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Comparison of advanced imputation algorithms for detection
of transportation mode and activity episode using GPS data

Tao Feng and Harry J.P. Timmermans

Urban Planning Group, Department of the Built Environment, Eindhoven University of Technology,
Eindhoven, The Netherlands

ABSTRACT

Global Positioning System (GPS) technologies have been
increasingly considered as an alternative to traditional travel
survey methods to collect activity-travel data. Algorithms applied
to extract activity-travel patterns vary from informal ad-hoc
decision rules to advanced machine learning methods and have
different accuracy. This paper systematically compares the relative
performance of different algorithms for the detection of
transportation modes and activity episodes. In particular, naive
Bayesian, Bayesian network, logistic regression, multilayer
perceptron, support vector machine, decision table, and C4.5
algorithms are selected and compared for the same data
according to their overall error rates and hit ratios. Results show
that the Bayesian network has a better performance than the
other algorithms in terms of the percentage correctly identified
instances and Kappa values for both the training data and test
data, in the sense that the Bayesian network is relatively efficient
and generalizable in the context of GPS data imputation.
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1. Introduction

The application of Global Positioning System (GPS) technologies in the form of GPS-

enabled smart phones and GPS stand-alone devices to collect activity-travel data has

increased exponentially in recent years. A portfolio of recent studies from across the

world is documented in Rasouli and Timmermans (2014). Whereas most applications

have been concerned with collecting one or two day activity-travel data, the goal of

some other projects has been much more ambitious in that data were collected for

several consecutive weeks (Moiseeva, Jessuren, and Timmermans 2010) or in the contexts

of national travel surveys (Marchal and Pham 2013; Feng and Timmermans 2013b). Con-

sidering this substantial interest in the application of GPS technology, surprisingly little is

known about the relative performance of imputation algorithms for transportation mode

and activity episode detection. Different degrees of accuracy have been reported in the lit-

erature, but these numbers are difficult to compare because spatial settings have a direct

bearing on the discriminatory power of GPS information. Traces in high density,
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congested urban areas with high rise buildings, are more likely to contain errors compared

to traces in rural, uncongested areas. Similarly, differences in speeds and accelerations of

different transportation modes will be less in congested urban areas. Thus, it is consider-

ably more difficult to detect activity-travel patterns in these urban settings. Although

prompted recall surveys have been used to validate imputed activity-travel data, these

surveys involve additional effort and, potentially, human errors (Bonsall et al. 2011;

Feng and Timmermans 2013a). Therefore, it is essential to improve current algorithms

of GPS data imputation and examine their relative performance.

The main purpose of GPS data imputation is to detect transportation modes and/or

activity episodes. Different procedures have been proposed in the literature to identify

activity-travel patterns. A common approach is to detect activities and trips in separated

steps. First, trip ends are detected to divide the full sequence into segments, and then the

transportation mode for each trip segment is inferred (Stopher andWargelin 2010). Dwell

time is normally used to identify trip ends. This sequential procedure involves the risk that

any error in detecting trip ends may propagate into the process of mode detection. As an

alternative, one can detect transportation mode and activity episode simultaneously.

Activity episodes have a different pattern from travel episodes because activity episodes

are either characterized by close-to-zero speeds (Schönfelder et al. 2005; Tsui and

Shalaby 2006) or bundles of GPS points (Zheng and Xie 2008). The methods we

compare in this paper simultaneously detect transportation mode and activity episode.

Imputation algorithms reported in the literature vary from informal ad-hoc approaches

(Wolf, Guensler, and Bachman 2001; Chung and Shalaby 2005; Du and Aultman-Hall

2007) to advanced machine learning methods, such as neural networks, fuzzy logic

regression, support vector machines (SVMs), and Bayesian belief networks (BN) (Byon,

Abdulhai, and Shalaby 2009; Schuessler and Axhausen 2009; Moiseeva, Jessuren, and Tim-

mermans 2010; Rudloff and Ray 2010; Byon and Liang 2014). The so-called ad-hoc rule-

based approaches in general involve a sequential process based on some revealed pattern

or correlations, which are extracted empirically from specific data. One common problem

of these methods concerns the question to what extent the rules obtained from one case

can be generalized to another. Designing the rules may become an issue with increasing

dimensionality of the problem and its complexity. The system might become quite sensi-

tive to any new rule. Moreover, there is no guarantee that optimal rules have been applied,

while the rules may not be exclusive and exhaustive (Bohte and Maat 2009). As an alterna-

tive, machine learning algorithms are potentially more flexible in handling such complex

problems. Some learning algorithms can represent complex nonlinear relationships

between input and output variables very well (Mehri 2013).

Several representative machine learning algorithms have been applied or discussed in

studies of GPS data imputation, including neural networks (Gonzalez et al. 2008), BN

(Moiseeva, Jessuren, and Timmermans 2010; Feng and Timmermans, 2013b), fuzzy logis-

tic regression (LR) (Tsui and Shalaby 2006; Schuessler and Axhausen 2009), and decision

tables (DTs) (Zheng and Xie 2008). Byon, Abdulhai, and Shalaby (2007) employed a

neural network model to detect four types of transportation modes using variables such

as speed, acceleration, average horizontal accuracy of 2d coordinate (HDOP), and

average number of satellites. Gonzalez et al. (2008) developed a mobile application

based on neural networks. A multilayer perceptron model with a back-propagation algor-

ithm was used to discriminate between car, bus, and walking.
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Other researchers have used fuzzy logic algorithms in transportation mode detection.

Tsui and Shalaby (2006) applied a fuzzy logic model using GPS-only and a combination

of GPS and geographical information system data. Similarly, Schuessler and Axhausen

(2009) used a fuzzy logic approach for mode identification and compared their results

with the Swiss Microcensus on Travel Behaviour data in terms of trip distance, trip dur-

ation, and mode distribution. Biljecki, Ledoux, and Oosterom (2013) also used fuzzy

expert systems. A disadvantage of these fuzzy logic-based models is that they require

expert rules to infer the probabilities. Therefore, we decided not to include these

models in this study.

Algorithms for GPS data imputation have been applied in different contexts, leading to

variation in reported prediction accuracy. Most studies report an average accuracy

between 70% and 85% (Biljecki, Ledoux, and Oosterom 2013). The difference in predicted

accuracy depends not only on the algorithm, but also on the number of identified trans-

portation modes, type of input variables, urban setting, and data used to validate the algor-

ithms. Imputations have been conducted using speed-based indicators, such as speed and

acceleration (Schuessler and Axhausen 2009; Rudloff and Ray 2010), spatial location-

based variables, such as distance to road and/or to bus stops (Chung and Shalaby 2005;

Bohte and Maat 2009), and/or personal profiles (Moiseeva, Jessuren, and Timmermans

2010).

Many of these decisions depend on the specific philosophy underlying the approach.

For example, the Trace Annotator system (Moiseeva, Jessuren, and Timmermans 2010)

was built under the assumption of a minimum amount of information and fast, on-line

processing of uploaded traces so that participants can wait for imputed activity-travel

diaries and immediately change them if needed. In principle, one would assume that accu-

racy is improved by adding detailed specific information.

Studies also vary in terms of the number of transportation modes, ranging from three

modes (Gonzalez et al. 2008) to a more complete list of 11 modes (Feng and Timmermans

2013b). Moreover, accuracy depends on how the imputation results were validated. Vali-

dation can be based on a comparison of imputed data and either individuals’ diaries or

historical travel survey data. In case of absence of so-called ground truth (mostly the

prompted recall data of the same individual), comparisons with historical survey data

at an aggregated level have been made (e.g., Schuessler and Axhausen 2009; Feng and Tim-

mermans 2013b), although various sources of error exist in such data. More importantly,

aggregate comparisons do not allow capturing accuracy at the individual level. Therefore, a

thorough examination of the performance of different algorithms in a same context

remains strictly necessary.

Several papers in the recent literature have touched upon the issue of varying perform-

ance of imputation algorithms (Zheng and Xie 2008; Rudloff and Ray 2010; Stenneth et al.

2011). For example, Zheng and Xie (2008) applied a decision tree model to detect four

types of modes using cellular phone data because of the superiority of the model relative

to three other algorithms. Rudloff and Ray (2010), however, selected a LR model because it

generates probabilities for each mode, even if its prediction accuracy is slightly lower than

that of other methods. However, these studies have involved either a limited number of

transportation modes (Zheng and Xie 2008; Stenneth et al. 2011) or a limited number

of input variables (Rudloff and Ray 2010). Therefore, in this paper we systematically evalu-

ate the relative performance of different algorithms for GPS data imputation. Nine types of
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transportation modes and activity episode are included. Seven representative algorithms

which have been applied and/or discussed in the literature are compared: the naive Baye-

sian classifier (NB), BN, LR models, multilayer perceptron (MP) networks, SVM, DTs and

the C4.5 algorithm (C45). Imputation results of these methods are compared using a

sample of GPS data collected in the Netherlands.

The remainder of the paper is organized as follows: Section 2 discusses the basic prin-

ciples underlying each algorithm. Section 3 then introduces the GPS data source that was

used to compare the algorithms. Section 4 presents the results. Finally, Section 5 summar-

izes and concludes this paper.

2. Algorithms

In general, the imputation of activity episodes and transportation modes can be viewed as

a nonlinear classification problem. Many algorithms for classification can be applied.

Here, we select seven types of algorithms for comparison. The interrelationship

between the input and output variables is established in different ways in these algorithms.

The list of algorithms is shown in Table 1. In the following section, we will briefly describe

these algorithms.

Because the purpose is to detect transportation modes, the transportation mode is the

dependent variable with discrete values, y. We use the vector Y to indicate the dependent

variable and X to indicate the N independent variables.

Xn = (x1, x2, . . . , xn), n [ N. (1)

Assume y has K possible values, expressed as yk, k [ K , where K is the total number of

transportation modes. The independent variables are input variables based on the GPS

traces and possibly other data sources. Each independent variable may have a different

number of categories.

2.1. Naive bayesian

The Naive Bayes algorithm is a classification algorithm based on Bayes rule which assumes

that the probability of output variable Y equals to certain value yk is dependent on the

probability of X, p(Y = yk|X). The Naive Bayes algorithm assumes that the attributes,

(x1, x2, . . . , xn), are all conditionally independent of one another, given Y. The value of

this assumption is that it dramatically reduces the number of parameters to be estimated.

A naive Bayes classifier considers all these features to contribute independently to the

probability. The probability model for a classifier is a conditional model over a dependent

Table 1. List of algorithms and parameter settings.

Id Algorithms

1 Bayesian Network (BN)
2 Naive Bayesian (NB)
3 Logistic Regression (LR)
4 Multilayer Perceptron (MP)
5 Decision Table (DT)
6 Support Vector Machine (SVM)
7 C4.5 (C45)
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class variable Y with a small number of outcomes or classes, conditional on several inde-

pendent variables X1 through Xn.

p(X1, . . . , Xn|Y) = p(X1|Y)p(X2|Y) . . . (Xn|Y). (2)

The expression for the probability that Y will take on its kth possible value, yk, accord-

ing to Bayes rule, is then

p(Y = yk|X) =
p(Y = yk)p(X|Y = yk)

∑

j p(Y = yj)p(X|Y = yj)
. (3)

The problem is that if the number of features N is large or when a feature can take on a

large number of values, then basing such a model on probability tables is infeasible. There-

fore, using Bayes theorem, a more tractable model can be reformulated as follows:

p(Y|X1, . . . , Xn) =
P(Y)P(X1, . . . , Xn|Y)

P(X1, . . . , Xn)
. (4)

The parameters in the Naive Bayes model can be estimated using the maximum like-

lihood method.

2.2. Bayesian network

A BN is a graphical representation of probabilistic causal information incorporating sets of

conditional probability tables. It can be considered an enhanced naïve Bayesian model by

relaxing the assumption of independent distributions in that BN consider the joint prob-

ability of an attribute with its parent attributes, while the naive Bayesian assume all vari-

ables are independent. Thus, a BN represents all factors deemed potentially relevant for

observing a particular outcome.

The model is described qualitatively by directed acyclic graphs where nodes and edges

represent variables and dependencies between variables. The nodes where the edge orig-

inates and ends are called the parent and the child, respectively. Because of the statistical

characteristics of BN for probabilistic inference, the probability of each value of a node can

be computed when the values of the other variables are known. In a Bayesian network,

each variable is conditionally independent of its non-descendent given the state of its

parents. That is, if Xi is a variable with parents parents(Xi), all variables that are not des-

cendants of Xi are conditionally independent of Xi given parents(Xi). Since independence

among the variables is clearly defined, not all joint probabilities in the Bayesian system

need to be calculated, which provides an efficient way to compute the posterior

probabilities.

A BN considers the joint probability of an attribute with its parent attributes. Suppose

the set of variables in a BN is (X1, X2, . . . , Xn) and that parents (Xi) denotes the set of

parents of the node Xi in the BN. Then, the joint probability distribution for

(X1, X2, . . . , Xn) can be calculated from the product of individual probabilities of the

nodes:

p(X1, X2, . . . , Xn) =
∏

N

n=1

p(Xi|parents(Xi)) . (5)
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The network is represented as a directed graph, together with an associated set of prob-

ability tables. In our case, the Bayesian network measures the interrelationship between

spatial and temporal factors (input), and activity-travel pattern (output), that is, transpor-

tation modes and activity episode. All the input variables are considered as child nodes of

the MODE, which labels either an activity episode or one of the transportation modes. The

parameters are estimated using the maximum likelihood method when the network struc-

ture is determined.

2.3. Logistic regression

Logistic regression is a form of regression analysis used for predicting the outcome of

a categorical dependent variable based on one or more predictor variables. The prob-

abilities describing the possible outcome of a single trial are modeled as a function of

explanatory variables using a logistic function. Logistic regression assumes a para-

metric form for the distribution p(Y|X), and directly estimates its parameters from

the training data.

In the past, different types of models have been developed as an extension of the basic

LR model. The multinomial LR model is such a model which generalizes LR by allowing

more than two discrete outcomes. That is, it is a model that is used to predict the prob-

abilities of the different possible outcomes of a categorically distributed dependent vari-

able, given a set of independent variables.

In the general case of a linear classification rule, the probability of class k, k [ K ., with

the exception of the last class, is equal to

p(Y = yk|X) =
exp(wk0 +

∑n
i=1 wkiXi)

1+
∑K−1

j=1 exp(wk0 +
∑n

i=1 w jiXi)
. (6)

wherew is the weight parameter to be estimated,w [W, W = (w0, w1, . . . , wn). The

last class has probability

1−
∑

k−1

j=1

pj(xi) =
1

∑k−1
j=1 exp(wk0 +

∑n
i=1 w jiXi)

. (7)

It can be seen that when Y takes on K possible values, K−1 different linear expressions

are formulated to capture the distributions for the different values of Y. The distribution

for the final, Kth, value of Y is calculated as one minus the probabilities of the first K−1

values.

To estimate the parameters of LRmodels, the (negative) multinomial log-likelihood can

be formulated as:

L = −
∑

n

i=1

∑

k−1

j=1

(Yij ln (Pj(xi))+ 1−
∑

k−1

j=1

Yij

( )

· ln(1−
∑

k−1

j=1

Pj(xi)

( )

. (8)

However, in practice over-fitting the training data is a problem that can arise in LR,

especially when data are very high dimensional and the training data are sparse. One

approach to reducing over-fitting is creating a modified log-likelihood function which
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penalizes large values of W. The penalized log-likelihood function can be expressed as:

L = −
∑

n

i=1

∑

k−1

j=1

(Yij ln (Pj(xi))+ 1−
∑

k−1

j=1

Yij

( )

· ln(1−
∑

k−1

j=1

Pj xi( )

( )

+ ridge ·W2
. (9)

The ridge is a parameter which needs to be given in advance in the log-likelihood func-

tion. In order to find the matrix W for which L is minimized, a Quasi-Newton Method is

used to search for the optimized values of the m∗(k−1) variables.

2.4. Multilayer perceptron

A MP is a feedforward artificial neural network model that maps sets of input data onto a

set of appropriate output. An MP consists of multiple layers of nodes in a directed graph,

with each layer fully connected to the next one. Except for the input nodes, each node is a

neuron (or processing element) with a nonlinear activation function. MP utilizes a super-

vised learning technique called back-propagation for training the network.

The learning occurs in the perceptron by changing connection weights after each piece

of data is processed, based on the amount of error in the output compared to the expected

result.

el(n) = dl(n)− d
′

l(n), (10)

e(n) =
1

2

∑

l

e2l (n). (11)

where d is the target value; d′ is the value produced by the perceptron (functions); e is

the error at the lth iteration; e is the overall amount error which is used to compare with

the threshold value.

Due to the fact the neural network with one hidden layer is in principle able to simulate

all types of nonlinear problems, we set one hidden layer in the network model. The acti-

vation function used the sigmoid function, as follows:

∅(yi) =
1

(1+ e−vi)
, (12)

where yi is the output of the ith node (neuron) and vi is the weighted sum of the input

synapses.

Since the weights are obtained through an iterated calculation process, some par-

ameters need to be configured in advance. Here, we set the momentum and learning

rate as 0.2 and 0.3, respectively. The training time was set as 500, which means that the

calculation stops when the number of epochs reaches 500. The final model structure we

obtained in this paper has 25 neurons in the hidden layer.

2.5. Decision tables

A DT is a two-dimensional table that shows the action to be taken following a series of

related decisions. In general, a DT is composed of rows and columns, presented as a

matrix. Each column corresponds to a single rule, with the rows defining the conditions
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and actions of the rules. Different algorithms and underlying statistical criteria may be

used to construct the DT. In this study, we used an algorithm, which searches the space

of attribute subsets by greedy hill-climbing augmented with backtracking. The perform-

ance of attribute combinations used in the DT is evaluated based on the overall root

mean squared error (RMSE) and the accuracy of different classes.

In this paper, we use the BestFirst algorithm to construct the DT. The BestFirst algor-

ithm was proposed by Kohavi to search the space of attribute subsets by greedy hill-climb-

ing augmented with a backtracking facility. Details can be found in Kohavi (1995).

2.6. Support vector machines

SVMs are supervised learning models with associated learning algorithms that analyze

data and recognize patterns. The basic SVM takes a set of input data and predicts, for

each given input, which of two possible classes forms the output, making it a non-prob-

abilistic binary linear classifier. Given a set of training examples, each marked as belonging

to one of two categories, a SVM training algorithm builds a model that assigns new

examples into one category or the other. A SVMmodel is a representation of the examples

as points in space, mapped so that the examples of the separate categories are divided by a

clear gap that is as wide as possible. New examples are then mapped into that same space

and predicted to belong to a category based on which side of the gap they fall on.

SVM performs a nonlinear classification using a kernel trick, mapping inputs into high-

dimensional feature spaces. The kernel function normally takes one of the forms: linear,

polynomial, radial basis, and sigmoid function. We selected the polynomial function in

the subsequent analysis. In addition, we used a sequential minimal optimization algorithm

to train a support vector classifier. The algorithm globally replaces all missing values and

transforms nominal attributes into binary ones. It also normalizes all attributes, which

results in the coefficients in the output based on the normalized data rather than original

data. Multi-class problems are solved using pairwise classification. To obtain proper prob-

ability estimates, the option that fits LR models to the outputs of the SVM is used. In the

multi-class case, the predicted probabilities are coupled using Hastie and Tibshirani’s pair-

wise coupling method (Hall et al. 2009).

2.7. C4.5

C4.5 builds decision trees from a set of training data using the concept of entropy. The

training data are a set S = s1, s2, . . . , sn of already classified samples. Each sample si con-

sists of a p-dimensional vector (x1,i, x2,i, . . . , x p,i), where the xj represents attributes or fea-

tures of the sample, as well as the class in which si falls. At each node of the tree, C4.5

chooses the attribute of the data that most effectively splits its set of samples into

subsets enriched in one class or the other. The splitting criterion is the normalized infor-

mation gain (difference in entropy).

entropy(j|�s) =
sj
∣

∣

∣

∣

�s| |
log

sj
∣

∣

∣

∣

�s| |
, (13)
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entropy(�s) = −
∑

n

j=1

sj
∣

∣

∣

∣

�s| |
log

sj
∣

∣

∣

∣

�s| |
, (14)

Gain(�s, j) = entropy(�s− entropy(j|�s)). (15)

Then, the attribute with the highest normalized information gain is chosen to make the

decision.

C4.5 has been considered as a very efficient classifier in many other applications (Kot-

siantis 2007). We will compare C4.5 with other major algorithms in this paper in the

context of transportation mode detection.

3. Data

The data used in this paper were collected from a small group of individuals as reported in

a pilot study (Moiseeva, Jessuren, and Timmermans 2010). Eight individuals living in

Eindhoven, The Netherlands, carried the GPS logger Bluetooth A + during a 6–8 week

period. The GPS devices were configured to record data every 3 s (epoch). In addition,

to include more transportation modes, we collected activity and travel data specifically

for the trips by tram and metro in the city of Rotterdam. During the survey period,

1554 trips were identified by the system and confirmed by the respondents. The confir-

mation of the real activity-travel diaries was conducted by face-to-face interview. Partici-

pants were invited to see their GPS traces on a map using computers. A list of prepared

questions regarding the activity-travel diaries, such as the timing (start time and end

time) and locations of activities and trips, transportation mode, and activity types were

asked to answer. In this way, data that were confirmed as the ground truth were used

in this paper to evaluate the performance of different imputation algorithms.

In total, 53,258 data points were used for model calibration and validation. The data

points here meant the GPS traces at the epoch level (every 3 s in this paper). It is different

from the ones used in other studies (e.g. Zheng and Xie 2008), which were based on the

data at trip level. The imputation at trip level normally involves the requirement of a large

size of sample apart from the activity/trip segmentation. In this paper, however, we

examine the imputation of transportation mode and activity episode only, without addres-

sing the segmentation issue of activities and trips. In real applications regarding segmen-

tation, we applied merge rules to construct the sequence of activities and trips according to

the imputation results at the epoch level. In this sense, therefore, the amount of data is

considered sufficient to ensure the quality of model estimation and calibration.

The GPS traces include information such as date, time, longitude, latitude, speed, dis-

tance, accuracy of the measurement (like Position accuracy of 3d coordinate (PDOP),

HDOP, etc.), and number of satellites. To impute transportation modes, the three-

second epoch data were averaged within a time window. Furthermore, additional statisti-

cal indicators were generated as input variables of the prediction models. Previous studies

have indicated that including more variables, which are relevant to the detection of trans-

portation modes, can help increase the imputation accuracy (Bohte and Maat 2009; Moi-

seeva, Jessuren, and Timmermans 2010; Stopher and Wargelin 2010). Thus, we included

variables with regard to speed, spatial distance to networks, accuracy of the GPS log
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measurement, and personal profiles. These variables have been used successfully and dis-

cussed in previous studies (e.g. Moiseeva, Jessuren, and Timmermans 2010; Feng and

Timmermans 2013b). A detailed list of variables is shown in Table 2.

The same input and output variables were used for all algorithms. Thus, each model is

based on 18 input variables and 1 output variable, which is named MODE. The dependent

variable differentiates 10 transportation modes and the activity episode.

The data were divided into two sets: training data and test data. We randomly draw

75% of the sample as the training dataset and used the remaining 25% as the test

dataset. Table 3 shows the partitions of the sample across different transportation modes.

4. Results and analyses

The relative performance of the different algorithms was assessed in terms of the percentage

correctly classified instances (CCI), percentage incorrectly classified instances, Kappa value,

and RMSE. These statistics were calculated separately for the training and the test data.

4.1. Correctly identified instances, Kappa values and RMSE

Table 4 presents the results of the predictive accuracy of the various algorithms. The kappa

statistic measures the agreement in prediction with the true class, with 0 and 1 signifying

complete disagreement and complete agreement, respectively. A larger Kappa value indi-

cates better model performance. Taking the results of the training data as an example, one

can see that the Kappa values for C4.5 and BN are higher than for other algorithms, 0.997

and 0.998, respectively. All algorithms, except NB, have a Kappa value higher than 0.9,

indicating a good performance of most of algorithms. A similar level of Kappa is achieved

for the test data.

The CCI value indicates the overall accuracy of an algorithm. Results show that, for the

training data, C4.5 and BN have a higher CCI (99.825% and 99.805%) than the other

algorithms, indicating a better prediction accuracy. The LR model (94.865%) results in

Table 2. Attribute variables for GPS data imputation.

Variable names Content

Input STDDEVSPEED Standard deviation of speed
AVGSPEED Average speed
AVGACC Average acceleration
MAXSPEED Maximum speed
MAXACC Maximum acceleration
ACCUMDISTANCE Accumulated distance
RRDIST Distance to road line
RTDIST Distance to tram line
RMDIST Distance to metro line
USEDSAT Number of used satellites
VIEWSAT Number of viewed satellites
VALID GPX fix type
PDOP Position accuracy of 3d coordinate
HDOP Horizontal accuracy of 2d coordinate
CAROWN Yes if the respondent has a car, no otherwise
BIKEOWN Yes if the respondent has a bike, no otherwise
MOTORBIKEOWN Yes if the respondent has a motorbike, no otherwise

Output MODE Activity episode, train, walk, bike, car, bus, motorbike, running, tram, and metro
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a similar CCI as the SVM model (94.667%) for the training data. Except for the BN and

C45s, the DT model (98.886%) has a higher CCI than the other models, for both training

and test data. This finding is consistent with conclusions in previous research where the

DT algorithm normally resulted in higher prediction accuracy. For both datasets, NB

has the lowest CCI of all algorithms. This suggests that the NB is unable to represent

the complex relationships between input and output variables, due to its assumption of

independence. Consistent with the finding for the training dataset, both BN and C4.5

yield a higher CCI than other algorithms for the test data, indicating that both these algor-

ithms outperform others.

The RMSE indicates the difference between predicted values and true values, a smaller

value indicating higher accuracy. As presented in Table 4, for both the training and test

data, the BN and C4.5 always result in the lowest level of error of all algorithms. SVM

however gives larger errors than others. It means that SVM, at least for the present par-

ameter settings, is not a better option than the other algorithms to detect transportation

mode using GPS data.

Examining differences in accuracy between two datasets, results show that for all algor-

ithms the Kappa and CCI values for the test data are lower than for the training data. This

is understandable from the perspective of generalizability. BN and C4.5 have a similar level

CCI for the training data (99.805% vs. 99.825%), while for the test data the BN results in a

slightly higher CCI than C4.5. It suggests that the BN may be more robust.

Apart from prediction accuracy, the complexity of algorithms differs. The NB has a

simple network structure, while the C45 results in complicated decision trees, with 214

leaves and 413 trees in total. This means that although C4.5 has a good predictability,

in practice calculations can get very complex particularly if some of the values are uncer-

tain and/or if many outcomes are linked. It might be that not all rules are representative.

4.2. Hit ratios

The results of hit ratios show the prediction accuracy for each transportation mode and

the activity episode. Table 5 presents the results for the training data. It shows that the

Table 3. Selection of training and test datasets.

Count Percentage

Training data 39,942 75
Test data 13,316 25
Total 53,258 100

Table 4. Prediction accuracy and model performance.

Algorithms

Training data Test data

CCI (%) ICI (%) Kappa RMSE CCI (%) ICI (%) Kappa RMSE

BN 99.805 0.195 0.997 0.0185 99.474 0.526 0.993 0.0316
NB 86.966 13.034 0.822 0.0152 86.648 13.352 0.818 0.1533
LR 94.865 5.135 0.926 0.0905 94.510 5.490 0.921 0.0925
MP 97.118 2.882 0.958 0.0675 96.816 3.184 0.954 0.0715
DT 98.886 1.114 0.984 0.0428 98.100 1.900 0.973 0.1029
SVM 94.667 5.333 0.923 0.2718 94.458 5.542 0.920 0.2719
C4.5 99.825 0.175 0.998 0.0180 99.309 0.691 0.990 0.0368
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BN predicts four transportation modes – bike, motorbike, tram, and metro – with

100% accuracy, while others modes are predicted with an accuracy equal to or

higher than 99.7%. The hit ratio of the BN classifier is comparable to that of the

other algorithms.

The C4.5 and DT also achieve a high accuracy, but not as good as the BN model. Other

algorithms perform less well. For example, the NB model has a low hit ratio for bike

(0.799), while the SVM has a low hit ratio for running (0.654) and walking (0.76). In

addition, both the LR (0.758) and the MP (0.743) result in low predictive accuracy for

the bus mode, while the LR did not predict well the running mode (0.76). Table 6 presents

the results for the test data. Similar conclusions may be drawn for this data. The compari-

son of the hit ratios between the training and test data shows that the hit ratios for each

facet (activity episode or transportation mode) do not decrease much across all algorithms

(as shown in Table 7). However, if we average the value difference (hit ratios) between

training and test data for each algorithm across all transportation modes, some interesting

results can be found. First, BN yields the least average difference (0.0063), indicating the

BN is relatively stable than other algorithms. In another words, the BN model may be

more generalizable than other algorithms in real predictions. In addition, C4.5 results

in a larger level of difference (0.0095) than BN, although, as presented above, both algor-

ithms have relatively higher accuracy than others. This means the C4.5 is less generalizable

than the BN.

On the other hand, the DT has the largest result of difference (0.0212) among all algor-

ithms, indicating that DT is less generalizable than other algorithms. The major portion of

such a large difference is attributed to the walking mode (0.971 for training data and 0.948

for test data). This means that DT may result in less accurate predictions, especially in the

detection of the walking mode. Considering the fact that several existing studies attempted

to use DT to detect transportation modes, one should note that DT may not be a good

option considering the accuracy of real predictions.

Table 5. Hit ratios for training data by transportation mode and activity episode.

A B C D E F G H I J

BN 0.997 0.997 0.999 1 0.999 0.999 1 0.999 1 1
NB 0.848 0.969 0.934 0.799 0.836 0.926 0.949 0.98 1 0.983
LR 0.989 0.991 0.818 0.928 0.891 0.758 0.947 0.76 1 1
MP 0.998 0.974 0.916 0.926 0.965 0.743 0.989 0.985 1 1
DT 0.999 0.971 0.958 0.985 0.979 0.99 0.991 0.974 0.982 0.98
SVM 0.987 0.999 0.76 0.925 0.876 0.888 0.971 0.654 1 1
C4.5 1 0.999 0.993 0.997 0.997 0.994 0.998 0.999 0.996 0.99

Note: A-Activity episode; B-Train; C-Walking; D-Bike; E-Car; F-Bus; G-Motorbike; H-Running; I-Tram; J-Metro.

Table 6. Hit ratios for test data by transportation mode and activity episode.

A B C D E F G H I J

BN 0.996 0.993 0.988 0.997 0.994 0.977 0.999 1 1 0.983
NB 0.849 0.964 0.942 0.789 0.826 0.9 0.946 0.963 1 0.975
LR 0.99 0.994 0.815 0.915 0.882 0.733 0.935 0.752 1 1
MP 0.998 0.976 0.896 0.926 0.962 0.708 0.987 0.974 1 1
DT 0.998 0.948 0.939 0.973 0.97 0.973 0.982 0.963 0.892 0.959
SVM 0.987 0.998 0.763 0.931 0.869 0.844 0.968 0.641 0.985 1
C4.5 0.998 0.998 0.974 0.992 0.987 0.98 0.991 0.956 1 0.992

Note: A-Activity episode; B-Train; C-Walking; D-Bike; E-Car; F-Bus; G-Motorbike; H-Running; I-Tram; J-Metro.
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5. Conclusions

The use of GPS technologies to collect activity-travel data and reduce respondent burden

ultimately depends on the accuracy of imputation algorithms. Various algorithms have

been suggested in the literature, including the traditional ad hoc rules and machine learn-

ing algorithms. It is difficult to assess the relative performance of these algorithms because

reported accuracy depends on the number of input variables, the number of transportation

modes, the data used for validation, and perhaps most importantly on urban context. Little

is known about the relative performance of different algorithms. Although several studies

touch upon this issue, none addressed the performance of different algorithms in a suffi-

cient and systematic manner.

In this paper, we selected several representative machine learning algorithms and eval-

uated their relative performance for GPS data imputation. In particular, we compared the

naive Bayesian, Bayesian network, LR, MP, SVM, DT, and C45.We implemented all algor-

ithms in the same context and simultaneously detected transportation modes and activity

episode.

Results show that the Bayesian network outperforms the other algorithms in terms of

the percentage correctly identified instances and Kappa for both the training and test data.

C4.5 results in a similar level of prediction accuracy. However, the Bayesian network seems

more robust. The BN also has the highest hit ratio.

The superiority of the Bayesian network model in this study suggests that it should be a

serious candidate in any application. Besides the imputation accuracy, BN has a flexible

network structure, which is based on the conditional probabilities between different vari-

ables. Different from the imputations in a way of black-box, BN allows identify the level of

probabilities in the imputation. The imputation output for each transportation mode

therefore has a certain level of probability associated, providing a way of measuring the

level of uncertainty.

It goes without saying that, although this study has systematically compared the per-

formance of different imputation algorithms for the same data set, all data relate to the

same area. Additional comparative studies are thus needed to better understand the rela-

tive performance of different algorithms in different spatial settings and assess the general-

izability of our results. One may also examine the performance using a large dataset with a

special focus on the detection of activity episode because the activity pattern can be differ-

ent in the context of indoor and outdoor movement. To that end, a larger sample of the

ground truth data associated with GPS traces is needed.

In addition, other algorithms that have not been explored yet may be included. For

example, the relatively simple heuristic algorithms may be used regarding their popularity.

Table 7. Difference of hit ratios between training and test data.

A B C D E F G H I J Average

BN 0.001 0.004 0.011 0.003 0.005 0.022 0.001 −0.001 0 0.017 0.0063
NB −0.001 0.005 −0.008 0.01 0.01 0.026 0.003 0.017 0 0.008 0.007
LR −0.001 −0.003 0.003 0.013 0.009 0.025 0.012 0.008 0 0 0.0066
MP 0 −0.002 0.02 0 0.003 0.035 0.002 0.011 0 0 0.0069
DT 0.001 0.023 0.019 0.012 0.009 0.017 0.009 0.011 0.09 0.021 0.0212
SVM 0 0.001 −0.003 −0.006 0.007 0.044 0.003 0.013 0.015 0 0.0074
C4.5 0.002 0.001 0.019 0.005 0.01 0.014 0.007 0.043 −0.004 −0.002 0.0095
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Moreover, the fuzzy logic-based models seem valuable to examine. One can apply the

expert rules, which were identified successfully in existing studies (e.g. Tsui and Shalaby

2006), into the same context we implemented for the other algorithms. Apart from

that, improvements of existing algorithms can be in the hybrid use of different classifiers,

such as random forests (Breiman, 2001) that rely on ensembles of predictors.
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