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Abstract Escherichia coli is an important component of
the biosphere and is an ideal model for studies of processes
involved in bacterial genome evolution. Sixty-one publically
available E. coli and Shigella spp. sequenced genomes are
compared, using basic methods to produce phylogenetic and
proteomics trees, and to identify the pan- and core genomes
of this set of sequenced strains. A hierarchical clustering of
variable genes allowed clear separation of the strains into
clusters, including known pathotypes; clinically relevant
serotypes can also be resolved in this way. In contrast,
when in silico MLST was performed, many of the various
strains appear jumbled and less well resolved. The predicted
pan-genome comprises 15,741 gene families, and only 993
(6%) of the families are represented in every genome,
comprising the core genome. The variable or ‘accessory’
genes thus make up more than 90% of the pan-genome
and about 80% of a typical genome; some of these
variable genes tend to be co-localized on genomic
islands. The diversity within the species E. coli, and the
overlap in gene content between this and related species,
suggests a continuum rather than sharp species borders in
this group of Enterobacteriaceae.

Introduction

The availability of complete genome sequences from
multiple isolates of a given species has opened up a whole
new range of research strategies. By far the best-studied
bacterial species is Escherichia coli, and the highest
number of individual genome sequences is available for
this species, which has been the working horse of
bacteriology for as long as the specialization exists.
Numerous basic molecular processes have been first
characterized and extensively studied in E. coli, leading to
insights that could subsequently be applied to other bacteria
[47]. Despite the vast amount of knowledge already
available for E. coli, based on decades of experimental
research, genetic manipulation and, more recently, obser-
vations based on single or multiple genome sequences,
comparison of a large number of E. coli genome sequences
can still provide novel insights, such as the presence of
genomic islands, present in some pathogenicity groups, but
missing in others. At the time of writing, there are more
than 100 E. coli genome sequence projects reported, many
of which have been deposited to GenBank. Here, we
compare 61 publically available genome sequences of E.
coli and Shigella spp. isolates.

Escherichia spp. and Shigella spp. are Gram-negative,
facultative anaerobic, intestinal bacteria belonging to the
Enterobacteriaceae, which are taxonomically placed within the
gamma subdivision of the Proteobacteria phylum. Although
Shigella spp. isolates have been rewarded their own genus,
which is divided into several species (representing different
sero-groups), its separation from Escherichia spp. is mainly
historical. For example, in Bergey’s Manual of Systematic
Bacteriology, the section on Shigella phylogeny begins with
the following sentence: “Scientific evidence accumulated to
date strongly supports that view that Shigella species are
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biotypes/pathotypes or clones of E. coli” [39]. More than
50 years ago it was observed that Shigella spp. and E. coli
have the same fertility system [25]; in 1972, Brenner et al. [3]
found that based on DNA/DNA hybridization, that Shigella
spp. and E. coli are the same species. Experiments with
multilocus enzyme electrophoresis concluded that nearly all
of the Shigella species are clones from within E. coli species
[35]. Further, analysis of 16S rRNA sequence alignment
places Shigella spp. within E. coli [6]. Thus, all current
evidence indicates that Shigella spp. should be classified as E.
coli [23, 36]. Both genera contain highly diverse species,
although Shigella spp. are as related to E. coli as they are to
each other. E. coli is a ubiquitous component of the intestinal
gut flora of animals including humans, and can survive and
multiply in abiotic environments as well. The species
comprises both benign and pathogenic variants, whilst
Shigella spp. are all enteropathogens in mammals.

E. coli isolates have in the past been divided into
subgroups in various ways. Based on established patho-
genicity towards the human host, pathogenic versus
commensal E. coli have been recognized, although it is
acknowledged that 'pathogenic' E. coli strains may
colonize other animal species asymptomatically. Patho-
genic E. coli have further been subdivided according to
their typical site of infection and clinical manifestations in
humans, for instance enteropathogenic, uropathogenic, or
extra-intestinal pathogenic E. coli, or based on their
virulence mechanisms, such as enterohemorragic (EHEC),
enterotoxigenic, enteroinvasive, and enteroaggregative E.
coli [1, 13]. Other divisions that are frequently used are
based on serology (e.g., serotypes O127:H7 or K12) or,
mainly for population genetic purposes, on phylogenetic
properties of particular housekeeping genes, as established
by MULTI-ENZYME electrophoresis and later by multi-
locus sequence typing (MLST) [25]. Finally, some isolates
are described simply for their source of isolation, such as
environmental isolates or avian pathogenic E. coli.

All these subdivisions have been applied more or less
frequently to group isolates that share particular features.
We were interested to see if any of these groupings would
hold when isolates were compared based on their complete
genome sequences, considering some or all of their genes.
Isolates from some groups (based on whatever grouping)
have been more frequently sequenced than from others, and
complete information on all characteristics of interest
(pathogenicity, source of isolation, serotype) is not avail-
able for all sequenced isolates. Despite these recognized
shortcomings in sampling bias and recorded information,
comparison of these 61 genome sequences revealed that
neither the 16S gene, nor gene fragments usually used for
MLST, provides biologically meaningful information on the
relatedness of the sequenced isolates. The best way to
analyze this is by taking into account all the genomic

content, rather than looking at one or a few individual
genes. The E. coli core genome has been previously
reported to be less than half the genes [13], with more
than half the E. coli genes in any given genome being
found in some strains, but missing in others. Many of these
variable genes can be clustered to specific regions, located
on genomic islands in an E. coli chromosome.

Materials and Methods

Bacterial Genomes and Gene Annotations

Sixty-one bacterial genomes of E. coli and Shigella spp.
were used in this study (Table 1). Of these, 39 fully
sequenced genomes and 19 genomes for which the
sequence was still in progress at the time of extraction
were obtained from GenBank (1). Sequence from E. coli
O103 Oslo was obtained from Norwegian Veterinary
Institute and sequences from strains LANL ECA and
LANL ECF were obtained from Los Alamos National
Lab. Genome sequences of Escherichia albertii, Escherichia
fergusonii, and Salmonella enterica Typhimurium LT2 were
included for comparison (Table 1). The ‘quality score’ for
each genome is given in Table 1, based on the suggested
scale by Chain et al. [4]. A completely sequenced genome
that has been deposited to GenBank is given a score of ‘1’,
with the only exception being E. coli O157:H7 isolate
EDL933, which currently has more than 4,000 “N’s” in the
DNA sequence of the GenBank file, representing unfilled
gaps along the chromsomal sequence—hence, this genome is
given a lower score of ‘2’. The higher scores represent lower
quality (and often more contigs, or pieces of the DNA,
although sequence quality is not measured only by this, as
described in [4]).

16S Ribosomal RNA Analysis

The sequences encoding 16S ribosomal RNA were
extracted from the analyzed genomes using RNAmmer
[22]; sequences with an RNAmmer score above 1,400 were
considered reliable and were kept for analysis. From every
genome, the gene with highest similarity to rrsH of E. coli
K12 MG1655 was selected and these sequences were
aligned using ClustalX [24]. A phylogenic tree was
generated by ClustalX using the Bootstrap neighborhood-
joining method, showing the bootstrap values at branch
points, visualized by NJPlot [34].

In Silico MLST

The alleles for seven housekeeping genes used for MLST of
various species (www.mlst.net) were analyzed. These were
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fragments of adk, fumC, icd, gyrB, mdh, purA, and recA.
The obtained DNA sequences were extracted from the
genome sequence, concatenated and phylogenically analyzed
as described above. Alignments were not manually adjusted to
avoid subjective interpretation of the outcome.

Predicted Proteome Analysis

The predicted proteomes comprising all protein-coding
genes were extracted from the GenBank files for the
published genomes. For unpublished genomes, they were
predicted using EasyGene [30]. All predicted proteomes
were compared by BLASTP reciprocal pairwise compari-
son. Two genes were attributed to a single gene family and
considered 'conserved' when they shared at least 50%
amino acid identity over at least 50% of the length of the
longest gene.

A hierarchical clustering was performed for the complete
pan-genome as described by Snipen et al. [38]. Briefly, a
pan-genome matrix was constructed consisting of 1 s and
0 s where each row corresponds to a gene family, as
described above, and each column to a genome. Cell (i,j) in
the matrix is 1 if gene family i is present in genome j, or 0
if it is absent. Manhattan distances were calculated and
used for hierarchical clustering to generate the tree. The
plotted distance between two genomes shows the proportion
of gene families where their present/absent status differs.
Thus, pan-genome hierarchical clustering analyses genes that
are not conserved, but vary in their presence or absence
between genomes. Shorter distances represent genomes with
more gene families in common. Genes only occurring in a
single genome (singletons) were not included in the analysis.
Bootstrap values (per mil) were computed for each inner node
by re-sampling the rows of the matrix.

A pan- and core genome plot was constructed according
to [12]. The order of genomes was chosen based on the
pan-genome tree, starting with the largest E. coli O157
genome. For the pan-genome curve, all cumulative BLAST
hits found in the genomes were plotted as a running total,
which increases as more genomes are added. The number
of gene families with at least one representative in every
genome was plotted for the core genome and this slowly
decreases with the addition of more genomes, as these
genomes may lack genes from gene families that had been
conserved in the previously plotted genomes.

A BLAST atlas was constructed as described by Hallin
et al. [14].

Results and Discussion

A number of characteristics of each of the 61 genomes are
summarized in Table 1, such as their size, their number of

recognized protein genes, and their gene density. Their GC
content varies around 50% for all genomes (not shown), but
their size and number of genes varies extensively. The
smallest E. coli genome included is that of strain BL21
(DE3) sequenced by the Korean consortium, which is only
4.56 Mbp, and the smallest Shigella genome is that of
Shigella dysenteriae Sd197, with 4.56 Mbp. The longest
genome of the completed genomes so far belongs to E. coli
O157:H7 strain EC4115, with 5.70 Mbp. Longer genomes
are listed in Table 1, but since those sequences are still in
multiple contigs, it is possible that their stated length is
overestimated. These size differences mean that around one
million nucleotides (approximately 20% of a genome) can
be absent in one E. coli or Shigella isolate and present in
another. These 'extra' sequences are not void, as indicated
by the variation in number of genes: the longest E coli
genome has 1,158 more predicted genes than the shortest E.
coli genome (5,315 genes for strain EC4115 and 4157
genes for BL21). Further, the observed gene density is
relatively constant, at 0.911±0.04 genes per 1,000 base
pairs. It should be noted that published proteomes have
been defined using different gene prediction programs and
definitions, so that the observed slight variation in gene
density might be explained by non-standardized gene
identification.

Phylogeny of 16S Ribosomal RNA and MLST Genes

A phylogenetic tree based on the 16S ribosomal RNA
sequences extracted from a representative set of 20 Enter-
obacteriacea genomes is shown in panel a of Fig. 1, which
is in agreement with the known phylogeny of the family.
The tree for the full set of the 61 E. coli and Shigella
strains, including two additional species of Escherichia and
one from S. enterica is shown in Fig. 1b. From this figure,
it is obvious that phylogeny of the 16S rRNA gene does not
resolve well within the genus level, as is known, because
the rRNA operons are so similar. Although some of the tree
nodes are predicted with uncertainty, clearly the genera
Shigella and Escherichia are not separated, nor are E. coli
genes separated from those of E. fergusonii or E. albertii.
This finding was expected, considering the close related-
ness between Escherichia spp. and Shigella spp. In general,
16S sequences are not suitable to analyze inter-strain
relationships within a species or between closely related
species, as illustrated with this set of Enterobacteriaceae
genes. This questions the reliability to use 16S as an
indicator for the species to which unknown sequenced
DNA belongs [45].

Next, it was investigated if conserved housekeeping
genes, frequently assessed for MLST, provide a better
representation of the relatedness of the investigated
genomes. Various MLST schemes are in use for E. coli
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[9, 28] or Shigella spp. [35] but these are not standardized
and the genes assessed in these schemes are not conserved
in all genomes. We used the combination of seven
housekeeping genes that has been applied to a number of
bacterial species [26] (www.mlst.net). Since S. enterica
lacks fumC (an observation that somewhat weakens the

general applicability of this MLST gene set), that genome
was not included in the analysis. The resulting tree, shown
in Fig. 2, still mixes E. coli with Shigella species, and does
not separate all pathogenic strains from commensal strains.
Some of the phylogroups previously defined by multilocus
enzyme electrophoresis are clearly separated, such as the E

Buchnera aphidicola str 5A (Acyrthosiphon pisum)
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Enterobacteriaceae genera 16S rRNA treeaFigure 1 Phylogenetic tree
based on extracted 16S rRNA
sequences. a Comparison of 20
different Enterobacteriaceae,
based on extracted 16S rRNA
sequences from the GenBank
sequence files. E. coli and
Shigella are shown in green. b
Tree of 61 sequenced E. coli
(black) and related species
(colored), based on the alignment
of the 16S rRNA gene sequence.
Apart from Shigella spp., the
genes from E. albertii and E.
fergusonii are also included
(arrows). The 16S rRNA gene of
S. enterica Typhimurium LT2
was used as the root. Bootstrap
values, indicated in red, show
that most nodes are predicted
with uncertainty; nevertheless,
the genera Escherichia spp.
and Shigella spp. are not
separated in this tree, and the
three Escherichia species are also
mixed
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cluster containing all O157 strains, the A/B cluster of
commensal K12 and B strains, and the B2 cluster
containing some of the uropathogenic strains, in accordance
to comparisons carried out by others [40]. Other authors
concluded that the O157 serotype of EHEC probably
evolved in successive evolutionary events [9]; however,
that conclusion is not supported by the MLST tree. And
although the B phylogroup is known for its commensal

isolates, one of which being used by Delbrück and Luria for
their famous phage work, this branch also contains the
enteroaggregative strain 101-1 (Fig. 2). Moreover, the two
S. dysenteriae strains are widely separated from each other.
Pupo et al. [36], who used a different set of MLST genes,
also found that isolates of the three species Shigella
flexneri, Shigella boydii, and S. dysenteriae, could not
always be grouped together nor separated from E. coli.
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Various enteroinvasive E. coli serotypes have been sug-
gested as ancestral to the different Shigella serogroups [23],
which could explain the lack of differentiation power of
MLST in this case. Apparently, neither MLST gene sets are
suitable to group these Enterobacteriaceae organisms in a

meaningful way. The performance of MLST could in theory
be improved by selecting different genes, for instance using
a set of genes specifically chosen to produce the desired
grouping. However, the strength of MLST analysis should
be that a conserved set of genes is able to identify
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Figure 2 Phylogenetic tree of
concatenated MLST gene alleles
(adk, fumC, icd, gyrB, mdh,
purA, recA), extracted from the
genome sequences. Color use is
the same as in Fig. 1
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phylogenetic relationships in any collection of isolates from
one species. If one has to select a 'standard' gene set
specifically for the species under investigation, it weakens
the general application of MLST considerably.

Pan-Genome Comparisons

MLST analyzes allelic differences in genes whose
presence has to be conserved in all genomes. However,
we hypothesized that genes that are variably present could
provide useful information as to the true relatedness of the
analyzed genomes. Since the variable fraction contain genes
that are present in some, absent in other genomes, a
phylogenetic analysis cannot be performed to capture all
information. Figure 3 displays a pan-genome clustering tree,
based on the gene families that are variably present in the
analyzed genomes (gene families comprising singletons were
excluded). The hierarchical clustering obtained by this
analysis correctly separates the Shigella spp. and S.
Typhimurium from Escherichia spp. and, within the latter

genus, separates E. coli from the other Escherichia spp
(Fig. 3). Moreover, all E. coli O157:H7 genomes now cluster
together, as do the K12 derivatives (W3110, MG1655, DH1,
BW2952, DH10B, and ATCC8739). The strains belonging
to phylogenic group B are also positioned in one cluster,
to which the non-pathogenic commensal strain HS also
seems to belong. All these are avirulent isolates, and it is
quite impressive that all these are positioned close
together in the tree. We conclude that this analysis of
variable genes identifies inter-strain relationships that can
be correlated to the lifestyle of the organisms.

The contribution of every genome to the complete
pan-genome of E. coli and related organisms is demon-
strated in Fig. 4, where the pan-genome and core genome,
as defined by other authors [40] of the analyzed sequences
is plotted. The number of novel gene families for every
added genome is also shown. As can be seen, all genomes
contribute to the increase of the pan-genome. This
increase is less strong when similar genomes are added
(for instance all four K12 genomes, or the B strains). The
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(colored), based on the alignment of their variable gene content. The
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block) is visible
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addition of Shigella spp. genomes does not alter the shape
of the pan-genome curve, but addition of the other
Escherichia genomes causes a sharp increase. The
contribution of E. fergusonii to the pan-genome has been
noted before [42].

The core genome reduces in size as more genomes are
added, with an expected significant drop when the
shorter genomes are assessed (starting with E. coli K12
DH10B, at position 18 in Fig. 4). The core genome
reaches 1,472 gene families conserved in 53 E. coli
genomes, which is further reduced to 993 gene families
if Shigella spp. are considered as well. The bars show how
many novel gene families each genome contributes to the
growing pan-genome. It should be noted that the order in
which genomes are analyzed influences the number of
these reported novel gene families other than for single-
tons. When novel genes are considered, instead of novel
gene families, the findings can be even more dramatic. For
instance, six novel E. coli genome sequences identified
approximately 10,000 novel genes [42]. Previous work has

estimated a core genome of 1,976 genes for 20 E. coli
genomes and a pan-genome of 17,831 genes. Our analysis
of 53 E. coli genomes identified 1,472 conserved gene
families and 13,296 gene families comprising the pan-
genome. We prefer to report these findings as gene families,
instead of individual genes, using clearly defined criteria for
inclusion of genes into a gene family (described in the
“Materials and Methods” section).

Where are all these variable genes located in a
genome? Gene order is not strongly conserved between
the analyzed genomes, so that gene location depends
which genome is considered. Nevertheless, by visualizing
where a gene, whose presence can vary, is located on a
single reference genome provides further information,
and this can be visualized in a BLAST atlas [14]. In the
BLAST atlas of Fig. 5, it becomes apparent that the variable
gene content is not evenly distributed over the reference
genome, but appears to be distributed over various islands.
The reference chromosome of E. coli O157:H7 EC4115
was chosen, as it is the largest chromosome for which a

  1 :  Escherichia coli 0157:H7 str. EC4196
  2 :  Escherichia coli 0157:H7 str. EC4113
  3 :  Escherichia coli 0157:H7 str. EC508
  4 :  Escherichia coli 0157:H7 str. EC4501
  5 :  Escherichia coli 0157:H7 str. EC4076
  6 :  Escherichia coli 0157:H7 str. EC4115
  7 :  Escherichia coli 0157:H7 str. EC4042
  8 :  Escherichia coli 0157:H7 str. EC4486
  9 :  Escherichia coli 0157:H7 str. EC869
10 :  Escherichia coli 0157:H7 str. EC4206
11 :  Escherichia coli 0157:H7 str. EC4401
12 :  Escherichia coli 0157:H7 str. EDL933
13 :  Escherichia coli 0157:H7 str. TW14588
14 :  Escherichia coli 0157:H7 str. Sakai
15 :  Escherichia coli 0157:H7 EC4045
16 :  Escherichia coli 0157:H7 str. LANL ECF
17 :  Escherichia coli 0157:H7 str. LANL ECA
18 :  Escherichia coli K12 str. DH10B
19 :  Escherichia coli K12 str. MG1655
20 :  Escherichia coli K12 str. W3110
21 :  Escherichia coli K12 str. DH1
22 :  Escherichia coli BW2952
23 :  Escherichia coli ATCC8739
24 :  Escherichia coli B REL606
25 :  Escherichia coli BL21 (DE3 Korea)
26 :  Escherichia coli BL21 (DE3 AU)
27 :  Escherichia coli BL21 (DE3 DOE)
28 :  Escherichia coli HS
29 :  Escherichia coli SE11
30 :  Escherichia coli IAI1
31 :  Escherichia coli 55989
32 :  Escherichia coli E24377A
33 :  Escherichia coli O26:H11 str. 11368
34 :  Escherichia coli 0127:H6 str. E2348/69
35 :  Escherichia coli O103:H2 str. 12009
36 :  Escherichia coli O111:H- str. 11128
37 :  Escherichia coli 0103 Oslo
38 :  Escherichia coli SMS  3  5
39 :  Escherichia coli UMN026
40 :  Escherichia coli 53638
41 :  Escherichia coli IAI39
42 :  Escherichia coli UTI89
43 :  Escherichia coli S88
44 :  Escherichia coli CFT073
45 :  Escherichia coli SE15
46 :  Escherichia coli 536
47 :  Escherichia coli ED1a
48 :  Escherichia coli F11
49 :  Escherichia coli APECO1
50 :  Escherichia coli E110019
51 :  Escherichia coli E22
52 :  Escherichia coli B7A
53 :  Escherichia coli 101 1
54 :  Shigella flexneri 2a 2457T
55 :  Shigella flexneri 2a 301
56 :  Shigella flexneri 5 8401
57 :  Shigella boydii CDC 3083  94
58 :  Shigella boydii Sb227
59 :  Shigella sonnei Ss046
60 :  Escherichia fergusonii ATCC 35469
61 :  Escherichia albertii TW07627
62 :  Salmonella enterica Typhimurium LT2
63 :  Shigella dysenteriae Sd197
64 :  Shigella dysenteriae 1012

New gene families

Core genome

Pan genome

5000

10000

15000

1 3 5 7 9 11 13 15 17 19 21 23 61 6325 27 33 3729 31 35 39 41 43 45 47 53 5749 51 55 59

Number
of gene
families

Figure 4 Pan- and core genome plot of the analyzed genomes. The
blue pan-genome curve connects the cumulative number of gene
families present in the analyzed genomes. The red core genome curve

connects the conserved number of gene families. The gray bars show
the numbers of novel gene families identified in each genome
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complete sequence is currently available. Around this,
all other genomes are plotted, whereby lack of color
indicates that particular gene from EC4115 is missing in
the shown genome. The strong conservation of gene
presence within the O157 serotype (in green) contrasts with
the multiple 'gaps' seen in the other lanes. Every gap
represents multiple genes in strain EC4115, illustrating that
gene variation is not evenly distributed along the genome,
but located in islands.

Concluding Remarks

“This gene is not found in E. coli”, is an expression often
heard in discussions about novel genes in various
organisms, and when people are looking for functional
matches in databases. It is a sobering thought to realize
that any given E. coli genome sequenced will have only
roughly 20% of its genes part of the E. coli core, and the
remaining 80% are not found in all other E. coli genomes.
After a comparison of the diversity with many sequenced

E. coli genomes, it has become clear such a statement can
only be valid when it is specified which E. coli genome
sequence has been searched. Of the predicted pan-genome
comprising about 16,000 gene families, the core (slightly
less than a thousand genes) is found to be only about a
fifth of a typical E. coli genome which contains around
5,000 genes. Many of the accessible or variable genes,
making up more than 90% of the pan-genome and roughly
four fifth of a typical genome, are often found co-localized
on genomic islands. The diversity within the species E.
coli, and the overlap in gene content between this and
related species is far greater than many had anticipated,
and represents a broad set of functions for adapting to
many different environments. The comparative methods
used here are generally applicable to genomes of related
species, and are considered a valuable tool to evaluate
current insights of species' relatedness and evolutionary
history.
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