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Abstract
Background—Many interventions in today’s health sciences are multicomponent, and often one
or more of the components are behavioral. Two approaches to building behavioral interventions
empirically can be identified. The more typically used approach, labeled here the classical approach,
consists of constructing a likely best intervention a priori, and then evaluating the intervention in a
standard randomized controlled trial (RCT). By contrast, the emergent phased experimental approach
involves programmatic phases of empirical research and discovery aimed at identifying individual
intervention component effects and the best combination of components and levels.

Purpose—The purpose of this article is to provide a head-to-head comparison between the classical
and phased experimental approaches and thereby highlight the relative advantages and disadvantages
of these approaches when they are used to select program components and levels so as to arrive at
the most potent intervention.

Methods—A computer simulation was performed in which the classical and phased experimental
approaches to intervention development were applied to the same randomly generated data.

Results—The phased experimental approach resulted in better mean intervention outcomes when
the intervention effect size was medium or large, whereas the classical approach resulted in better
mean intervention outcomes when the effect size was small. The phased experimental approach led
to identification of the correct set of intervention components and levels at a higher rate than the
classical approach across all conditions.

Limitations—Some potentially important factors were not varied in the simulation, for example
the underlying structural model and the number of intervention components.

Conclusions—The phased experimental approach merits serious consideration, because it has the
potential to enable intervention scientists to develop more efficacious behavioral interventions.
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Background
In today’s health sciences multicomponent [1] or complex [2,3] or multifaceted [4]
interventions are increasingly common, and it is also increasingly common for one, several,
or even all of the components to be behavioral. For example, depression may be treated with
a combination of pharmacotherapy and talk therapy [4,5]; cardiovascular disease may be
prevented or treated with a combination of medication, exercise, and diet [6]; a smoking
cessation program may include both behavioral and pharmacological components [7].
Multicomponent behavioral interventions are used in prevention and treatment in many other
health domains, including HIV/AIDS [8], obesity [9], diabetes [10], alcohol dependence [11],
and gerontology [1].

In this article we describe the use of a computer simulation to contrast and explicate the relative
advantages and disadvantages of two different general approaches for empirically building and
evaluating multicomponent behavioral interventions. For purposes of this article, we will label
the more established of the two approaches classical and the more emergent approach phased
experimental. The classical approach, currently the dominant one in intervention science (e.g.
[12–15]), consists of constructing a likely best intervention package based primarily on prior
empirical research, readings of the literature, theory and clinical experience. This intervention
is then evaluated in a standard randomized clinical trial (RCT). In the course of the RCT data
are collected not only on the outcomes of primary interest but also on other variables so as to
enable quasi-experimental, nonexperimental and post-hoc analyses (e.g. [1,16–18]) aimed at
shedding light on what worked well and what might need improvement. Examples of such
analyses include regressing outcomes on naturally occurring variation in participation,
compliance, or implementation fidelity. Conclusions drawn from the results of these analyses
provide the basis for revisions that produce a refined version of the intervention.

The classical approach relies heavily on the RCT, which is the generally accepted method of
determining the efficacy or effectiveness of an intervention. Although the RCT grew out of
the need to evaluate single-component interventions, it has been widely applied to
multicomponent interventions as well. However, as has been noted by numerous authors (e.g.
[1–3,19,20]) multicomponent interventions present some challenges that are outside the scope
of assessment of overall treatment efficacy/effectiveness, and therefore are not well addressed
by the RCT alone. One challenge is to build the most potent intervention out of a finite set of
intervention components by identifying the best combination of components. Another
challenge is to build efficient interventions made up of components that contribute enough
toward intervention efficacy/effectiveness to justify whatever expenditures of time, money, or
other resources they demand. Both of these challenges require determining not only that an
intervention as a package has a detectable effect, but whether and how much each component
under consideration is likely to contribute to that effect.

In response to these challenges, phased experimental approaches to intervention development
have begun to emerge. Phased experimental approaches include additional evidentiary steps
along with the RCT as part of the process of building and evaluating multicomponent
interventions. Examples of the innovative use of phased experimental approaches include
Fagerlin et al. [21] in medical decision making, Nair et al. [13] in breast cancer prevention,
Strecher et al. [22] in smoking cessation, and the COMBINE trial in alcohol dependence
treatment [23].

The Medical Research Council of the United Kingdom [2,3] outlined a general approach that
includes programmatic phases of empirical research and discovery leading up to and informing
a RCT. Building on this idea, Collins et al. [19] have suggested two evidentiary phases to
precede and inform a RCT. The first phase, called screening, consists of randomized
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experimentation designed to obtain estimates of the effects of individual components and
selected interactions between components. The resulting experimental evidence provides the
basis for preliminary decisions about which components to select for inclusion. A second phase
of additional experimentation, called refining, is used to identify the best level of one or more
components, to investigate interactions between components, and to resolve any other
remaining questions. Full and fractional factorial experiments (e.g. [24–28]) along with dose-
response experiments in which subjects are randomized to ethically appropriate doses of the
intervention components are important tools in this approach. Information on cost and burden
can be collected in the course of experimentation and included when decisions are made
concerning choices of components and/or levels. Conclusions drawn from the results of the
screening and refining phases form the basis for specification of an intervention that consists
of a set of active components implemented at levels selected to maximize efficacy,
effectiveness, and/or cost-effectiveness.

Even though the screening and refining studies precede a RCT of the “optimized”
multicomponent intervention vs. control, they are not pilot studies by most widely accepted
definitions (e.g. [29–31]). According to these definitions, a pilot study is typically conducted
to assess the feasibility (of recruitment, intervention delivery, data collection) of a full-blown
RCT; indeed pilot studies may be conducted with little regard for statistical power and may
not even involve randomization. By contrast, screening and refining studies as described by
Collins et al. [19,20] are adequately powered randomized trials intended to assist in refining
and optimizing multicomponent interventions and may themselves be preceded by pilot studies
to assess feasibility.

Purpose
As intervention scientists consider whether to adopt a classical or a phased experimental
approach in their research, it would be helpful to have some information about the expected
relative performance of the two approaches. The purpose of this article is to provide a head-
to-head comparison between the classical and phased experimental approaches and thereby
highlight the relative advantages and disadvantages of these approaches when they are used to
select program components and levels so as to arrive at the most efficacious intervention.
Although it is impractical to compare the two approaches directly in real-life empirical studies,
it is possible to compare them by means of a computer simulation. This article describes a
simulation that addresses the following questions: (1) Which approach, the classical or the
phased experimental, was better at identifying (a) more efficacious interventions? (b) the
correct set of intervention components and levels? (c) the best setting of a component with
several possible settings? (d) the active components that should be included? (e) the inactive
components that should be excluded? (2) What was the impact of overall intervention effect
size on the absolute and relative performance of the two approaches? We also briefly
summarize the results of additional simulations performed to assess the generalizability of the
results.

Methods
Overview of the Simulation

In this simulation the behavioral scientist intends to build and evaluate a multicomponent
(multivariable with components as predictors) behavioral intervention. Based on existing
literature, prior study results and clinical experience, the scientist has identified five
intervention components, denoted A1–A5, each of which is hypothesized to have a positive
effect on an outcome variable Y. Components A2–A5 can be either included in the intervention
or not included, thus they can assume only two levels. A1 can assume three levels: low, medium,
or high.
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In building and evaluating the behavioral intervention the scientist has access to N=1200
subjects. We chose N=1200 because it is not uncommon for behavioral intervention trials to
have sample sizes at least this large; examples include Strecher et al. [22], which had N=1866
subjects; Strecher, Shiffman, and West [32], which had N=3971 subjects; and Rush et al.
[33], which had N=1421 subjects. (Below we summarize the results of additional simulations
using smaller and larger sample sizes.)

Data sets were generated using a procedure (described below) designed to reflect some of the
complexity that can occur in real intervention studies. Both the classical approach and the
phased experimental approach were separately applied to each generated data set. The goal of
each approach was to arrive at the most efficacious intervention, expressed in terms of an
outcome variable Y. The classical approach consisted of selecting components and dosages a
priori and performing a two-group RCT using all available subjects. This was followed by
post-hoc analyses. By contrast, the phased experimental approach began with an initial
screening experiment for preliminary selection of components, based on a portion of the
sample. This was followed by a set of refining experiments to finalize selection of components
and dosages, based on the remaining portion of the sample.

Data Generation Model
The hypothetical data generation model used in this simulation study was inspired by the
conceptual model used in a large behavioral intervention trial called Fast Track (CPPRG,
1992). This data generation model was designed to be only partially consistent with the
behavioral scientist’s hypotheses described above, in order to mimic the commonly occurring
real-life situation in which some of an investigator’s hypotheses are true and some are false.
Although the investigator hypothesized that all five intervention components would have a
positive effect on the outcome, in the data generation model the only active intervention
components were A1, A2, and A4. In addition, the relation between A1 and Y was curvilinear
such that the medium level of A1 was associated with higher values of Y. Thus the optimal
configuration of intervention components is A1 included in the intervention and set to the
medium level; A2 and A4 included; and A3 and A5 not included.

Additional complexity was introduced in the data generation model in three different ways to
reflect circumstances that frequently occur in real-world intervention settings. First, to
represent the amount of each component actually received by (rather than assigned to)
participants, adherence variables Ad1–Ad5 were modeled for each of the five components A1–
A5. Adherence was modeled as 100% for A2 (i.e., Ad2=A2) and partial for the remaining
components (0≤Ad≤A). (See Appendix A for details.)

Second, to mimic the confounding that can result when post-hoc analyses use non-randomized
comparisons, unknown participant characteristics that can affect both adherence and the
outcome were included. In a real-life setting, there are likely to be many such confounding
variables. For simplicity, they were modeled here by a single unobserved binary variable
Type, with Type = 1 representing participants likely to register a higher value of Y, and Type
= 0 representing participants likely to register a lower value of Y. In addition to its relation with
Y, Type is positively associated with the level of adherence (except Ad2 which is always 100%)
so that participants are more likely to adhere and hence receive more treatment if Type = 1.
Thus, Type causes a spurious positive correlation between the levels of adherence (except
Ad2) and Y, which in turn makes the estimates of component effects based on non-randomized
post-hoc analyses positively biased.

Third, when participants are offered multiple behavioral intervention components of varying
attractiveness, some may adhere closely to the more attractive components and reduce their
adherence to the others. This has a deleterious effect if some of the less attractive components

Collins et al. Page 4

Clin Trials. Author manuscript; available in PMC 2009 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



are more efficacious. To mimic this, a negative interaction was modeled between A4 and A5,
such that A5 induced a reduced adherence to A4. This means that all else being equal, an
intervention that included both A4 and A5 is less efficacious than one that included A4 without
A5. This phenomenon is called subadditivity.

Figure 1 is a pictorial representation of the data generation model, details of which are provided
in Appendix A. Figure 1 is a directed acyclic graph [34]; the presence of an arrow from one
variable to another indicates that the former variable may have a causal effect on the latter
variable. A square represents an observed variable, and a circle represents an unknown, and
hence unobserved, variable. The absence of an arrow indicates conditional independence; for
example, given the variable Ad1, Y is independent of A1. In Figure 1 all relations have a positive
(if any) dependency except the A5 to Ad4 relation, which is labeled with a minus sign. To
maintain simplicity and clarity of exposition no other population heterogeneity was built into
the simulation. Thus in the following analyses it would not be useful to control for observed
participant characteristics or other observed pretreatment variables.

Averaging over the distribution of Type and Ad1–Ad5 produces the marginal linear model

(1)

Furthermore the variance of Y given A1,…, A5 is a function of the components A1,…, A5, that
is, the variance is nonconstant (see Appendix A).

Experimental conditions
In the simulation there were three effect size conditions for the interventions, corresponding
to Cohen’s [35] benchmark values for standardized effect sizes of small (d=.2), medium (d=.
5) and large (d=.8). Effect sizes were defined in terms of the ideal intervention as a whole, in
other words, for the two-group comparison of the best treatment combination (A1 set to
medium, A2 and A4 included, A3 and A5 not included) versus a control group. Active main
effects were roughly equal in magnitude, and the effect corresponding to the active interaction
(A4A5) was roughly half the size of the main effects.1 All other intervention component main
effects and interactions were set to 0. Across all three effect size conditions, the effect of Type
was set equal to d=0.9. For each of the three effect size conditions, 1000 simulated data sets
of N=1200 random experimental subjects were generated. Each generated data set was used
twice: once for the classical approach, and once for the experimental approach. All the results
presented in Tables 1–3 are averages based on the 1000 simulated data sets.

Operationalization of the classical and phased experimental approaches
This section contains a brief overview of the operationalizations of the classical and phased
experimental approaches. A detailed description of the phased experimental approach can be
found in Appendix B.

The classical approach—The classical approach employed all N=1200 experimental
subjects in a single RCT of the multi-component treatment vs. control, followed by post hoc
analysis. The treatment group was given an intervention consisting of A1 set to “high” and all
of the other components included; the control group was given an intervention with A1 set to
“low” and none of the other components included. Because only homogeneous subpopulations

1Setting the interaction effect to one-half the size of the main effect is consistent with the Hierarchical Ordering Principle [17, pg. 112]
which states that the lower order effects are more likely to be important than higher order effects and effects of the same order are equally
likely to be important (this principle is used in the absence of scientific knowledge indicating otherwise).
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were considered in this simulation study (see the data generation model above), there were no
pretreatment variables to be controlled. As is traditional, a two-group comparison was
performed for the overall efficacy of the intervention. However, regardless of the outcome of
this comparison, decisions about whether individual components should be retained in the
intervention were based on post-hoc dose-response analyses (with the levels of adherence
Ad1,…, Ad5 as doses) on the treatment group of subjects as follows:

Step 1: Identify components with sufficient variation in dose to enable dose-response
analyses: Received dose (adherence) could vary between 0 and 2 for A1 and between 0 and 1
for A3–A5 (adherence was always 100 percent for A2, so there was no variation). Any
components for which naturally occurring variation in dose was greater than an arbitrary
threshold of 0.01 were considered to have sufficient variation to enable dose-response analyses.
Any components with variation in dose less than 0.01 could not be examined further, and were
automatically included in the final intervention.

Step 2: Multiple regression: The outcome Y was regressed on the following variables: doses
of all components with sufficient variation in dose; two-way interactions between them; and,
if Ad1 was included in the regression, a quadratic term for Ad1 (an implicit assumption here
is that the scientist knows that A1 has more than two levels).

Step 3: Select components and levels: The estimated regression function was evaluated at
each combination of levels of the components that had sufficient variation in dose (by plugging
in possible values of A’s in place of Ad’s, e.g., 0, 1, or 2 for Ad1, and 0 or 1 for Ad3–Ad5). The
level combination that produced the largest predicted value of Y was identified.

Step 4: Final intervention: The final intervention identified by the classical approach
consisted of (a) the low-variation components identified in Step 1, each set to 1 (2 in the case
of A1), plus (b) the configuration of components and levels identified in Step 3.

The phased experimental approach—The phased experimental approach used the same
N=1200 subjects as the classical approach, but employed N=800 subjects in an initial screening
phase of experimentation and reserved N=400 for a subsequent refining phase.

In the screening phase, a factorial experiment involving all five components was conducted,
with only the low and the high levels of A1 included. To conserve resources, a 16-condition
balanced fractional factorial design was used instead of a 32-condition complete factorial. (See
Appendix B for a technical discussion about the particular choice of fraction and the rationale
behind it.) This experiment was used to identify significant main effects and 2-way interactions.

Intervention components were selected based on the results of the screening phase using the
following decision rules: First, any component with a significant main effect and not involved
in a significant interaction was selected for inclusion in the intervention. A main effect was
deemed significant if it possessed one of the three largest positive t-statistics or if the associated
t-test was significant at the .10 level and positive. (The decision rule to take the three largest
was arbitrary to an extent; below we summarize the results of additional simulations that varied
this decision rule.) Interactions were deemed significant if the associated t-test was significant
at the .10 level. Next, any components involved in significant two-component interactions were
examined further. The combination of the two components that produced the highest marginal
cell mean on Y was selected for inclusion. (This procedure is described in more detail in
Appendix B.)

In this study the purpose of the refining phase was to determine the optimal value of A1.
Therefore, if A1 and all its interactions were insignificant, the refining phase was not conducted.
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Otherwise, additional experimentation to revise the selected level for A1 was conducted as
follows: (a) If the main effect of A1 was significant but no interactions were significant, the
refining experiment was a two-group comparison of level 2 of A1 against level 1 of A1. In this
experiment the remaining components were set at the levels indicated by the screening phase.
The results of this experiment yielded the best level for A1. (b) If there were one or two
significant interactions involving A1, a factorial experiment was conducted crossing A1 with
the components involved in the interactions, with the remaining components set to the levels
indicated by the screening phase. These results yielded the best levels for A1 and for the
components that interacted with A1. (More detail appears in Appendix B.)

Evaluation of outcomes of each approach
Because in this simulation the true data generation model is known, it is possible to use this
model to evaluate the performance of the classical and phased experimental approaches. After
the final intervention was determined using either the classical or phased experimental
approach, the data generation model was used to compute the expectation of the distribution
of Y that would be obtained if the intervention were applied to all subjects in the population.
These expectations, E(Y)classical and E(Y)phased experimental, were the outcome variables used to
evaluate the performance of each approach. In real life this step would instead consist of
conducting a large RCT comparing the final intervention to an appropriate control group (this
is called the confirming phase of the phased experimental approach – see [19,20,24]).

Results
As was described above, the classical approach and the phased experimental approach each
identifies a final multicomponent intervention for every simulated data set. The two final
multicomponent interventions are then evaluated using the known data generation model. All
the results presented in Tables 1–3 are averaged over the 1000 simulated data sets.

Table 1 shows the mean outcome of the classical and phased experimental approaches, the
mean difference between them, and standard errors. For reference, the maximum possible mean
outcome value is included. Table 1 shows that in the small effect size condition E(Y)classical
was approximately two percent larger than E(Y)phased experimental, indicating that in this
condition the average intervention outcome was slightly better for the classical approach. In
the medium and large effect size conditions the average intervention outcome was about 10
and 25 percent larger, respectively, for the phased experimental approach. The difference
between the classical and phased experimental approaches is significant at the 0.05 level in
every condition.

Table 2 shows the percent of data sets in which each approach “won” by identifying an
intervention that yielded a larger value of the outcome E(Y). In the small effect size condition
the classical approach was about 1.3 times more likely than the phased experimental approach
to identify an intervention that yielded a larger E(Y). In the medium and large effect size
conditions the effect was reversed, with the phased experimental approach about 1.9 and 5.1
times more likely, respectively, to identify an intervention that yielded a larger E(Y).

Table 3 depicts the accuracy with which each approach selected intervention components and
levels for inclusion in the intervention or identified components for exclusion. The first section
of the table shows the percent of data sets in which the correct configuration of components
and levels was identified. As expected, this number increased for both approaches as effect
size increased. In every condition the phased experimental approach was much more likely to
identify the correct configuration. One reason for the better performance of the experimental
approach is that it identified the medium level of A1 as optimal more frequently than the
classical approach (in 61.3 vs. 11.8 percent of data sets in the small effect size condition, 90.7
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vs. 31.0 percent in the medium effect size condition, and 98.3 vs. 40.6 percent in the large
effect size condition). Another reason is that the experimental approach included the
component A5 (which, as described above, produced a subadditive effect in presence of the
active component A4) in the intervention much less frequently (in 25.4 vs. 57.6 percent of data
sets in the small effect size condition, 11.5 vs. 57.2 percent in the medium effect size condition,
and 6.5 vs. 56.9 percent in the large effect size condition).

The second section of Table 3 shows the percentage of data sets in which all active components
were correctly selected, irrespective of whether inactive components were mistakenly selected,
and irrespective of the selected level of A1. The classical approach outperformed the phased
experimental approach on this criterion for the small and medium effect size conditions. For
the phased experimental approach the performance improved dramatically (from 14.5 to 73.5
percent) as the effect size increased. However, the performance of the classical approach was
fairly constant (ranging from 48.2 to 48.5 percent) across the effect size conditions.

The third section of Table 3 shows the percentage of data sets in which all inactive components
were correctly excluded, irrespective of whether some active intervention components were
incorrectly excluded. Across all three effect size conditions the performance of the phased
experimental approach was better than the classical approach. Here too performance improved
as effect size increased for the phased experimental approach, but not for the classical approach.

Other sample sizes and numbers of main effects retained
We conducted some additional simulations in order to investigate whether the results reported
here held across variation along two dimensions. One was sample size. The other was the
decision rule used in the phased experimental approach for selecting intervention components
for inclusion based on main effects estimates. In a series of nine simulations we investigated
three different sample sizes, N=600, N=1200, and N=2500; and three different decision rules:
retention of the intervention components corresponding to the largest two, three, and four main
effects.

The overall pattern of results was very consistent. In general the classical approach tended to
produce a larger E(Y) than the phased experimental approach in conditions involving both a
small effect size and a small sample size. The phased experimental approach tended to produce
a larger E(Y) than the classical approach in the medium and large effect size conditions, even
in the small sample size condition. The phased experimental approach tended to produce larger
E(Y) than the classical approach when the decision rule called for retaining a larger number of
main effects; in the conditions in which the four largest main effects were retained the phased
experimental approach consistently produced the larger E(Y), even in the conditions involving
both a small effect size and a small sample size. More details can be found in Appendix C.

Discussion
The simulation reported here compared one possible operationalization of the phased
experimental approach to one possible operationalization of the classical approach. Which
approach performed best depended upon which criterion was used to evaluate the approaches
and also upon intervention effect size.

When the two approaches were evaluated in terms of overall intervention outcome, the classical
approach performed better than the phased experimental approach when the intervention effect
size was small, and the phased experimental approach performed better than the classical
approach when the intervention effect size was medium or large. The phased experimental
approach suffered somewhat from a lack of statistical power in the small effect size condition.
One reason why the classical approach tended to be outperformed by the phased experimental
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approach in the medium and large effect size conditions is confounding by the unknown
participant characteristic Type. Type introduced a positive bias that had an impact on the results
of the classical approach primarily in two areas. First, this positive bias made the high level of
A1 look better than the medium level in the post-hoc dose-response analysis. Second, the
positive bias also masked the subadditive effect of A5 on A4 in the post-hoc analysis, sometimes
leading to the incorrect inclusion of the component A5. Type had little or no impact on the
results of the phased experimental approach because this approach depended primarily on
estimates of main effects and interactions based on data from randomized experiments, which
are much less likely to be biased by confounding than are post hoc non-experimental analyses
[36].

When success at identifying the best combination of components and levels was the criterion,
the phased experimental approach was the better of the two across all effect sizes. This is
directly due to the greater impact of confounding on the classical approach as compared to the
phased experimental approach. For example, confounding by Type made the classical approach
more likely to lead to choose an incorrect level of A1, as mentioned above, even though a
quadratic term was appropriately included in regression analyses.

When the two approaches were evaluated in terms of successfully including all of the active
components, the classical approach performed better than the phased experimental approach
in the small and medium effect size conditions, and the phased experimental approach
performed better when effect sizes were large. The phased experimental approach detected
active components at a higher rate as effect size increased, due to the corresponding increase
in statistical power. By contrast, the classical approach detected active components at a
relatively constant rate across increasing effect sizes. The primary reason for this is that in our
operationalization of the classical approach the components with low variability in adherence
were automatically included, irrespective of effect size. For example, the active component
A2 was always included because the received dose, Ad2, was always equal to the assigned
value of A2 (100% adherence).

The phased experimental approach outperformed the classical approach in all effect size
conditions when the criterion was successfully identifying inactive or potentially
counterproductive components that should be eliminated from the intervention. Again, this is
attributable to the differential impact of confounding. Because Type is positively associated
with both Y and Ad’s, it induced a positive bias in the non-experimental analyses that led the
classical approach to a preference for including components over excluding them.

Choosing an approach to intervention building
Our results suggest that when medium or large intervention effect sizes are anticipated use of
a phased experimental approach is likely to result in identifying a more potent intervention
than the classical approach. When a small intervention effect is anticipated, the choice is less
clear. Multicomponent interventions with small overall effect sizes may be made up of either
(a) mostly inactive components with one or two components with relatively large effect sizes,
or (b) fairly equally efficacious but weak components, which together produce a detectable
aggregate effect even though no individual component has a detectable effect. In situation (a),
the phased experimental approach may be helpful in identifying the inactive components. In
situation (b), in order to perform well the phased experimental approach would need to be
powered to detect the weak individual component effects. Here the classical approach may be
a better choice.

One drawback of the classical approach is that all subjects in the treatment arm receive all the
components, and so the main effects of all the components and their interactions of every order
are confounded (aliased). In contrast, in the phased experimental approach if a fractional
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factorial design is used main effects and two-way interactions are confounded with only higher
order interactions deemed negligible in size, and hence do not affect the results. If a full factorial
design is used there is no confounding of main effects and interactions.

It is possible that some other variant of the classical method (e.g., dismantling experiments,
see [12]) would have performed better than the approach used in the simulation reported here.
However, as long as post hoc analyses on non-randomized data (e.g., adherence) are used, the
performance of any version of the classical method will depend on the degree of confounding
present in the data. In situations in which the degree of confounding is very low or nonexistent,
the version of the classical approach we have used and other reasonable variants would
probably perform as well as the phased experimental approach. Of course, in most cases the
degree and nature of confounding is not under the investigator’s control and may be difficult
to anticipate. Because the phased experimental approach is entirely based on randomization,
it is much less vulnerable to confounding.

Although the phased experimental approach was better overall at identifying the best
configuration of components and levels, the success rate ranged from a high of 52 percent to
a low of about 7.5 percent. Thus there is plenty of room for improvement, particularly when
effect sizes are small. It is possible that an augmented approach or even an entirely different
approach could result in a higher success rate. One promising avenue for intervention
refinement may lie in exploring ideas from engineering process control, as discussed in Rivera
et al. [37].

Differences in resource requirements
One question that arises in considering the phased experimental approach is whether the
additional experimentation required by this approach necessarily demands an increase in cost
over the classical approach. The phased experimental approach calls for a design that can isolate
the effects of individual components. In the screening phase this will usually be some variation
of a factorial design, requiring implementation of numerous conditions, each of which
represents a different version of the intervention. For example, a full factorial design involving
k two-level components requires implementation of 2k treatment conditions, which may be
costly. By contrast, irrespective of the number of components studied the classical approach
typically requires implementation of only two conditions, a treatment and a control.

Two important costs are experimental subjects and implementation of experimental conditions.
In this simulation the phased experimental approach used exactly the same number of
experimental subjects as the classical approach, suggesting that it is no more demanding with
respect to sample size. When a factorial design is used, given a fixed number of subjects an
investigator may test as many components as desired – the power to detect every main effect
in this way is about the same as testing that component in a single-component 2-arm study
with the same sample size. This means that factorial experiments make very efficient use of
experimental subjects. Power and sample size considerations (e.g., for testing main effects) in
a factorial setting can be found in Byar and Piantadosi [38], Byth and Gebski [39], Green et
al. [40], and Montgomery et al. [41].

However, even when in the phased experimental approach the same number of subjects is used
as in a comparable classical approach, there may be additional costs associated with
implementing a wider variety of versions of the intervention and conducting follow-up
experiments. It may also take more time to implement the phased experimental approach, and
may require more training of intervention delivery staff. Although these logistics and costs
associated with the phased experimental approach are a serious consideration, highly efficient
fractional factorial designs offer a way to keep the number of experimental conditions
manageable. Some assumptions about higher-order interactions being negligible are necessary
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in order to take advantage of the economy offered by a fractional factorial over a full factorial
design. The particular fractional design used in the simulations reported here did not allow
estimation of 3-way or higher order interactions; instead, it required the assumption that they
are negligible in size. Many fractional factorial designs are available. If prior knowledge
suggests that some 3-way interactions can be important, an investigator can choose a different
fractional design that allows estimation of 3-way interactions (see [28]).

Even with a highly efficient design investigators in empirical settings sometimes have to make
decisions based on results of past studies and auxiliary analysis performed on data from the
current study. This is particularly true when numerous interactions are anticipated. An example
of such an analysis can be found in Strecher et al. [22].

The short-term costs of building and evaluating an intervention must be weighed against long-
range costs and benefits. Our results suggest that the phased experimental approach may help
identify more efficient and streamlined interventions by identifying inactive components for
elimination. As Allore et al. [1] noted, “Since each component of an intervention adds to the
overall cost and complexity, being able to directly estimate component effects could greatly
enhance efficiency by reducing the number of components introduced into clinical practice” (p.
14). Our results also suggest that under many circumstances the phased experimental approach
may be likely to identify a more efficacious intervention than the classical approach. Thus, in
some applications the long-range gains in terms of increased efficiency and public health
benefits expected to result from the phased experimental approach may offset any additional
up-front intervention development costs.

Limitations
This simulation was designed to take an initial look at the question of whether a phased
experimental approach is a reasonable way to build interventions. It involved only a very small
set of conditions out of the infinite number of possibilities that can occur in practice. There are
a number of potentially important factors that were not varied in the simulation. A few of these
are: the underlying structural model, which could be varied to include features such as more
2-way interactions, higher-order interactions, and the presence of mediating variables; the
degree of confounding, here reflected by the variable Type; the number of components under
consideration; the number of active vs. inactive components; other effect sizes besides the three
used here; the impact of measurement noise on the outcome variable; the effect of complex
data structures such as nesting (e.g. individuals within classrooms; patients within clinics);
incorporating cost and burden in decisions about which components and levels should make
up an intervention; and the operationalization of the classical approach used. Many other
additional factors could be considered. Despite the limitations of this study and the need for
additional research, we believe that the results of the simulation show clearly that the phased
experimental approach is a promising alternative.

Conclusions
The classical approach is currently the most well-established approach to empirical
development of behavioral interventions. However, an emergent strategy, labeled here the
phased experimental approach, provides a systematic way of making evidence-based decisions
about which components and which component levels should comprise an intervention.
Comparison of the two approaches in real-world empirical settings is impractical. In the present
article a simulation was presented that provides this comparison by modeling a plausible
empirical scenario. The results suggested that the phased experimental approach merits serious
consideration, because it has the potential to help intervention scientists to build more potent
behavioral interventions. Possible exceptions to this are interventions with a small overall
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effect size, particularly those that are the cumulative effect of many weak components. More
research is needed on methods to identify the optimal intervention, and thereby increase public
health benefits.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Data generation model for simulation.
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Table 1
Mean Intervention Outcome under Classical and Phased Experimental Approaches, Averaged over 1000 Simulated
Datasets

Effect Size E(Y)Classical (standard error)
E(Y)Phased Experimental

(standard error) Difference (standard error) Maximum Possible E(Y)

Small 1.72 (.00) 1.69 (.01) .03 (.01) 1.99

Medium 2.35 (.01) 2.58 (.01) −.23 (.02) 2.99

Large 3.01 (.02) 3.75 (.01) −.74 (.02) 4.00
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Table 2
Comparison of Classical and Phased Experimental Approaches on E(Y) (Percentage of Data Sets)

Effect Size E(Y)Classical Higher E(Y)Phased Experimental Higher Neither Higher (tied)

Small 54.2 40.8 5.0

Medium 32.3 62.4 5.3

Large 14.9 75.7 9.4
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Table 3
Accuracy of Component Selection under Classical and Phased Experimental
Approaches (Percentage of Data Sets)

Effect Size Classical Phased Experimental

Correct Combination of Components/Levels Identified

Small 1.9 7.5

Medium 3.7 24.3

Large 5.5 52.0

All Active Components Identified

Small 48.5 14.5

Medium 48.4 37.3

Large 48.2 73.5

All Inactive Components Identified

Small 20.0 45.7

Medium 19.5 61.0

Large 19.2 68.5
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