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ABSTRACT  

 

Background: The interactions between airway responsiveness, structural remodelling, and 

inflammation in allergic asthma remain poorly understood. Prolonged challenge with inhaled 

allergen is necessary to replicate many of the features of airway wall remodelling in mice. In 

mice as well as in humans, genetic differences can have a profound influence on allergy, 

inflammation, airway responsiveness and structural changes. 

Methods:  The aim of this study was to provide a comparative analysis of allergen-induced 

airway changes in sensitized BALB/c versus C57BL/6 mice that were exposed to inhaled 

allergen for 2 (‘acute’), 6 or 9 weeks (‘chronic’). Inflammation, remodelling and 

responsiveness were analyzed. 

Results: Both strains developed a Th-2 driven airway inflammation with allergen-specific 

IgE, airway eosinophilia and goblet cell hyperplasia upon 2 weeks of allergen inhalation. This 

was accompanied by a significant increase in airway smooth muscle mass and 

hyperresponsiveness in BALB/c but not C57BL/6 mice. Contrarily, airway eosinophilia was 

more pronounced in the C57BL/6 strain.  

Chronic allergen exposure (6 or 9 weeks) resulted in an increase in airway smooth muscle 

mass as well as sub-epithelial collagen and fibronectin deposition in both strains. The 

emergence of these structural changes paralleled the disappearance of inflammation in both 

C57BL/6 and BALB/c mice and loss of hyperresponsiveness in the BALB/c strain. TGF-β1 

was accordingly elevated in both strains. 

Conclusion: Airway inflammation, remodelling and hyperresponsiveness are narrowly 

intertwined processes. Genetic background influences several aspects of the acute allergic 

phenotype. Chronic allergen exposure induces a marked airway remodelling that parallels a 

decreased inflammation, largely comparable between both strains.  

 

Key words: airway remodelling, asthma, mouse models, TGF-β, tolerance 

 

LIST OF  NON-STANDARD ABBREVIATIONS 

AHR = Airway Hyperresponsiveness; OVA = Ovalbumin; PBS = Phosphate-Buffered Saline; BALF = Broncho-

alveolar Lavage Fluid; i.p.= intraperitoneal; TGF-β= Transforming Growth Factor beta; HBSS= Hanks’ 

Balanced Salt Solution; PAS= Periodic Acid Schiff; IHC= Immunohistochemistry; DAB= 3, 3’-

diaminobenzidine; Penh = Enhanced Pause; ASM= Airway Smooth Muscle;SEM = Standard Error of the Mean; 

ANOVA = Analysis Of Variance; ECM = Extracellular Matrix 
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INTRODUCTION 

In addition to inflammation-related changes such as cellular infiltration and oedema, 

asthmatic airways display structural alterations referred to as “airway remodelling” [1;2]. 

Historically, animal models have proven useful for the elucidation of the immunological 

mechanisms of the Th-2 driven airway inflammation present in the asthmatic airway.  These 

models of allergic airway inflammation usually rely on short-term (1 day to 2 weeks) inhaled 

allergen after a systemic sensitization [3]. These models are not adequate to study the features 

of airway remodelling observed in patients with asthma, as longer periods of allergen 

exposure are required to mimic these changes [4;5]. The patho-physiology of airway 

remodelling remains largely unknown, but the structural alterations in the airway are thought 

to result from (inadequate) attempts of tissue repair in response to inflammation [6]. In 

addition, it is up to now unclear to what extent this process contributes to the deterioration of 

asthma symptoms [7] or represents the translation of a repair response that protects against 

further allergen-induced airway inflammation and bronchoconstriction [8]. The pattern of 

these structural changes differs between mouse strains [9], suggesting the genetic background 

might be important. Whether remodelling develops uniformly in all asthma patients is equally 

unclear [10].  

Remarkably, prolonged challenge with inhaled allergen in sensitized mice is often associated 

with disappearance of eosinophilic airway inflammation and the induction of a state of 

respiratory tolerance [11-14]. While the immunological mechanisms of this phenomenon are 

still poorly understood, tolerance appears to develop in most models using chronic allergen 

challenge [9;14].  

Although a wide variety of mouse asthma models exist [3;9;15;16], it remains puzzling how 

airway inflammation, remodelling and responsiveness relate to each other in these models. 

Thus, we here aimed to provide a thorough characterisation encompassing an assessment of 

inflammation and airway (hyper)responsiveness (AHR), as well as of the remodelling features 

in the two most commonly used mouse strains to study asthma, in casu C57BL/6 and BALB/c 

mice. We provide this comparative analysis in order to gain insight into the relationship 

between these asthma characteristics in both strains. We found that upon short-term 

challenge, both strains developed differential responses in inflammation, AHR and airway 

remodelling, particularly smooth muscle (ASM) proliferation. Upon prolonged exposure, both 

strains developed more similar structural airway alterations that paralleled a disappearance of 

eosinophilic inflammation and AHR. 
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MATERIALS AND METHODS 

 

Animals 

C57BL/6 and BALB/c mice (males, 6-8 weeks old) were purchased from Harlan (Zeist, the 

Netherlands). All experimental procedures were approved by the local ethical committee for 

animal experiments (Faculty of Medicine and Health Sciences, Ghent University).   

 

Allergen Exposure Protocols 

All groups of mice (6-12 mice/group) were sensitized with 10 µg intraperitoneal (i.p.)  OVA 

(Grade III; Sigma, St-Louis, MO) adsorbed to 1 mg Al(OH)3 on day 0 (d0) and d7. From d14 

onward, the mice were exposed to aerosolized (Ultraschallvernebler Sirius Nova, Heyer 

Medizintechnologie, Bad Ems, Germany) OVA (1% wt/v) or PBS 30 min/day, three times a 

week for 2 (‘acute’), 6 or 9 (‘chronic’) weeks respectively (Figure 1 – Protocols A, B and C).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Allergen exposure protocols. Exposure of sensitised C57BL/6 and BALB/c mice to OVA aerosols for 

2, 6 and 9 weeks (Protocols A, B and C respectively) 

 

Bronchoalveolar Lavage Fluid (BALF): cellular analysis  

Twenty-four hours after the last aerosol exposure, mice were sacrificed with an i.p. 

pentobarbital injection (60 mg/kg; Sanofi, Libourne, France). Briefly, BALF was taken by 

instillation of HBSS via a tracheal cannula. Three lavages with 0.3 ml HBSS followed by 

three lavages with 1 ml HBSS were performed. The recovered BALF of the first three 

fractions was centrifuged and the supernatant was used for cytokine detection. The cell pellet 
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was then added to the rest of the lavage fluid, centrifuged, subjected to red blood cell lysis and 

resuspended for cell counts on cytospins (May-Grünwald/Giemsa).   

 

Histology 

After fixation of the left lung with 4% paraformaldehyde, slices from all left lobes were 

embedded in paraffin for histological analysis. Sections of 3 �m were stained with Congo Red 

to highlight eosinophils, Periodic-Acid Schiff (PAS) to highlight goblet cells and with Sirius 

Red for collagen staining. 

 

Immunohistochemistry (IHC) 

IHC for fibronectin was done in an analogous manner as previously described in the rat [17]. 

Briefly, lung sections of 3 �m were deparaffinized, rehydrated and the non-specific binding 

sites were blocked with 1% blocking reagent in PBS (Boehringer, Mannheim, Germany). 

Excess reagent was removed and the sections were incubated for 1h with a mouse anti-mouse 

fibronectin antibody (Dako A/S, Glostrup, Denmark; dilution factor 1/750). Afterwards, 

sections were rinsed and incubated with a biotinylated secondary antibody for 30 min. Next, 

the primary antibody-secondary antibody complex was detected by streptavidin-biotinylated 

horseradish peroxidase complex. The substrate for the peroxidase was 3, 3’-diaminobenzidine 

(DAB, Dako), resulting in a brown reaction product for fibronectin quantification.  IHC for α-

actin smooth muscle contractile elements in the airways (ASM) was performed in an 

analogous manner, using an anti-mouse α-actin SM antibody (Dako; dilution factor 1/100) 

and DAB substrate, equally resulting in a brown reaction product. 

 

Quantitative measurements in the airway wall  

Quantitative measurements were performed in the airways of each animal with a perimeter of 

basement membrane (Pbm) ranging from 800 to 2000 �m, provided a reasonable cross section 

was available (ratio of minimal to maximal internal diameter smaller than 1.8). Measurements 

were performed on the digital representation of the airways using a Zeiss (Oberkochen, 

Germany) KS400 Image analyser system as described earlier [17]. Morphometrical 

parameters were marked manually: the area defined by the basement membrane (Abm) and 

the area defined by the total adventitial perimeter (Ao). The total bronchial wall area (WAt) 

was calculated (WAt=Ao-Abm) and normalized to the square of the Pbm. For the 

quantification of collagen deposition, the area in the airway wall covered by the Sirius Red 

stain was determined by the software (WCt) and normalized to Pbm. To evaluate the sub-
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epithelial fibronectin deposition and the ASM content of the airways, the area covered by the 

DAB stain (WFt and WαA) was determined in an analogous manner and also normalized to 

Pbm. Goblet cells were quantified on PAS stained sections. Results were expressed as number 

of goblet cells per millimeter basement membrane. Peribronchial infiltration with eosinophils 

was evaluated in lung sections stained with Congo Red and the total number of eosinophils 

per mm² bronchial wall was determined. All measurements were performed on 5 airways per 

mouse.   

 

IgE and protein quantification (ELISA) 

OVA-IgE in serum was measured with ELISA using coated microtiter plates and biotinylated 

polyclonal rabbit anti-mouse IgE. TGF-β1 was determined the BALF using ELISA kits (R&D 

Systems, Abingdon, UK).  

 

Assessment of airway responsiveness (AHR) 

Twenty-four hours after the last aerosol exposure AHR to methacholine was assessed in 

spontaneously breathing animals using a whole body plethysmograph system (Buxco; Buxco 

Electronics Inc., Troy, NY). Before performing readings, the system was calibrated by rapid 

injection of 1 ml air. Pressure differences between the main chamber containing mice and a 

reference chamber were recorded using the software BioSystem XA (version 157; Buxco). 

This pressure signal is caused by flow changes in the main box during the respiratory cycle of 

the animal. The value of ‘enhanced pause’ (Penh) is used here to monitor airway function 

[18], since it shows strong correlation with the airway resistance [19]. Penh = [(Te-Tr)/Tr] x 

(PEP/PIP) where Te is expiratory time (s), Tr is relaxation time or time of the pressure decay 

to 36% of total box pressure during expiration, PEP is peak expiratory pressure (cm H2O), and 

PIP is peak inspiratory pressure (cm H2O). For each mouse, data of were recorded at baseline, 

and after exposure to PBS or increasing concentrations of nebulized methacholine (2 – 81 

mg/ml), to assess AHR. The solutions were nebulized through an inlet of the main chamber 

during 1 min. Readings were taken during 5 min after each nebulization. Between readings 

Penh value returned to baseline. Cumulative dose-response curves were constructed for the 

changes in Penh after increasing doses of methacholine. The changes in Penh are expressed as 

percentage increase of maximum Penh value following methacholine challenge compared to 

the average Penh value after PBS-exposure (calculated by Analyst 1.29; Buxco). 
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Statistical analysis 

Data were analysed with the statistical packet SPSS 15.0 (SPSS Inc.; Chicago, IL). Reported 

values are expressed as mean ± Standard Error of the Mean (SEM). Mean values of 

parameters (including quantitative measurements in the airway wall as well as inflammatory 

cells and mediators) except Penh values were compared between the groups through the 

Kruskall -Wallis test for multiple comparisons (nonparametric testing). When significant 

differences were observed, post-hoc comparisons between groups were made, using the 

Mann-Whitney U-test with Bonferroni corrections. P-values less than 0.05 were considered 

significant. The dose-response curves of Penh were compared using ANOVA. The 

concentration of methacholine causing a 250% increase in baseline Penh (PC250 Penh) was 

calculated by log-linear interpolation of the dose-response curve.  
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RESULTS 

 

1. Airway inflammation in the BALF and bronchial walls 

OVA exposure for 2 weeks (Protocol A; Figure 1) altered the composition of the BALF 

leukocytes in both strains (Figure 2) as compared to the PBS exposed mice. Both strains 

developed a significant influx of mononuclear cells and eosinophils. The percentage of 

eosinophils in BALF was 21.16 ± 4.41 % in C57BL/6 vs 12.66 ± 4.08 % in BALB/c mice 

(p<0.05 BALB/c vs. C57BL/6).Only C57BL/6 had a discrete but significant concomitant 

BALF neutrophilia and a significant increase in total BALF cellularity and macrophages. 

Moreover, both strains developed peribronchial and perivascular eosiniphilic inflammation 

upon short-term challenge (Figure 3 A/B). C57BL/6 mice, but not BALB/c mice also 

possessed some degree of interstitial inflammation (Figure 3 C/D). 

The numbers eosinophils counted around the airways on Congo Red stained sections were 

significantly higher in the C57BL/6 strain compared to the BALB/c strain (Table 1). 

Upon longer OVA exposure (6 or 9 weeks – Protocol B and C; Figure 1) the BALF cell 

composition in OVA-challenged mice of both strains returned to the composition discerned in 

mice exposed to PBS (Figure 2). At those time points, only a slightly elevated number of 

eosinophils remained present in the bronchial walls of both mouse strains (Table 1). 

 

 

TABLE I. Peribronchial eosinophils in epithelium 

in BALB/c and C57BL/6 mice 

 

 

 

 

 

 

 

 

 

* p<0.05: OVA versus PBS 

 ¶ p<0.05: 6 and 9 weeks versus 2 weeks 

# p<0.05: BALB/c versus C57BL/6 

Exposure time Treatment Eosinophils (x10
2 

cells/mm² airway wall) 

  BALB/c  C57BL/6  

2 weeks PBS 1.49±0.17 1.05±0.17 

 OVA 5.06±0.30
* #

 6.61±0.46
*
 

6 weeks PBS 0.93±0.10 0.57±0.09
¶ 

 OVA 1.51±0.13
* ¶

 1.11±0.09
* ¶

 

9 weeks PBS 0.79±0.11
¶ 

0.69±0.10 

 OVA 1.03±0.08
* ¶ 

0.79±0.08
¶ 
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Figure 2: BALF total cell count and differentiation in OVA sensitised C57BL/6 and BALB/c mice exposed to 

OVA or PBS aerosols for 2 weeks (A) and 9 weeks (B).  The BALF total cell counts after 6 weeks of OVA or 

PBS exposure are not included, as the results are similar to the 9 weeks experiment in both strains. 
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Figure 3: Airway histology (Congo Red stainings) of OVA- sensitized and -challenged BALB/c (A) and 

C57BL/6 (B) mice (2 weeks OVA exposure; magnification size = x 200). (C) and (D) show Congo Red stained 

pictures of the lung parenchyma of OVA- sensitized and – challenged (2 weeks) with interstitial inflammation in 

C57BL/6 (C) and absence of interstitial inflammation in BALB/c (D) (magnification size = x 400). 
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2. Serum OVA-IgE 

Whereas the PBS challenged C57BL/6 mice had very low OVA-IgE levels at all time points, 

the BALB/c counterparts developed increasing IgE levels attributable uniquely to the i.p. 

sensitization (Table 2). In the OVA challenged mice of both strains, OVA-IgE increased 

already after 2 weeks as compared to the PBS challenged counterparts. Upon chronic 

exposure, both strains hold elevated IgE, however, the titres were markedly higher in the 

BALB/c mice as compared to the C57BL/6 mice (p<0.05 BALB/c vs. C57BL/6).  

 

 

TABLE II. OVA-specific IgE levels in the serum after sensitization and 

exposure of BALB/c and C57BL/6 mice 

 

* p<0.05: OVA versus PBS 

¶ p<0.05: 6 weeks and 9 weeks versus 2 weeks 

# p<0.05: BALB/c versus C57BL/6 

 

 

3. Epithelial Remodelling: Goblet Cells 

Exposure to OVA resulted, comparably in both strains, in a significant increase in goblet cells 

from 2 weeks onward (Figure 4A/5A). This increase persisted after 6 and 9 weeks (Figure 

4A). However, in both allergen-challenged C57BL/6 and BALB/c mice, the goblet cells did 

not increase any further upon prolonged challenge. 

 

 

 

Exposure time Treatment OVA- specific IgE (U/ml) 

  BALB/c  C57BL/6  

2 weeks PBS 7.60±1.02
 

2.22±0.55 

 OVA 41.75±5.28
* 

33.50±7.19
*
 

6 weeks PBS 29.11±2.54
 ¶ # 

6.38±1.80 

 OVA 96.30±10.67
* ¶ # 

49.18±9.00
* 

9 weeks PBS 23.00±1.90
 ¶ # 

3.43±1.14 

 OVA 102.20±10.63
* ¶ #

 21.83±4.01
* 
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4. Airway Smooth Muscle (ASM) 

The amount of airway smooth muscle did not change over time in the PBS-exposed mice, 

either in BALB/c or in C57BL/6 mice (Figure 4B and 5B). Exposure to OVA allergen for 2 

weeks resulted in a significant increase in ASM staining only in BALB/c mice. However, 

longer allergen exposure periods induced an increase in ASM in both strains.   

 

5. Morphometry and deposition of ECM proteins 

 

Morphometry 

The total wall area (WAt) or airway wall thickness of large-sized airways did not differ in both 

strains exposed to either 2, 6 or 9 weeks of PBS (Figure 6A). Exposure to OVA allergen for 2 

weeks resulted in a significant increase in WAt only in the BALB/c mice when compared to 

sham-exposed mice. However, longer allergen exposures induced a significant and persistent 

increase in WAt in both strains. 

Fibronectin& Collagen  

Fibronectin and collagen deposition were similarly increased in both genotypes after 6 and 9 

weeks, respectively (Figure 5C and 6B and Figure 5D and 6C).  

 

6. Airway (hyper-) responsiveness (AHR) 

BALB/c but not C57BL/6 mice developed a significant leftward shift in the dose-response 

curve to inhaled methacholine after 2 weeks OVA exposure (ANOVA; p<0.005 versus PBS; 

Figure 7 A/D). After a longer exposure period (6 or 9 weeks), no difference in the dose-

response curve was observed for both strains (Figure 7 B-C/E-F). The C57BL/6 mice were 

less responsive to methacholine than BALB/c mice. At 2 weeks the concentration of 

methacholine that caused a 250% increase in Penh from baseline in allergen-exposed 

C57BL/6 was 17.40 ± 5.92 mg/ml methacholine versus 4.69 ± 1.81mg/ml methacholine in 

BALB/c mice (p<0.05 BALB/c vs. C57BL/6).  

 

7. BALF proteins 

TGF-β1 levels in BALF were persistently increased after 2 (Protocol A) or 9 (Protocol C) 

weeks allergen exposure in both strains compared to control, PBS- exposed, mice in both 

strains (Figure 8).  
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Figure 4:  Measurement of indicators of airway remodelling with increasing duration of OVA challenge in 

C57BL/6 and BALB/c mice (solid black bars = OVA group, open bars = PBS group; n= 6-12 mice/group).  

(A) Goblet cells (PAS) (B) Airway Smooth Muscle layer (IHC) 

* p<0.05 OVA vs PBS 

 

Figure 5 (next page): Histology pictures of the airways of C57BL/6 mice challenged with OVA or PBS aerosols 

for 2 or 9 weeks (magnification pictures = x 100). An inset with higher magnitude is included. All stainings were 

performed in the BALB/c strain as well, leading to analogous results at these time points.  

(A) PAS staining to highlight goblet cells in C57BL/6 mice challenged with OVA or PBS for 2 weeks (B) IHC 

with DAB substrate to highlight the increase in ASM contractile elements (brown colour) in BALB/c mice 

challenged with OVA or PBS for 9 weeks (C) IHC with DAB substrate to highlight fibronectin deposition 

(brown colour) in C57BL/6 mice challenged with OVA or PBS for 9 weeks (D) Sirius Red staining to highlight 

collagen deposition in C57BL/6 mice challenged with OVA or PBS for 9 weeks 
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Figure 6:  Measurement of indicators of airway remodelling with increasing duration of OVA challenge in 

C57BL/6 and BALB/c mice (solid black bars = OVA group, open bars = PBS group; n= 6-12 mice/group).  

(A) Airway wall thickening (Congo Red) (B) Fibronectin deposition (IHC) (C) Collagen deposition (Sirius Red) 
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Figure 7: AHR to nebulized methacholine in sensitized BALB/c (A, B and C) and C57BL/6 mice (D, E and F) 

exposed to OVA (closed squares) during 2 weeks (A and D), 6 weeks (B and E) and 9 weeks (C and F). 

ANOVA OVA vs PBS at 2 weeks: p<0.005. 
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Figure 8: Levels of TGF-β1 in the BALF of C57BL/6 (B) and BALB/c (A) mice in sensitized to OVA and 

exposed to OVA or PBS aerosols for 2 weeks and 9 weeks.  *p<0.05 OVA vs PBS 
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DISCUSSION 

 

We here document that in the two most commonly used mouse strains to model asthma, 

C57BL/6 mice and BALB/c mice, genetic background and the duration of allergen exposure 

have a profound impact on different aspects of the resulting pathological phenotype. Although 

the acute response in both strains was predominated by eosinophilic airway inflammation, 

only the BALB/c strain developed a significant airway smooth muscle hyperplasia and AHR. 

In an attempt to mimic more closely the features of chronic asthma, the response to longer 

periods of allergen exposure was predominated by airway remodelling while inflammation 

and AHR decreased in both strains. Although other groups have earlier described strain 

differences in response to various durations of OVA aerosol exposure [9], the current study 

gives a more detailed insight into the relationship of inflammation, remodelling and 

responsiveness in the two most commonly used mouse strains. 

 

Inflammation, AHR and airway remodelling are thought to be interdependent processes. A 

large variety of mouse models focus on a limited number of characteristics of asthma to study 

the underlying pathogenesis [14;15]. To study inflammation, these models mainly rely on 

(hyper-) acute, short-term exposure protocols. The reason for this is that the use of short-term 

exposure protocols is practical but also avoids the establishment of respiratory tolerance that 

can develop after prolonged allergen exposure [11-14]. However, long-term exposure 

protocols are usually applied to study the main features of airway remodelling [4;5;14;16]. In 

these models, inflammation and lung function tests are often either absent or partially 

described [4;5;20]. We chose to provide here a comprehensive analysis encompassing not 

only the assessment of inflammation and responsiveness, but also a thorough characterisation 

of remodelling characteristics. 

 

Here, we found that inflammation and remodelling behave differently in both strains, 

especially in the acute models, based on short-term allergen exposure (Protocol A). Both 

strains developed eosinophilic inflammation, as evident from BALF analysis and 

quantification of peribronchial eosinophilia. However, airway eosinophilia was more 

pronounced in the C57BL/6 mice in the acute model. This is in line with one earlier study, 

that also found that C57BL/6 mice are more susceptible to the development of airway 

eosinophilia [21]. In contrast, Shinagawa et al. found a more pronounced eosinophilia in 

BALB/c mice after repeated (chronic) intranasal OVA instillation [9]. We presume the 
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method of antigen exposure is critical in this respect, as we administered OVA 1% by aerosol 

whereas Shinagawa et al. administered OVA 0.1% intranasally. Serum OVA-IgE levels were 

more elevated in the BALB/c mice than in C57BL/6 after prolonged OVA challenge 

(Protocols B and C) confirming earlier findings that showed that BALB/c mice are IgE – 

prone [22]. This is also underscored by the fact that BALB/c mice, but not C57BL/6, have 

measurable IgE titres already after sensitization only.   

 

In the BALB/c mice we observed a significant increase in airway smooth muscle mass (ASM) 

already after 2 weeks of OVA challenge (‘acute’ - Protocol A), in contrast to the C57BL/6 

strain, where longer durations of allergen exposure were required to obtain such an ASM 

increase. In addition, AHR was present in BALB/c mice at that time point. This histological 

observation now adds up to the earlier descriptions that inbred mouse strains exhibit 

significant genetic variability in the airway calibre and development of AHR after antigen 

sensitization and exposure [9;23]. Although the contraction of ASM is the ultimate translation 

of the asthma pathology into physiologic disturbance in patients, it remains an unresolved 

issue if a larger smooth muscle mass is really the cause of the AHR [24;25]. Some studies 

indicate a clear link between ASM and AHR in both animal models and humans, since both 

AHR and increased ASM can persist after resolution of the airway inflammation [26-28], and 

mathematical models predict that airways with increased ASM narrow to a much greater 

extent than airways with less ASM volume [29]. One could speculate that the lack of AHR 

after 2 weeks of OVA exposure in C57BL/6 mice could be related to the absence of ASM 

hyperplasia. However, other factors could be involved. Firstly, the C57BL/6 strain developed 

a certain degree of interstitial inflammation, which was earlier also reported by another group 

[30]. Secondly, the airway anatomy of both strains is different [31]. These factors could both 

be of potential relevance to explain why AHR was observed only in the BALB/c strain. 

 

Prolonged allergen challenge (Protocols B and C) results in increased fibronectin and 

collagen deposition in the airway wall in both strains which is concordant with findings 

described by other authors [20;26;32-35]. We here document that this structural remodelling 

occurs in parallel with a decrease of the inflammatory cells in the BALF compartment to 

baseline in both strains and loss of AHR in BALB/c mice. We and others previously 

described that prolonged OVA challenge in these mice results in the establishment of 

respiratory tolerance, as they are unresponsive to new sensitizations [12]. To date, the precise 

mechanisms of the development of respiratory tolerance in mice repeatedly challenged with 
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OVA aerosols have not been elucidated, and both regulatory T cell-dependent [36] and 

regulatory T cell-independent [37] mechanisms have been proposed. One factor that may be 

important in the down-regulation of allergic airway inflammation and AHR over time could 

ageing of the mice, because some studies found that the capability of T cells to differentiate 

into Th-2 cells was reduced in aging mice [38;39]. In contrast, one recent study found that 

older mice developed increased allergic inflammation, but less pronounced AHR [40]. 

Moreover, we earlier documented that mice aged over 20 weeks can easily develop Th-2 

mediated airway inflammation [12]. Thus, the precise effect of ageing on allergic airway 

disease remains a matter of debate [39-41]. 

 

The exact role of the eosinophils in remodelling, inflammation and AHR is speculative. It is 

possible that the eosinophils could contribute to the initiation of collagen synthesis by 

fibroblasts during the acute inflammatory phase [42]. In our opinion, the few remaining 

eosinophils in the bronchial wall upon prolonged allergen exposure represent a small but 

measurable fraction deemed to vanish shortly thereafter. In the BALB/c mice, the decrease of 

eosinophilic inflammation and increase of fibrosis in the airway wall occurs in parallel with 

the loss of AHR. It is thus tempting to speculate that the remodelling process could occur in 

an attempt to protect against allergen-induced AHR and inflammation. Collagen and 

fibronectin deposition could indeed increase airway wall stiffness and oppose against 

extended narrowing of the airway wall. Moreover, the sub-epithelial fibrosis could decrease 

the amount of allergen exposure by shielding off the immune system from the allergens 

(‘wash-away’ effect). 

 

TGF-β1 is a key molecule involved in the regulation of both inflammation and remodelling in 

both humans and mouse models [43-46], and therefore represents a potential therapeutic 

target of interest. Increases in TGF-β1 are a constant finding for both mouse strains used here, 

in the acute and in the chronic exposure models. It could therefore be speculated TGF-β1 is 

activated quite early as an endogenous “anti-asthma” molecule to control inflammation 

[45;46], to promote remodelling [43;44;47] and thus to inhibit AHR [48]. Previous studies 

using neutralising antibodies for TGF-β1 gave however conflicting results on its role. One 

study found that anti-TGF-β1 antibody treatment could antagonize matrix deposition, smooth 

muscle cell proliferation and mucus production without affecting the airway inflammation 

[47]. In contrast, in a recent report – based on an intranasal OVA administration- it was 
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shown that anti-TGF-β1 treatment did not inhibit remodelling, but rather induced an 

exacerbation of the allergen induced airway changes suggesting that this mediator is not per 

se responsible of airway remodelling [49]. These authors even warned against the use of 

therapeutic strategies aimed at interfering with TGF-β1.   

 

The current study has some limitations. Firstly, for measuring airway responsiveness, we used 

the whole body plethysmograph, a method that has been criticised. There is evidence that 

Penh and airway resistance do not correlate under certain conditions, although 

plethysmography remains a valuable tool for explorative analysis [19;50]. When Penh can be 

used as a surrogate for invasive measurements, it can decrease cost, time and number of 

animals required for experiments. Secondly, in this study we could not provide in-depth 

explorations into the precise mechanisms that regulate the relationship between airway 

inflammation, remodelling and responsiveness. Although the limitations of this study should 

be taken into account, the current data provide researchers with clues to choose an appropriate 

asthma model for the particular aspects of the disease they want to investigate. 

 

In conclusion, genetic background has an impact on the different aspects of the acute allergic 

phenotype. These differences are far less pronounced when studying chronic allergen 

exposure, albeit the latter models are characterized mainly by remodelling but not 

inflammation or AHR.  

 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGEMENTS: The authors greatly acknowledge Marie-Rose Mouton, Eliane Castrique, Ann 

Neessen, Indra De Borle, Christelle Snauwaert, Kathleen De Saedeleer for the technical assistance. 



 - 121 -    

REFERENCES 

 

 1.  Jeffery PK. Remodeling in asthma and chronic obstructive lung disease. Am J Respir 

Crit Care Med 2001; 164:S28-S38. 

 2.  Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From 

bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care 

Med 2000; 161:1720-45. 

 3.  Lloyd CM, Gonzalo JA, Coyle AJ, Gutierrez-Ramos JC. Mouse models of allergic 

airway disease. Adv Immunol 2001; 77:263-95. 

 4.  Kips JC, Anderson GP, Fredberg JJ, Herz U, Inman MD, Jordana M, Kemeny DM, 

Lotvall J, Pauwels RA, Plopper CG, Schmidt D, Sterk PJ, van Oosterhout AJ, Vargaftig 

BB, Chung KF. Murine models of asthma. Eur Respir J 2003; 22:374-82. 

 5.  Ramos-Barbon D, Ludwig MS, Martin JG. Airway remodeling: lessons from animal 

models. Clin Rev Allergy Immunol 2004; 27:3-21. 

 6.  Fixman ED, Stewart A, Martin JG. Basic mechanisms of development of airway 

structural changes in asthma. Eur Respir J 2007; 29:379-89. 

 7.  Holgate ST, Davies DE, Powell RM, Howarth PH, Haitchi HM, Holloway JW. Local 

genetic and environmental factors in asthma disease pathogenesis: chronicity and 

persistence mechanisms. Eur Respir J 2007; 29:793-803. 

 8.  James AL, Wenzel S. Clinical relevance of airway remodelling in airway diseases. Eur 

Respir J 2007; 30:134-55. 

 9.  Shinagawa K, Kojima M. Mouse model of airway remodeling: strain differences. Am J 

Respir Crit Care Med 2003; 168:959-67. 

 10.  Amin K, Ludviksdottir D, Janson C, Nettelbladt O, Bjornsson E, Roomans GM, Boman 

G, Seveus L, Venge P. Inflammation and structural changes in the airways of patients 

with atopic and nonatopic asthma. BHR Group. Am J Respir Crit Care Med 2000; 

162:2295-301. 

 11.  Schramm CM, Puddington L, Wu C, Guernsey L, Gharaee-Kermani M, Phan SH, Thrall 

RS. Chronic inhaled ovalbumin exposure induces antigen-dependent but not antigen-

specific inhalational tolerance in a murine model of allergic airway disease. Am J Pathol 

2004; 164:295-304. 

 12.  Van Hove CL, Maes T, Joos GF, Tournoy KG. Prolonged inhaled allergen exposure can 

induce persistent tolerance. Am J Respir Cell Mol Biol 2007; 36:573-84. 

 13.  Sakai K, Yokoyama A, Kohno N, Hamada H, Hiwada K. Prolonged antigen exposure 

ameliorates airway inflammation but not remodeling in a mouse model of bronchial 

asthma. Int Arch Allergy Immunol 2001; 126:126-34. 

 14.  Kumar RK, Foster PS. Modeling allergic asthma in mice: pitfalls and opportunities. Am 

J Respir Cell Mol Biol 2002; 27:267-72. 



 - 122 -    

 15.  Zosky GR, Sly PD. Animal models of asthma. Clin Exp Allergy 2007; 37:973-88. 

 16.  Kariyawasam HH, Robinson DS. Airway remodelling in asthma: models and 

supermodels? Clin Exp Allergy 2005; 35:117-21. 

 17.  Palmans E, Kips JC, Pauwels RA. Prolonged allergen exposure induces structural 

airway changes in sensitized rats. Am J Respir Crit Care Med 2000; 161:627-35. 

 18.  Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, Gelfand EW. 

Noninvasive measurement of airway responsiveness in allergic mice using barometric 

plethysmography. Am J Respir Crit Care Med 1997; 156:766-75. 

 19.  Finkelman FD. Use of unrestrained, single-chamber barometric plethysmography to 

evaluate sensitivity to cholinergic stimulation in mouse models of allergic airway 

disease. J Allergy Clin Immunol 2008; 121:334-5. 

 20.  Tsuchiya T, Nishimura Y, Nishiuma T, Kotani Y, Funada Y, Yoshimura S, Yokoyama 

M. Airway remodeling of murine chronic antigen exposure model. J Asthma 2003; 

40:935-44. 

 21.  Morokata T, Ishikawa J, Ida K, Yamada T. C57BL/6 mice are more susceptible to 

antigen-induced pulmonary eosinophilia than BALB/c mice, irrespective of systemic T 

helper 1/T helper 2 responses. Immunology 1999; 98:345-51. 

 22.  Hamelmann E, Tadeda K, Oshiba A, Gelfand EW. Role of IgE in the development of 

allergic airway inflammation and airway hyperresponsiveness--a murine model. Allergy 

1999; 54:297-305. 

 23.  Brewer JP, Kisselgof AB, Martin TR. Genetic variability in pulmonary physiological, 

cellular, and antibody responses to antigen in mice. Am J Respir Crit Care Med 1999; 

160:1150-6. 

 24.  O'Byrne PM, Inman MD. Airway hyperresponsiveness. Chest 2003; 123:411S-6S. 

 25.  Gil FR, Lauzon AM. Smooth muscle molecular mechanics in airway 

hyperresponsiveness and asthma. Can J Physiol Pharmacol 2007; 85:133-40. 

 26.  Leigh R, Ellis R, Wattie J, Southam DS, De Hoogh M, Gauldie J, O'Byrne PM, Inman 

MD. Dysfunction and remodeling of the mouse airway persist after resolution of acute 

allergen-induced airway inflammation. Am J Respir Cell Mol Biol 2002; 27:526-35. 

 27.  Southam DS, Ellis R, Wattie J, Inman MD. Components of airway hyperresponsiveness 

and their associations with inflammation and remodeling in mice. J Allergy Clin 

Immunol 2007; 119:848-54. 

 28.  Kariyawasam HH, Aizen M, Barkans J, Robinson DS, Kay AB. Remodeling and airway 

hyperresponsiveness but not cellular inflammation persist after allergen challenge in 

asthma. Am J Respir Crit Care Med 2007; 175:896-904. 

 29.  Moreno RH, Hogg JC, Pare PD. Mechanics of airway narrowing. Am Rev Respir Dis 

1986; 133:1171-80. 



 - 123 -    

 30.  Takeda K, Haczku A, Lee JJ, Irvin CG, Gelfand EW. Strain dependence of airway 

hyperresponsiveness reflects differences in eosinophil localization in the lung. Am J 

Physiol Lung Cell Mol Physiol 2001; 281:L394-L402. 

 31.  Thiesse JR, Namati E, de Ryck JC, Reinhardt JM, Hoffman EA, McLennan G. Anatomy 

of the normal airway tree in three strains of mice using micro-CT and pathology 

techniques. Am.J.Respir.Crit Care Med. 2007; 175: A528 

 32.  Locke NR, Royce SG, Wainewright JS, Samuel CS, Tang ML. Comparison of airway 

remodeling in acute, subacute, and chronic models of allergic airways disease. Am J 

Respir Cell Mol Biol 2007; 36:625-32. 

 33.  Ellis R, Leigh R, Southam D, O'Byrne PM, Inman MD. Morphometric analysis of 

mouse airways after chronic allergen challenge. Lab Invest 2003; 83:1285-91. 

 34.  Blyth DI, Pedrick MS, Savage TJ, Hessel EM, Fattah D. Lung inflammation and 

epithelial changes in a murine model of atopic asthma. Am J Respir Cell Mol Biol 1996; 

14:425-38. 

 35.  Temelkovski J, Hogan SP, Shepherd DP, Foster PS, Kumar RK. An improved murine 

model of asthma: selective airway inflammation, epithelial lesions and increased 

methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax 

1998; 53:849-56. 

 36.  Carson Iv WF, Guernsey LA, Singh A, Vella AT, Schramm CM, Thrall RS. 

Accumulation of Regulatory T Cells in Local Draining Lymph Nodes of the Lung 

Correlates with Spontaneous Resolution of Chronic Asthma in a Murine Model. Int 

Arch Allergy Immunol 2007; 145:231-43. 

 37.  Niu N, Le Goff MK, Li F, Rahman M, Homer RJ, Cohn L. A novel pathway that 

regulates inflammatory disease in the respiratory tract. J Immunol 2007; 178:3846-55. 

 38.  Hasegawa A, Miki T, Hosokawa H, Hossain MB, Shimizu C, Hashimoto K, Kimura 

MY, Yamashita M, Nakayama T. Impaired GATA3-dependent chromatin remodeling 

and Th2 cell differentiation leading to attenuated allergic airway inflammation in aging 

mice. J Immunol 2006; 176:2546-54. 

 39.  Gelfand EW, Joetham A, Cui ZH, Balhorn A, Takeda K, Taube C, Dakhama A. 

Induction and maintenance of airway responsiveness to allergen challenge are 

determined at the age of initial sensitization. J Immunol 2004; 173:1298-306. 

 40.  Busse PJ, Zhang TF, Srivastava K, Schofield B, Li XM. Effect of ageing on pulmonary 

inflammation, airway hyperresponsiveness and T and B cell responses in antigen-

sensitized and -challenged mice. Clin Exp Allergy 2007; 37:1392-403. 

 41.  Yagi T, Sato A, Hayakawa H, Ide K. Failure of aged rats to accumulate eosinophils in 

allergic inflammation of the airway. J Allergy Clin Immunol 1997; 99:38-47. 

 42.  Kariyawasam HH, Robinson DS. The role of eosinophils in airway tissue remodelling in 

asthma. Curr Opin Immunol 2007; 19(6):681-6. 



 - 124 -    

 43.  Lloyd CM, Robinson DS. Allergen-induced airway remodelling. Eur Respir J 2007; 

29:1020-32. 

 44.  Boxall C, Holgate ST, Davies DE. The contribution of transforming growth factor-beta 

and epidermal growth factor signalling to airway remodelling in chronic asthma. Eur 

Respir J 2006; 27:208-29. 

 45.  Schmidt-Weber CB, Blaser K. Regulation and role of transforming growth factor-beta in 

immune tolerance induction and inflammation. Curr Opin Immunol 2004; 16:709-16. 

 46.  Wan YY, Flavell RA. 'Yin-Yang' functions of transforming growth factor-beta and T 

regulatory cells in immune regulation. Immunol Rev 2007; 220:199-213. 

 47.  McMillan SJ, Xanthou G, Lloyd CM. Manipulation of allergen-induced airway 

remodeling by treatment with anti-TGF-beta antibody: effect on the Smad signaling 

pathway. J Immunol 2005; 174:5774-80. 

 48.  Alcorn JF, Rinaldi LM, Jaffe EF, van LM, Bates JH, Janssen-Heininger YM, Irvin CG. 

Transforming growth factor-beta1 suppresses airway hyperresponsiveness in allergic 

airway disease. Am J Respir Crit Care Med 2007; 176:974-82. 

 49.  Fattouh R, Midence G, Arias K, Johnson JR, Walker TD, Goncharova S, Souza KP, 

Gregory RC, Lonning S, Gauldie J, Jordana M. TGF-{beta} Regulates House Dust 

Mite-induced Allergic Airway Inflammation but not Airway Remodeling. Am J Respir 

Crit Care Med 2008; 177(6):593-603. 

 50.  Glaab T, Ziegert M, Baelder R, Korolewitz R, Braun A, Hohlfeld JM, Mitzner W, Krug 

N, Hoymann HG. Invasive versus noninvasive measurement of allergic and cholinergic 

airway responsiveness in mice. Respir Res 2005; 6:139. 

 

  

 
 

 

 
 
 
 
 

 
 
 
 
 
 


