterations. The average runtimes

in nearly all cases show, that more dimensions of the used point

descriptor lead to a higher computation time. One reason is, that

a high dimensional k-d tree probably degenerates and loses its

speed advantage. For example, Color-SHOT uses 1280 dimen-

sions to describe a point and most of the computation time is

spent at the correspondence point computation. Therefore, a key-

point detector or the persistent feature computation can reduce

the computation time for point descriptors with many dimensions.

Scene max. MSE max. MCE

Table-2ks < 0.01% 0.08%
Table-2pc 0.06% 1.75%
Table-4ks < 0.01% 0.14%

Table-10pc 0.03% 3.54%

Station-2pc < 0.01% 0.01%
Station-5pc < 0.01% 0.05%

Buddha-0-24 < 0.01% < 0.01%
Buddha-0-48 < 0.01% 0.02%
Buddha-0-72 < 0.01% 0.02%
Buddha-15pc < 0.01% 0.01%

Table 4: Maximum error of correct results

In order to obtain a more objective impression about the accu-

racy of the obtained results, all cases defined above as ”correct”

are compared to reference results. This comparison allows qual-

itative statements about the fusion accuracy. Table 4 shows the

largest mean squared error (MSE) and the largest maximum cor-

respondence error (MCE) of the correct results of each test set.

They represent the mean and the maximum nearest point neigh-

bor distance between all points of the fusion result and the refer-

ence result and are expressed as percentage of the maximum point

distance of the reference result. This enables an easier compar-

ison of the individual results. At the Buddha scene, the public

available reference transformations from the Stanford 3D Scan-

ning Repository are used to create the reference result. The refer-

ence results of the Station and Table scene are created by manual

selection of corresponding points and additional ICP and global

registration steps using MeshLab. Compared to the error values

of the other test sets, the correct Table scene test results contain

a large error with a MSE up to 0.06% and a MCE up to 3.54%.

This is caused by the large amount of noise within this test scene,

which allows a wider difference for correct results. The high-

est error of the remaining test results has a MSE value less than

0.01% and a MCE of 0.05%.

7. CONCLUSION

This paper discussed the benefits and limits of different keypoint

detector and descriptor combinations for the task of point cloud

fusion. An automatic multi point cloud fusion processing chain

computes a transformation for each point cloud, which is based

on a coarse feature-based alignment and a subsequent fine align-

ment by ICP.

Prior to the fusion step, all point clouds are pre-processed by dif-

ferent filters. The NARF or 3D-SIFT keypoint detectors option-

ally select a subset of points, which are the best representatives

of an underlying geometric feature. The optional computation

of persistent features reduces the set of points further by keeping

only points that lie on exceptional geometry. Point descriptors are
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computed for the selected subset of the point cloud. This paper

uses point descriptors from the PFH and SHOT families.

Evaluation results show that the proposed pipeline is able to pro-

duce correct fusion results at complex scenes and 360◦ object

scans. The best performing pipeline configuration with respect to

the tradeoff between accuracy and speed uses the FPFH descrip-

tor and no additional persistent feature or keypoint computation.

Both pipeline steps mainly lead to worse fusion results, but re-

duce the computation time if a complex feature descriptor is used.

A reason for the decreased accuracy is that the heuristic of the

global point cloud graph generates better point cloud pairs, if

more points are available. If a point cloud contains less 3D in-

formation (ie. points), it is harder to match it with another point

cloud based on similarities between the respective 3D structures.

The NARF keypoint detector converts the point cloud into a range

image and uses object borders to find keypoints. NARF key-

points are fast to compute, but the resulting keypoint subset is too

small in order to use them in the global point cloud graph. Ad-

ditionally, the detected NARF keypoints are unstable because the

Kinect sensor produces blurred object borders due to its working

principle. As result, the NARF keypoint detector is only usable

to align one point cloud pair with enough ICP iterations. Using

more than two point clouds as input for the point cloud fusion

process with the NARF keypoint detector leads only in rare cases

to a correct result. In comparison to the NARF keypoint detector,

the 3D-SIFT keypoint detector needs more computation time, but

also leads to better fusion results. It results in a larger set of key-

point than NARF, which helps the heuristic of the global point

cloud graph to find the best point cloud pairs. Nevertheless, the

point cloud fusion process is more often successful, if the key-

point detection is skipped during the point cloud preparation.

Point descriptors of the PFH family are faster to compute and

more robust against viewpoint differences than descriptors of the

SHOT family. The PFH family also delivers more reliable infor-

mation about the most overlapping point cloud pairs during the

global point cloud graph computation. As a consequence, the

SHOT descriptors lead to inferior fusion results. The PFHRGB

and Color-SHOT point descriptor are variants, which use the ge-

ometry as well as the point colors to describe a point. If the input

point clouds are captured by different Kinect sensors and a color-

based descriptor is used, the RGB cameras should be calibrated

beforehand. Otherwise, too different point cloud colors lead to

wrong fusion results.
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