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Comparison of Airborne Hyperspectral Data and
EO-1 Hyperion for Mineral Mapping
Fred A. Kruse, Member, IEEE, Joseph W. Boardman, and Jonathan F. Huntington

Abstract—Airborne hyperspectral data have been available
to researchers since the early 1980s and their use for geologic
applications is well documented. The launch of the National Aero-
nautics and Space Administration Earth Observing 1 Hyperion
sensor in November 2000 marked the establishment of a test
bed for spaceborne hyperspectral capabilities. Hyperion covers
the 0.4–2.5- m range with 242 spectral bands at approximately
10-nm spectral resolution and 30-m spatial resolution. Analytical
Imaging and Geophysics LLC and the Commonwealth Scientific
and Industrial Research Organisation have been involved in
efforts to evaluate, validate, and demonstrate Hyperions’s utility
for geologic mapping in a variety of sites in the United States and
around the world. Initial results over several sites with established
ground truth and years of airborne hyperspectral data show
that Hyperion data from the shortwave infrared spectrometer
can be used to produce useful geologic (mineralogic) informa-
tion. Minerals mapped include carbonates, chlorite, epidote,
kaolinite, alunite, buddingtonite, muscovite, hydrothermal silica,
and zeolite. Hyperion data collected under optimum conditions
(summer season, bright targets, well-exposed geology) indicate
that Hyperion data meet prelaunch specifications and allow subtle
distinctions such as determining the difference between calcite and
dolomite and mapping solid solution differences in micas caused
by substitution in octahedral molecular sites. Comparison of
airborne hyperspectral data [from the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS)] to the Hyperion data establishes
that Hyperion provides similar basic mineralogic information,
with the principal limitation being limited mapping of fine spectral
detail under less-than-optimum acquisition conditions (winter
season, dark targets) based on lower signal-to-noise ratios. Case
histories demonstrate the analysis methodologies and level of
information available from the Hyperion data. They also show
the viability of Hyperion as a means of extending hyperspectral
mineral mapping to areas not accessible to aircraft sensors.
The analysis results demonstrate that spaceborne hyperspectral
sensors can produce useful mineralogic information, but also
indicate that SNR improvements are required for future space-
borne sensors to allow the same level of mapping that is currently
possible from airborne sensors such as AVIRIS.

Index Terms—Cuprite, Nevada, Death Valley, California, Earth
Observing 1 (EO-1) Hyperion, hyperspectral imagery (HSI), hy-
perspectral imaging, mineral mapping.
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I. INTRODUCTION

I
MAGING spectrometry data or hyperspectral imagery (HSI)

acquired using airborne systems have been used in the geo-

logic community since the early 1980’s and represent a mature

technology. The solar spectral range 0.4–2.5 m provides abun-

dant information about many important earth-surface minerals

[1]. In particular, the 2.0–2.5- m shortwave infrared (SWIR)

spectral range covers spectral features of hydroxyl-bearing

minerals, sulfates, and carbonates common to many geologic

units and hydrothermal alteration assemblages. Spectrally

distinct minerals such as kaolinite, alunite, muscovite, and

pyrophyllite all are important in natural resource exploration

and characterization. Previous research has proven the ability

of hyperspectral systems to uniquely identify and map these

and other minerals, even in subpixel abundances [2]–[5].

Most of these capabilities can theoretically be extended to

satellite altitudes. The launch of the National Aeronautics

and Space Administration (NASA) Earth Observing 1 (EO-1)

platform in November 2000 marks the first operational test

of NASA’s “New Millennium” technology, designed to test

a set of advanced technology in space for land imaging.

Selected Analytical Imaging and Geophysics LLC (AIG)/Com-

monwealth Scientific and Industrial Research Organisation

(CSIRO) Hyperion analysis results demonstrating mineral

mapping have previously been presented and published [6],

but new details and accuracy assessment compared to airborne

hyperspectral data are described here. Two case histories are

presented, a “winter” Hyperion dataset (Cuprite, NV), and a

“summer” Hyperion dataset (northern Death Valley, California

and Nevada). Selected SNR calculations/results for other sites

around the world are also summarized.

II. COMPARISON OF HYPERION AND AIRCRAFT

HYPERSPECTRAL SPECIFICATIONS

Imaging Spectrometers, or “Hyperspectral” sensors provide

a unique combination of both spatially contiguous spectra and

spectrally contiguous images of the earth’s surface unavailable

from other sources [2]. Research-grade airborne hyperspectral

data have been available for over 20 years [4]. Current airborne

sensors provide high spatial resolution (2–20 m), high-spectral

resolution (10–20 nm), and high SNR ( 500 : 1) data for a va-

riety of scientific disciplines.

The Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) represents the current state of the art. AVIRIS, flown

by NASA/Jet Propulsion Laboratory (JPL) is a 224-channel

imaging spectrometer with approximately 10-nm spectral reso-

lution covering the 0.4–2.5- m spectral range [7]. The sensor is
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TABLE I
AVIRIS/HYPERION SENSOR CHARACTERISTICS COMPARISON

a whiskbroom system utilizing scanning foreoptics to acquire

cross-track data. The IFOV is 1 mrad. Four off-axis double-pass

Schmidt spectrometers receive incoming illumination from the

foreoptics using optical fibers. Four linear arrays, one for each

spectrometer, provide high sensitivity in the 0.4–0.7-, 0.7–1.2-,

1.2–1.8-, and 1.8–2.5- m regions, respectively. AVIRIS is

flown as a research instrument on the NASA ER-2 aircraft at

an altitude of approximately 20 km, resulting in approximately

20-m pixels and a 10.5-km swath width. Since 1998, it has also

been flown on a Twin Otter aircraft at low altitude, yielding

2–4-m spatial resolution.

The launch of NASA’s EO-1 Hyperion sensor in November

2000 marked the establishment of spaceborne hyperspectral

mineral-mapping capabilities. Hyperion is a satellite hyper-

spectral sensor covering the 0.4–2.5- m spectral range with

242 spectral bands at approximately 10-nm spectral resolution

and 30-m spatial resolution from a 705-km orbit [8]. Hyperion

is a pushbroom instrument, capturing 256 spectra each with

242 spectral bands over a 7.5-km-wide swath perpendicular to

the satellite motion. The system has two grating spectrometers:

one visible/near-infrared (VNIR) spectrometer (approximately

0.4–1.0 m) and one SWIR spectrometer (approximately

0.9–2.5 m). Data are calibrated to radiance using both premis-

sion and on-orbit measurements. Key AVIRIS and Hyperion

characteristics are compared in Table I and discussed further

in [9].

III. SITE LOCATIONS AND DESCRIPTIONS

Cuprite, NV, located approximately 200 km northwest of

Las Vegas, NV (Fig. 1) is a relatively undisturbed acid-sulfate

hydrothermal system in volcanic rocks exhibiting well-exposed

alteration mineralogy consisting principally of kaolinite, alu-

nite, and hydrothermal silica. The geology and alteration were

previously mapped in detail [10]. Swayze [11] includes a good

geologic summary, a generalized geologic map, and detailed

mineral maps derived from 1990 and 1994 AVIRIS data.

Cuprite has been used as a geologic remote sensing test site

since the early 1980s, and many studies have been published

[2], [6], [11]–[17]. The second site, in northern Death Valley,

California and Nevada, is approximately 30 km southwest of

Cuprite at the extreme northern end of Death Valley National

Park. The geology consists principally of a Jurassic-age intru-

sion exhibiting quart–sericite–pyrite hydrothermal alteration

[18], [19]. This site has been used as a test area for imaging

spectrometers since 1983 [4], [19], [20].

This study compares mineral-mapping results of AVIRIS

data acquired June 19, 1997 (f970 619t01p02_r02) to

Fig. 1. Location map for the Cuprite and northern Death Valley sites.

Hyperion data collected March 1, 2001 (a winter col-

lection, EO12 001 060_3FCD3FCC_r1_PF1_01.L1) for

the Cuprite site. AVIRIS data collected June 9, 2000

(f000 609t01p03_r04) are also compared to Hyperion

data collected July 23, 2001 (a summer collection,

EO12 001 204_20AD20AC_r1_PF1_01.L1_A) for the northern

Death Valley site. Figs. 2 and 3 show reference image subsets

for the AVIRIS and Hyperion data.

IV. SNR COMPARISONS

The quality of digital remote sensing data is directly related to

the level of system noise relative to signal strength. This is usu-

ally expressed as SNR, a dimensionless number that describes

overall system radiometric performance [21]. System noise is

tied to sensor design and takes into account factors such as de-

tector performance/sensitivity, spatial/spectral resolution, and

noise characteristics of the system electronics. Though the noise

levels for a given sensor are generally fixed, for remote sensing

data acquisition, the signal portion of the SNR is affected by

other external factors such as solar zenith angle, atmospheric at-

tenuation and scattering, and surface reflectance, which modify

the signal available to the sensor [22].

One common means for determining an approximate SNR for

remote sensing data is to use a mean/standard deviation method

[7], [9]. This approach requires definition of a spectrally homo-

geneous area, calculation of the average spectrum for that area,

and determination of the spectrally distributed standard devia-

tion for the average spectrum. SNR are normalized to 50% re-

flectance for comparison. SNR calculated using this method are

representative of those that can be extracted directly from the

data; however, SNR for bright targets may be underestimated

because of homogeneity issues at higher SNR (increasing SNR

may result in breakdown of apparently homogeneous areas into

multiple materials, and new homogeneous areas must be se-

lected). Slightly higher SNR values could probably be obtained

through direct analysis of the data dark current signal [7], an

“Instrument SNR”; however, this is not always possible. SNR
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Fig. 2. Reference images (0.66 �m) showing (left) the AVIRIS and (right)
Hyperion coverage of the Cuprite, NV site. The site is typically described as
consisting of two hydrothermal centers [11]. These can be seen in the images as
bright areas to the right and left of the road running from northwest to southeast
across the scenes.

Fig. 3. Reference images (0.66 �m) showing (left) the AVIRIS and (right)
Hyperion coverage of the northern Death Valley, California and Nevada site.
The circular area near the center of the images is the Jurassic-age intrusion.

calculated using the mean/standard deviation method, an “Envi-

ronmental SNR,” is sensitive to acquisition conditions as men-

tioned above and, thus, should be considered a lower limit on

performance.

Analysis of approximately 14 Hyperion scenes from around

the world using the mean/standard deviation SNR method

shows that there is a strong relationship between the acquisition

time of year and the SNR of the Hyperion data [6]. Calculated

SNR for Hyperion SWIR data are higher in the summer and

lowest in the winter (Fig. 4).

This has a direct effect on spectral mineral mapping, with

lower SWIR SNR resulting in extraction of less detail (also see

AVIRIS versus Hyperion minimum noise fraction (MNF) com-

parison in Section V). Fig. 5 shows the SNR for the Cuprite

AVIRIS (June 1997) and Hyperion (March 2001) data, as well

as the calculated SNR for Hyperion data collected during July

2001 (Northern Hemisphere summer) for the northern Death

Valley site. Note that this SWIR SNR is significantly higher

than the calculated Cuprite SWIR SNR for the March 2001 data

(SWIR SNR 60 : 1 versus 25 : 1).

V. MINERAL MAPPING

A. Methods

AIG has developed methods for analysis of hyperspectral

data that allow reproducible results with minimal subjective

analysis (Fig. 6) [23]. These approaches are implemented and

documented within the “Environment for Visualizing Images”

(ENVI) software system originally developed by AIG scientists

(now an Eastman Kodak/Research Systems Inc. (RSI) com-

mercial-off-the-shelf (COTS) product) [24]. The hyperspectral

analysis methodology includes the following:

1) data preprocessing (as required);

2) correction of data to apparent reflectance using the atmo-

spheric correction software;

3) linear transformation of the reflectance data to minimize

noise and determine data dimensionality;

4) location of the most spectrally pure pixels;

5) extraction and automated identification of endmember

spectra;

6) spatial mapping and abundance estimates for specific

image endmembers.

A key point of this methodology is the reduction of data in both

the spectral and spatial dimensions to locate, characterize, and

identify a few key spectra (endmembers) that can be used to

explain the rest of the hyperspectral dataset. Once these end-

members are selected, then their location and abundances can

be mapped from the linearly transformed or original data. These

methods derive the maximum information from the hyperspec-

tral data themselves, minimizing the reliance on a priori or out-

side information.

1) Destriping for Hyperion Area Array Data: If required,

preprocessing/data cleanup may be applied to the data prior to

atmospheric correction. In the case of Hyperion data, though

radiometric corrections were applied prior to data delivery to

AIG, there was still a pronounced vertical striping pattern in the

data (visible in individual bands, but more pronounced when

using the linearly transformed data). Such striping is often seen

in data acquired using pushbroom (area array) technology (e.g.,

Airborne Imaging Spectrometer (AIS), Hyperion) and may be

caused by factors such as detector nonlinearities, movement of

the slit with respect to the focal plane, and temperature effects.

Previous destriping efforts suggest that a simple dark current

(DC) imbalance (DC bias) of the detectors across the pixel di-

rection of the detector array may explain the striping, and a

simple per-column DC offset is sufficient to correct the problem

[25].

Destriping of the Hyperion data was accomplished using

custom software (following the model of software written

for the original pushbroom imaging spectrometer (AIS) [19].

This approach adjusts each image column brightness (in all

bands) based on a calculated offset relative to the scene average

detector response. Assumptions made were that individual

detectors were reasonably well behaved (stable) and that

over the course of a data collect (“flightline”), that each of

the cross-track detectors has covered, on the average, very

similar surface materials (this second assumption is usually

valid in desert environments, but may not be for other, more

complex scenes). Implementation consisted of calculation of
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Fig. 4. Comparison of Hyperion calculated SNR for (left) “winter” data and (right) “summer” data. Filled areas indicate range of SNR for 14 Hyperion scenes.

Fig. 5. SNR Comparisons for June 1997 AVIRIS, July 2001 Hyperion, and
March 2001 Hyperion.

an average spectrum (242 bands) for each of the 256 Hyperion

detectors followed by determination of a global scene average

spectrum. Each column spectrum was then subtracted from

the global spectrum to determine offsets to be added to each

pixel in the corresponding column. Each pixel in each column

of the radiance data was then adjusted accordingly using the

calculated offset. Destriping is only required for correcting the

pushbroom Hyperion data, and thus no destriping was applied

to the AVIRIS data.

2) Atmospheric Correction: Our analysis methods are gen-

erally applicable to both airborne and satellite data; however,

the methodology requires processing radiance-calibrated data to

apparent reflectance. Atmospheric CORrection Now (ACORN)

[26], currently used for correction of both airborne and satellite

hyperspectral data, is commercially available enhanced atmo-

spheric model-based software that uses licensed MODTRAN4

Fig. 6. AIG processing methods for hyperspectral data analysis.

technology to produce high-quality surface reflectance without

ground measurements. The AVIRIS and Hyperion data were

both converted to apparent reflectance using ACORN. Appro-

priate model parameters for each instrument (e.g., sensor al-

titude), collection date (e.g., date, time, seasonal atmospheric

model), and location (e.g., latitude/longitude, average elevation)

were used; otherwise, all other parameters were identical for

both datasets.

3) AIG-Developed Hyperspectral Analysis: AIG-developed

hyperspectral analysis methods used for both the airborne sen-

sors and Hyperion data (implemented in the ENVI image anal-

ysis software) include spectral polishing [27], spectral data re-

duction using the MNF transformation [28], [29], spatial data

reduction using the Pixel Purity Index (PPI) [29], an -Dimen-

sional Visualizer to determine image endmembers [29], identifi-

cation of endmembers using their reflectance spectra [20] in the

Spectral Analyst, and mineral mapping using both the Spectral
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Fig. 7. MNF Eigenvalue plots for (left) the Cuprite, NV and (right) northern Death Valley, California and Nevada. AVIRIS and Hyperion data.

Fig. 8. MNF images for the Cuprite AVIRIS SWIR data. (Left to right) MNF
band 1, MNF band 5, MNF band 10, MNF band 20.

Fig. 9. MNF images for the Cuprite Hyperion SWIR data. (Left to right) MNF
band 1, MNF band 5, MNF band 10, MNF band 20.

Angle Mapper (SAM) [30], and Mixture-Tuned Matched Fil-

tering (MTMF) [31]. This approach is shown in Fig. 6 and also

outlined in [23] and [29].

4) Geometric Corrections: The final step in the analysis is

usually to present the results on a map base. In this case, to facil-

itate comparison of the Hyperion data to AVIRIS mineral-map-

ping results and minimize resampling artifacts, the AVIRIS data

were used as the base rather than a map. The Hyperion data were

geometrically corrected to match the AVIRIS data by picking

ground control points (GCPs) and using a first-degree polyno-

mial warp with nearest neighbor resampling. Approximately 20

GCPs were used, and the residual errors were on the order of

two pixels. Hyperion image maps (not the full data cube!) were

geocorrected to match the AVIRIS data.

B. Mapping Results

Operationally, spectral bands covering the shortwave infrared

spectral range (2.0–2.4 m) were selected, and these bands

were linearly transformed using the MNF transformation.

Fig. 7 shows plots of the MNF eigenvalues for the two datasets.

Fig. 10. MNF images for the northern Death Valley AVIRIS SWIR data. (Left
to right) MNF band 1, MNF band 5, MNF band 8, MNF band 10, MNF band
20.

Fig. 11. MNF images for the northern Death Valley Hyperion SWIR data.
(Left to right) MNF band 1, MNF band 5, MNF band 8, MNF band 10, MNF
band 20.

Higher eigenvalues generally indicate higher information

content. The MNF results indicate that, for both cases, the

AVIRIS data contain significantly more information than the

Hyperion data covering approximately the same spatial area

and spectral range. The actual data dimensionality is usually

determined by comparing both the eigenvalue plots and the
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Fig. 12. Comparison of selected (left) AVIRIS endmember spectra and (right)
Hyperion endmember spectra for the Cuprite, NV site. Note that AVIRIS
detected several varieties of alunite plus an additional kaolinite-group mineral
(dickite) that were not detectable using the Hyperion data.

MNF images for each dataset (Figs. 7–11). In the case of the

Cuprite AVIRIS, the MNF analysis indicates a dimensionality

of approximately 20. The Cuprite Hyperion data exhibits

dimensionality of approximately six. For the northern Death

Valley site, AVIRIS shows dimensionality of approximately 20

and Hyperion approximately eight.

The top MNF bands for each dataset (corresponding to the

approximate dimensionality), which contain most of the spec-

tral information [28], were used to determine the most likely

endmembers using the PPI procedure. These potential end-

member spectra were then loaded into an -dimensional ( -D)

scatterplot and rotated in real time on the computer screen until

“points” or extremities on the scatterplot were exposed [29].

These projections were “painted” using region-of-interest (ROI)

definition procedures and then rotated again in three or more

dimensions (three or more MNF bands) to determine if their

signatures were unique in the MNF data. While this portion

of the analysis presents the greatest opportunity for subjective

bias, iterative -D rotation and examination of remaining data

Fig. 13. Comparison of selected (left) AVIRIS endmember (mean) spectra
and (right) Hyperion endmember (mean) spectra for the northern Death Valley,
California and Nevada site.

dimensionality after selection of each subsequent endmember

minimizes this effect and maximizes the chance of reproducible

results. Additionally, “class collapsing,” which rotates selected

endmembers to a common projection and enhances remaining

endmember locations in the scatterplots, allows an analyst to

determine when all of the inherent endmembers have been

located.

Once a set of unique pixels was defined using the -D anal-

ysis technique, then each separate projection on the scatterplot

(corresponding to a pure endmember) was exported to a ROI

in the image. Mean spectra were then extracted for each ROI

from the apparent reflectance data to act as endmembers for

spectral mapping for both the Cuprite Site (Fig. 12) and the

northern Death Valley site (Fig. 13). These endmembers or a

subset of these endmembers (in the case of AVIRIS) were used

for subsequent classification and other processing. MTMF [31],

a spectral matching method, was used to produce image maps

showing the distribution and abundance of selected minerals

(note: MNF endmember spectra, not reflectance spectra, are

used in the MTMF). The results are generally presented either

as grayscale images with values from 0.0 to 1.0 (not shown),

which provide a means of estimating mineral abundance, or as

color mineral maps showing the spectrally predominant mate-

rial for each pixel (Figs. 14–16). Basic mineral mapping was

performed for the Cuprite site (Fig. 14). Two image maps were
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Fig. 14. MTMF mineral maps for (left) AVIRIS and (right) Hyperion produced for the endmembers in Fig. 12 for the Cuprite, NV site. Colored pixels show the
spectrally predominant mineral at concentrations greater than 10%.

produced for the northern Death Valley site: 1) a detailed min-

eral map showing minerals and mineral variability (Fig. 15) and

2) a basic mineral map produced by combining occurrences of

similar minerals (Fig. 16).

C. Discussion

Visual comparison of the AVIRIS and Hyperion mineral

maps for both sites shows that Hyperion generally identifies

similar minerals and produces similar mineral-mapping results

to AVIRIS. Our results indicate, however, that the lower SNR

of the Hyperion data does affect the ability to extract charac-

teristic spectra and identify individual minerals (Figs. 12–15).

Specifically, compare the Hyperion buddingtonite spectrum

in Fig. 12, which does not clearly show the characteristic

buddingtonite spectral feature shape near 2.11 m, to the

well-resolved feature extracted from AVIRIS (Fig. 12) and

other hyperspectral aircraft data [11], [14]. Note that while it

generally appears that the difference in pixel size (30 m for

Hyperion versus approximately 16 m for AVIRIS) is minimal

(causing only slight loss of spatial detail in Hyperion results),

some of the spectral difference could be an effect of the
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Fig. 15. MTMF mineral maps for (left) AVIRIS and (right) Hyperion produced for the endmembers in Fig. 13 for the northern Death Valley, California and
Nevada site. Colored pixels show the spectrally predominant mineral at concentrations greater than 10%.

Fig. 16. MTMF mineral maps for (left) AVIRIS and (right) Hyperion produced for a subset of the endmembers in Fig. 13 for the northern Death Valley, California
and Nevada site. Colored pixels show the spectrally predominant mineral group at concentrations greater than 10%.
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TABLE II
CONFUSION MATRIX COMPARING CUPRITE HYPERION MTMF MINERAL-MAPPING RESULTS TO AVIRIS “GROUND TRUTH” MTMF
BASIC MINERAL-MAPPING RESULTS (EXCLUDES UNCLASSIFIED PIXELS). OVERALL ACCURACY IS 75%. KAPPA COEFFICIENT IS 0.67

pixel size, causing greater mixing in the Hyperion data for

relatively small buddingtonite occurrences. Other examples

of the limitations of Hyperion imposed by lower SNR than

AVIRIS include the inability to separate mineral variability

such as that caused by cation substitution (K versus Na in

alunites, and Al versus Fe substitution in micas) and crystal

structure differences (kaolinite versus dickite) at SNR less than

approximately 50 : 1 (Figs. 12 and 14). Our analysis indicates

that the Cuprite Hyperion data do not allow extraction of the

same level of detailed mineralogic information as AVIRIS [6],

[11]. Fig. 14 shows only a basic AVIRIS mineral map. Other

researchers have demonstrated mapping of other minerals

using AVIRIS at the Cuprite site that were not detected using

the March 2001 Hyperion data [11]. Finally, determination of

abundances for minerals identified by AVIRIS and Hyperion

is possible [4]–[6], [29], but not illustrated here. Actually,

Hyperion performs quite well considering the overall SWIR

SNR.

VI. ACCURACY ASSESSMENT AND ERROR ANALYSIS

A. General

While visual comparison of the Hyperion and AVIRIS

MTMF image maps for Cuprite (Fig. 14) and northern Death

Valley (Fig. 15) using the AVIRIS data as the “ground truth”

indicates that, in general, using these mapping methods,

the AVIRIS and Hyperion produce similar mapping results,

detailed direct comparison of the mapping results using a

confusion matrix approach [32] demonstrates that the cor-

respondence is not as great as may be thought from visual

comparison. Comparison of the AVIRIS and Hyperion MTMF

spectral mapping results for the both sites shows that many

pixels classified using AVIRIS are unclassified on Hyperion (up

to 60%, but variable by mineral). These are errors of omission

and are probably explained by the differences in SNR between

the two datasets. Some spectral features are simply below the

level of detection on the Hyperion data.

B. Cuprite Accuracy Assessment

Confusion matrix analysis for the Cuprite site, excluding

the unclassified areas, illustrates that accurate mapping is

possible when Hyperion is able to identify a specific mineral.

(The three alunite classes and the kaolinite–dickite classes

shown for AVIRIS in Fig. 14 were combined for the purposes

of this evaluation.) Using the AVIRIS combined mineral map

yields an approximately 76% overall agreement of Hyperion to

AVIRIS for the Cuprite site, with a Kappa Coefficient of 0.67

(Table II). This highlights errors of commission (where pixels

mapped as one mineral by AVIRIS are mapped as another

mineral by Hyperion). First, some pixels unclassified using

AVIRIS are misclassified as a specific mineral on Hyperion

(around 10% commission error). Additionally, some pixels

classified by AVIRIS as specific minerals are misclassified as

different minerals on Hyperion ( 25 commission error).

Specifically, there is minor classification error between the

following: kaolinite mapped by Hyperion as muscovite (7%),

kaolinite as silica (4%), alunite as silica (2%), muscovite as

silica (1%), muscovite as calcite (1%), silica as muscovite (2%),

silica as calcite (2%), silica as alunite (5%), buddingtonite as

kaolinite (5%), calcite as kaolinite (4%), calcite as silica (7%),

and calcite as muscovite (9%). Moderate errors occur between

the following: kaolinite mapped by Hyperion as alunite (14%),

alunite as kaolinite (17%), and silica as kaolinite (11%). The

highest errors occur between the following: muscovite mapped

by Hyperion as kaolinite (25%) and buddingtonite mapped by

Hyperion as alunite (59%). The general relationship between

mineralogy and mapping errors indicates that the highest

errors occur for minerals with more similar spectral signatures

(Fig. 12 and Table II). Table II summarizes the relationships

between minerals.

C. Northern Death Valley Accuracy Assessment

Confusion matrix analysis for the northern Death Valley site,

including the unclassified areas, again shows that Hyperion has

difficulty locating many areas with weak mineral signatures
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TABLE III
CONFUSION MATRIX COMPARING HYPERION NORTHERN DEATH VALLEY MTMF MINERAL-MAPPING RESULTS TO AVIRIS “GROUND TRUTH” MTMF

DETAILED MINERAL-MAPPING RESULTS (INCLUDES UNCLASSIFIED PIXELS). OVERALL ACCURACY IS 86%. KAPPA COEFFICIENT IS 0.25

TABLE IV
CONFUSION MATRIX COMPARING HYPERION NORTHERN DEATH VALLEY MTMF MINERAL-MAPPING RESULTS TO AVIRIS “GROUND TRUTH” MTMF

DETAILED MINERAL-MAPPING RESULTS. EXCLUDES UNCLASSIFIED PIXELS. OVERALL ACCURACY IS 76%. KAPPA COEFFICIENT IS 0.71

(Table III). Excluding the unclassified areas provides an assess-

ment of how well Hyperion performs when specific minerals

are identified for individual pixels and illustrates that improved

mapping (compared to the lower SNR Cuprite Hyperion data)

is possible with higher SNR (Table IV). The SNR for the

northern Death Valley Hyperion data is approximately 60 : 1

or about twice that of the Cuprite Hyperion data (Fig. 5). The

implications of the decreased Hyperion winter SNR are evident

in endmember spectra extracted from both the Cuprite AVIRIS

and Hyperion (Fig. 12) and the northern Death Valley Hyperion

data (Fig. 13). While the Cuprite Hyperion data allow basic

mineral identification (no separation of within-species vari-

ability), more details (additional endmembers) are detected and

mapped using the higher SNR AVIRIS and Hyperion data. This

is also important for geologic/mineral mapping, because higher

SNR allows separation of similar endmembers such as calcite

from dolomite (Figs. 13 and 15) and within-species variability

such as kaolinite versus dickite (Fig. 12). In the northern Death

Valley case, the relatively high Hyperion SNR allows detection

of three different mica endmembers with different aluminum

substitution [4]. Previous investigations have indicated that

SNR is critical for this determination [4], [6].

Visual comparison of the detailed mapping results for the

northern Death Valley site shows generally good correspon-
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TABLE V
CONFUSION MATRIX COMPARING HYPERION NORTHERN DEATH VALLEY

MTMF MAPPING RESULTS TO AVIRIS “GROUND TRUTH” MTMF BASIC

(COMBINED MINERALS) MAPPING RESULTS. EXCLUDES UNCLASSIFIED PIXELS.
OVERALL ACCURACY IS 94%. KAPPA COEFFICIENT IS 0.91

dence between the AVIRIS and Hyperion mapping. Confusion

matrix results excluding the unclassified pixels show overall

accuracy of approximately 76% for the Hyperion mapping

as compared to AVIRIS, with a Kappa coefficient of 0.71.

Table IV does indicate that, again, there is considerable

difficulty separating similar mineralogy, in this case, the

three muscovite varieties. At the calculated 60 : 1 SNR, these

identifications appear to be near the detection limit. Grouping

similar minerals together (calcite with dolomite, and combining

the three muscovites) results in dramatic identification and

mapping improvements (Fig. 16, Table V) and a more direct

comparison to the Cuprite results (Table II). Overall accuracy

is boosted to greater than 94% and the Kappa coefficient to

0.91 (Fig. 16, Table V).

D. Factors Affecting Accuracy Assessment

While these comparisons serve to highlight the accuracy and

overall performance of the Hyperion data compared to AVIRIS

for these sites, several other issues may affect the accuracy as-

sessment. These include the following:

1) data coverage (spatial extent) of the two datasets: they

cover substantially the same ground, but not exactly (af-

fects unclassified class—masking was used to exclude

areas that did not overlap);

2) data pixel size (AVIRIS is 16 m, Hyperion 30 m);

3) image acquisition differences (date/time, atmospheric

conditions, actual SNR);

4) slightly different spectral characteristics (varying band

centers and spectral resolution);

5) different image-based endmember spectra used for

MTMF (endmember spectra not identical);

6) MTMF threshold consistency and class combining

(AVIRIS);

7) Hyperion-to-AVIRIS image registration accuracy.

We are not able at this time to determine the relative importance

of these other possible factors, other than to say that they appear

to be subordinate to the larger variability problem imposed by

seasonal SNR effects. Finally, while the AVIRIS data represent

the best “ground truth” available and have been spot checked

using field mapping and spectral measurements, they have not

been and cannot be ground checked for accuracy on a pixel-by-

pixel basis.

VII. CONCLUSION

Results at the Cuprite, Nevada and northern Death Valley
sites establish that data from the Hyperion SWIR spectrom-
eter (2.0–2.4 m) can be used to produce useful geologic
(mineralogic) information. Comparison of Hyperion data to
airborne hyperspectral data (AVIRIS) show that Hyperion
provides the ability to remotely map basic surface mineralogy.
Minerals mapped at the two sites include calcite, dolomite,
kaolinite, alunite, buddingtonite, muscovite (three varieties),
hydrothermal silica, and zeolites. These case histories demon-
strate the analysis methodologies and level of information
available from these Hyperion data. They also demonstrate the
viability of Hyperion as a means of extending hyperspectral
mineral mapping to areas not accessable to aircraft sensors.

AVIRIS data collected during June 1997 (Cuprite) and June
2000 (northern Death Valley) served as the “ground truth” for
this investigation. Comparison of Hyperion results for Cuprite
(March 2001) and northern Death Valley (July 2001) to the
known mineralogy derived from the AVIRIS data generally
validate on-orbit mineral mapping and Hyperion performance.
Standardized hyperspectral data processing methods applied to
the Hyperion data lead to definition of specific key minerals;
however, it is more difficult (than for AVIRIS) to extract the
information because of the Hyperion data’s lower SNR. The
effect of this reduced response compared to AVIRIS is lower
data dimensionality; thus, fewer endmembers can be identified
and mapped than with AVIRIS. Accuracy assessment and error
analysis indicates that with Hyperion data that, in many cases,
mineral identification is not possible where specific minerals
are known to exist. In addition, Hyperion often confuses similar
minerals that are separable using AVIRIS.

The Hyperion data demonstrate the importance of high SNR
performance for hyperspectral sensors. The Cuprite Hyperion
data represent an “early” Hyperion acquisition for the Northern
Hemisphere (a winter scene—low solar zenith angle); thus,
the SWIR SNR is approximately 25 : 1. These data allow only
basic mineral mapping, and minerals with similar spectral
signatures are often confused. The northern Death Valley
Hyperion scene was collected under optimum (summer—high
solar zenith angle) conditions and exhibits SWIR SNR as high
as approximately 60 : 1. These data allow more detailed mineral
mapping, including within-species variability; however, this
capability is at the detection limit of current Hyperion SNR
levels. Combining minerals to form a basic mineral map results
in improved mapping with greater than 94% correspondence
between AVIRIS and Hyperion at the northern Death Valley
site. The level of mineralogic information available from the
Hyperion data is directly tied to the SNR.

As a technology demonstration, Hyperion performs satisfac-
torily for mineral identification and mapping. We expect (and
have demonstrated) improved mineral identification and map-
ping results from “summer” season Hyperion acquisitions with
higher SNR. These improvements principally take the form of
mapping of subtle distinctions such as determining the differ-
ence between calcite and dolomite and mapping within-species
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variability caused by molecular substitution (e.g., aluminum
substitution in micas). Unfortunately, Hyperion data collected
under less than optimum conditions (winter season, dark tar-
gets) have marginal SWIR SNR and allow mapping of only the
most basic mineral occurrences and mineral differences. This
results in a recommendation that future HSI satellite sensors
have significantly higher SNR performance specifications than
Hyperion for the SWIR (at least 100 : 1 based on dark current
measurements).
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