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Abstract

Background: Microbiome-wide gene expression profiling through high-throughput RNA sequencing

(‘metatranscriptomics’) offers a powerful means to functionally interrogate complex microbial communities. Key

to successful exploitation of these datasets is the ability to confidently match relatively short sequence reads to

known bacterial transcripts. In the absence of reference genomes, such annotation efforts may be enhanced by

assembling reads into longer contiguous sequences (‘contigs’), prior to database search strategies. Since reads

from homologous transcripts may derive from several species, represented at different abundance levels, it is

not clear how well current assembly pipelines perform for metatranscriptomic datasets. Here we evaluate the

performance of four currently employed assemblers including de novo transcriptome assemblers - Trinity and Oases;

the metagenomic assembler - Metavelvet; and the recently developed metatranscriptomic assembler IDBA-MT.

Results: We evaluated the performance of the assemblers on a previously published dataset of single-end RNA sequence

reads derived from the large intestine of an inbred non-obese diabetic mouse model of type 1 diabetes. We found that

Trinity performed best as judged by contigs assembled, reads assigned to contigs, and number of reads that could be

annotated to a known bacterial transcript. Only 15.5% of RNA sequence reads could be annotated to a known transcript

in contrast to 50.3% with Trinity assembly. Paired-end reads generated from the same mouse samples resulted in modest

performance gains. A database search estimated that the assemblies are unlikely to erroneously merge multiple unrelated

genes sharing a region of similarity (<2% of contigs). A simulated dataset based on ten species confirmed these findings.

A more complex simulated dataset based on 72 species found that greater assembly errors were introduced than is

expected by sequencing quality. Through the detailed evaluation of assembly performance, the insights provided by this

study will help drive the design of future metatranscriptomic analyses.

Conclusion: Assembly of metatranscriptome datasets greatly improved read annotation. Of the four assemblers

evaluated, Trinity provided the best performance. For more complex datasets, reads generated from transcripts sharing

considerable sequence similarity can be a source of significant assembly error, suggesting a need to collate reads on the

basis of common taxonomic origin prior to assembly.
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Background

Innovations in culture-independent microbiology, coupled

with rapid advances in high-throughput sequencing (HTS),

are beginning to profoundly transform our understanding

of the relationships between microbial communities

and their environments. For example, it is becoming

increasingly clear that the composition of the human

gut microbiome plays a major role in the development

of many human diseases including obesity, type 1 dia-

betes, inflammatory bowel disease, and autism [1-7].

To date, studies on the human microbiome have

largely focused on the use of 16S rRNA surveys which

examine shifts in the composition of microbial com-

munities [8-10]. However, such studies lend only lim-

ited insight into microbiome function. Recently, we

and others have pioneered the use of microbiome-

wide gene expression profiling via RNA sequencing

(RNA-Seq) or ‘metatranscriptomics’ as a route to
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functionally interrogate a microbiome [11-14]. Key to

exploiting the full potential of these datasets is the

ability to accurately assign and annotate sequence

reads to known transcripts [12], a challenge that is

complicated by the inherent complexity associated

with microbial communities as well as the lack of a

comprehensive set of reference genomes.

In typical RNA-Seq applications, sequence reads are

mapped onto a reference genome to yield expression

profiles for each gene. In the absence of reference

genomes, sequence annotation is typically performed

through sequence similarity searches against databases

of previously annotated genes or proteins [15,16]. How-

ever, for sequencing technologies capable of generating

the hundreds of millions of reads required for metatran-

scriptomic analyses, resultant read lengths tend to be

short (e.g., 75–150 bp), reducing our ability to identify

meaningful sequence matches with confidence. Since

many reads may derive from the same transcript, assem-

bling reads into longer contiguous sequences (‘contigs’)

offers a useful avenue for improving read annotation.

However, unlike reads generated from a single organism,

RNA-Seq analysis of complex microbial communities

poses the additional complication that the multiple spe-

cies may be represented at significantly different levels

of abundance. To date, several tools, based on the use of

de Bruijn graphs, have been developed to assemble

sequence data de novo: Metavelvet [17] was originally

developed to assemble metagenomic datasets, while

Oases [18] and Trinity [19] were developed to specific-

ally assemble RNA sequence data. More recently, a

dedicated metatranscriptomics assembler has also been

described that relies on the use of paired-end reads [20].

Due to the absence of suitable datasets, it is not clear

how assemblers, previously developed for assembling

other types of sequence data, compare with a dedicated

tool for assembling metatranscriptomic datasets and,

furthermore, what types of error each may introduce.

One potential source of error in transcript assembly is

the incorporation of reads from several similar tran-

scripts such as members of the same gene family or the

merging of orthologs from different species. While such

errors may impact taxonomic assignments, they may

have minimal impact on functional assignments. A more

serious source of error is that unrelated transcripts shar-

ing a region of high sequence similarity but distinct

abundance and/or function may be merged into a single

erroneous contig. In such cases, the expression value of

the rarer transcript can be masked by the more abun-

dant transcript and/or, depending on the annotation

pipeline, only a single function may be ascribed. Our

aim was to undertake a systematic evaluation of current

assembly tools across multiple metatranscriptomic data-

sets to assess their performance and determine if the

incidence of contig reconstruction errors is likely to im-

pact downstream analyses.

We focused on a metatranscriptomic data from previ-

ous 76-bp single-end RNA sequence reads, as well as a

new data set of 76-bp paired-end reads, from a microbial

consortium isolated from the large intestine (cecum) of

inbred non-obese diabetic (NOD) mice, a model of spon-

taneous type 1 diabetes [12]. Here we show how different

approaches to sequence assembly impacts transcript anno-

tation and how complex datasets may be more prone to

annotation error.

Results and discussion
Assembly significantly improves the number of annotated

reads

Assembly of next-generation sequencing reads promises

to improve automated annotation through sequence

similarity searches by improving sequence length and re-

ducing read errors [21]. We were interested in examining

whether these approaches were useful for metatranscrip-

tome datasets. To examine how assembly impacts annota-

tion of putative transcripts through sequence similarity

searches, we first applied the Trinity assembly algorithm

to a previously published dataset of 516,881 76-bp

single-end reads of putative bacterial mRNA origin

obtained from a NOD mouse cecal sample [12] (desig-

nated NOD503CecMN; see ‘Methods’ and Additional

file 1). Using default parameters with a 51-bp mini-

mum contig size (here we include reads with at least

50 high-quality base calls), 78.9% of the reads could be

assembled into 48,469 contigs varying in length from

51 to 1,317 bp. For the unassembled reads, only 15.5%

of the unassembled reads had significant sequence

similarity (bit score >50) to a known bacterial protein

as determined through BLAST [22] (Figure 1). We

obtained similar results for 11 additional datasets gen-

erated from related NOD mouse intestinal samples

(see ‘Methods’ and Additional file 2). Considering the

assembled reads, the proportion of contigs with a sig-

nificant sequence similarity match to a known gene

(‘annotatable contigs’) increased with contig length

(Figure 1). The relationship appears asymptotic with

80%–90% of contigs with lengths in excess of 200 hav-

ing significant sequence similarity matches to known

proteins. This finding is consistent with previous re-

ports that ~10% of genes from newly sequenced

bacterial genomes appear novel (i.e., lack significant

sequence similarity to an existing gene) [23]. On the

other hand, for reads which could not be aligned to a

contig created by Trinity, only 9.8% had significant se-

quence similarity (bit score >50) to a known bacterial

protein. With read lengths from the Illumina HiSeq

sequencing platform beginning to approach 250 bp,

we expect that attention for assembly algorithms will
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focus more on the quality of annotation, rather than

simply obtaining an annotation. In the next section,

we explore the performance of several algorithms to

assemble metatranscriptomic read data.

Comparison of assembly algorithms on single-end

sequence data

Given that increasing length improves our ability to an-

notate, we were interested in identifying the assembler

that both maximizes contig length as well as the number

of reads incorporated into contigs. We applied three

established algorithms, Metavelvet [17], Oases [18], and

Trinity [19] to our dataset of 516,881 single-end reads of

putative bacterial mRNA origin. For Metavelvet and

Oases, we tested a range of k-mer values to examine

the impact of low (k = 27), medium (k = 39), and large

(k = 51) word size on assembly. As Oases combines mul-

tiple k values into a single assembly, we increased the

upper limit of the k-mer parameter until less than 5%

additional contigs were generated, consistent with au-

thor guidelines [18]. For all three assemblers, we ob-

tained similar relationships between contig length and

probability of obtaining a significant sequence similarity

match to a known gene. Contigs of length 180–200 bp

had probabilities of obtaining a significant sequence

similarity match ranging from 79% to 83% depending

upon the method of assembly (Figure 2). However, the

number of reads that could be assembled, as well as the

number of contigs, varied between the three algorithms.

Trinity provided the best performance in terms of reads

assembled into an annotatable contig (as defined through

possessing a BLASTX bit score >50 to a known transcript,

Figure 3) and total number of annotatable contigs (21,454

vs. 13,706 for the next best-performing algorithm,

Metavelvet with k = 27). Of these, only 5,561 contigs

were >180 bp in length compared to 3,856 for Metavelvet

(k = 27). Furthermore, Trinity assembled contigs had a

lower N50 value than those generated with Metavelvet

(k = 27) (130 vs. 156 bp, respectively). While this might

suggest that contigs assembled with Trinity may im-

pact annotation performance, we found that 50.3% of

the 516,881 reads aligned to a Trinity assembled

contig that could be annotated (compared to 32.8%

Metavelvet with k = 27) despite a similar minimum

contig size (51 bp for Trinity, 54 bp for Metavelvet).

Notably, increasing the minimum contig size to 150 bp

for Trinity still resulted in 35.3% of reads mapping to an

annotatable contig. For both Metavelvet and Oases,

word size (k) had a significant impact on performance,

with higher values resulting in a low number of reads

assembling into annotatable contigs. This latter finding

appears to contradict the recommendation to use a k-

mer length greater than 51 for reads longer than 65 bp

for Metavelvet assemblies (http://metavelvet.dna.bio.

keio.ac.jp/) and may reflect a greater emphasis on

reconstruction accuracy, rather than annotation per-

formance. Alternatively, these differences may arise

from inherent sequence differences between metage-

nomic and metatranscriptomic datasets. For example,

compared to metagenomic samples, transcript abun-

dances in metatranscriptome samples are influenced

not only by taxonomic representation but also their

relative expression, and subject to more error-prone

RNA sample preparation processes [24].

Given the superior performance of Trinity over the

other methods, we next explored the overlap between
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Figure 1 Trinity-based assembly of short-read metatranscriptomic data improves annotation. The de novo transcriptome assembler,

Trinity [19], was applied to a metatranscriptomic dataset generated from a non-obese diabetic (NOD) mouse cecal sample (NOD503CecMN).

The probability of obtaining a significant sequence alignment (bit score >50) to a known protein increases with contig length. Contigs greater

than 79 bp demonstrate greater annotation potential compared to unassembled reads.
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assemblies to determine the agreement between the

different assembly solutions. We defined the overlap be-

tween two datasets, d1 and d2 (where d1 has fewer reads

assembled into contigs than d2), as the percentage of

reads in d1 assembled into contigs that were also assem-

bled into contigs in d2 (see ‘Methods’). For all assembled

contigs, as well as annotatable contigs, we observed a

high degree of overlap in assembled reads, suggesting

that each algorithm does not assemble a unique fraction

of reads (Table 1, Additional file 3). Perhaps not surpris-

ingly, the Trinity-based assembly had the largest overlap

with the other assemblies, placing 89%–97% of assem-

bled reads into annotatable contigs (Table 1). Due to the

high overlap between assemblies, we did not explore

combining results from different algorithms. Moreover,

merging of multiple assembly results has been reported

to result in additional errors, at least when applied to

Roche 454 sequencing data [25].

Comparison of assembly algorithms on paired-end

sequence data

In the previous sections, we examined the performance of

assemblers applied to single-end reads. To examine how

paired-end sequencing for metatranscriptomic studies

could augment assembly and annotation, we generated a

set of 29.8 million 76-bp paired-end reads (average insert

size 273 bp) from the same rRNA-depleted samples used

to generate the single-end reads [12] (Additional file 1).

We observed a high degree of consistency between single-

and paired-end reads in terms of: 1) the relative propor-

tion of sample represented in the entire dataset, 2) reads

assigned to ribosomal transcripts for each sample, and 3)

reads assigned to mouse host transcripts for each sample

(Additional file 4). In contrast, the proportion of reads

assigned to putative bacterial mRNA transcripts was lower

for the paired-end reads and was associated with a rise in

frequency of reads filtered on the basis of vector contam-

ination. This is likely related to the processing step that

discarded both reads in a pair even if only one member

contained significant vector contamination. Interestingly,

we note discrepancies between single and paired read data

in the phylogenetic distribution of reads (Additional

file 4). However, overall there is reasonable correlation be-

tween samples (r2 values from 0.75 to 0.99). For both ends

of a read, this correlation was even higher (r2 from 0.95

to 1), suggesting that differences arise from biases intro-

duced in sample preparation prior to sequencing, rather

than bioinformatics processing.
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Percent reads aligned to a contig

with a significant sequence similarity

match (BLAST bit score > 50) 

Metavelvet,k=27 32.77%

Metavelvet,k=39 19.73%

Metavelvet,k=51 3.45%

Oases,k=27-35 24.96%

Oases,k=39-45 14.19%

Oases,k=51-53 2.58%

Trinity 50.33%

Total number of contigs

Metavelvet,k=27 21412

Metavelvet,k=39 8218

Metavelvet,k=51 ### ### ### 679

Oases,k=27-35 14483

Oases,k=39-45 5881

Oases,k=51-53 459

Trinity 48469

Key Probability of significant

sequence similarity to a

known gene
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Figure 2 Performance of three short-read assemblers on a single-end metatranscriptomic dataset. Three different single-end assemblers

(with varying k-mer parameters where appropriate) were applied to the NOD503CecMN single-end dataset and evaluated on the basis of: 1)

the probability of contigs of different lengths having significant sequence similarity (bit score >50) to a known protein, as well as the percentage

of reads which could be annotated (top panel), and 2) contig length distributions (bottom panel). While the assemblers varied greatly in the

contig length distribution, number of contigs assembled, and number of reads which could be matched to an annotated contig, all contigs over

180 bp, irrespective of the assembler used to generate them, had a consistently high probability of having significant sequence similarity to a

known protein.
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Table 1 Overlap in assemblies

Metavelvet, k = 39 Metavelvet, k = 51 Oases, k = 27–35 Oases, k = 39–45 Oases, k = 51–53 Trinity default

All single-end contigs

Metavelvet, k = 27 85.50% 69.60% 76.80% 76.20% 59.70% 98.00%

Metavelvet, k = 39 84.70% 64.50% 65.00% 71.20% 96.80%

Metavelvet, k = 51 64.30% 68.00% 48.10% 96.60%

Oases, k = 27–35 85.60% 68.10% 95.40%

Oases, k = 39–45 91.00% 97.30%

Oases, k = 51–53 97.60%

BLAST score >50

Metavelvet, k = 27 87.20% 79.60% 72.80% 78.40% 74.50% 97.00%

Metavelvet, k = 39 89.80% 65.50% 64.70% 82.30% 96.50%

Metavelvet, k = 51 72.90% 69.50% 48.20% 97.10%

Oases, k = 27–35 92.60% 85.70% 88.00%

Oases, k = 39–45 92.00% 92.70%

Oases, k = 51–53 92.60%

Single-end assemblies constructed from 516,881 single-end reads of putative bacterial mRNA origin obtained from a non-obese diabetic (NOD) mouse cecal sample were

evaluated on the uniqueness of the reads incorporated into contigs. Figures indicate the percentage of reads of the smaller dataset that are incorporated into contigs in

both datasets.

Figure 3 Performance of four short-read assemblers on both single- and paired-end metatranscriptomic datasets. Assembly performance

was assessed using both single-end and paired-end datasets generated from the NOD503CecMN sample. Comparisons between the two datasets are

presented for each assembler/parameter combination except IDBA-MT which requires paired-end data. Assemblers were evaluated on the basis of: 1)

number of contigs assembled, 2) percentage of reads that map to assembled contigs, and 3) whether contigs have sequence similarity to a known

protein at two levels of stringency.
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Next, we evaluated potential performance gains through

the use of paired-end reads. The paired-end reads allowed

an evaluation of a dedicated metatranscriptomic assembly

algorithm, IDBA-MT [20], as it is compatible only with

paired-end reads. Compared to the single-end read data,

we were able to assemble more contigs (Figure 3), poten-

tially reflecting the greater number of the paired-end reads

(553,115 pairs of reads vs. 516,881 single reads). For ex-

ample, after dividing the paired ends into two separate

datasets of 553,115 reads, Trinity generated 51,244 and

52,549 contigs, respectively. These data contrasted with

48,469 contigs for an assembly based on the 516,881

single-end reads and 58,361 contigs for an assembly based

on combining both ends of the 553,115 pairs. However,

compared to the single-end assembly, we were able to as-

semble a higher proportion of reads into contigs, resulting

in a concomitant gain in the proportion of reads assem-

bled into annotatable contigs (from 50.3% to 64.4% for the

Trinity-based assembly; Figure 3). Greater performance

gains were observed for the Metavelvet and Oases algo-

rithms. Again, imposing a 150-bp contig size cutoff on the

Trinity assembly resulted in a proportion of mapped reads

comparable to Oases and Metavelvet despite a smaller

number of overall contigs (Figure 3). In contrast, IDBA-

MT did not perform as well as the other methods in either

contigs produced or reads mapped to annotatable contigs.

These findings are contrary to a previous report that

Trinity generated only ~5% more contigs than IDBA-MT

[20]. This discrepancy might arise because this latter study

combined reads from all 12 paired-end mouse samples

resulting in potential coverage saturation that may have

produced a convergence in the number of contigs. How-

ever, assemblies based on the entire set of sequences from

all 12 samples also resulted in a greater number of contigs

using Trinity (127,511 contigs) compared to IDBA-MT

(16,582 contigs). Instead, this discrepancy likely arises

from the use of a default parameter in the Trinity software,

which reports contigs only in excess of 200 bp (resulting

in 10,823 contigs). To avoid differential biases between the

assemblers, we reduced this stipulation to 51 bp (the mini-

mum allowed read length after filtering) in our analyses.

The overlap profile of the paired-end read assemblies was

similar to the single-end data, again suggesting little

benefit in combining results from different assemblers

(Additional file 5).

Database evaluation of transcript reconstruction accuracy

across assemblers

A major challenge for the assembly of metatranscrip-

tomic datasets is the generation of contigs derived from

two or more distinct genes either between unrelated

transcripts sharing a region of high sequence similarity,

gene fusions or as a result of polycistronic microbial

transcripts. Sequence assembly improves the ability to

annotate reads, but the generation of these misas-

sembled or multifunctional transcripts may confound

interpretation of resultant expression profiles. In the ab-

sence of a comprehensive set of reference genomes, we

developed a heuristic algorithm to identify such contigs

based on BLAST sequence similarity matches [22]. We

then split these transcripts into fragments corresponding

to a single putative gene (Figure 4). In brief, we ran a

BLASTX search for a contig against the non-redundant

protein database. We then identified the sequence match

with the highest alignment score (bit score ≥50) by iter-

ating over the entire contig sequence. A base that was

already covered by a previous alignment was ignored.

Subsequently, the contigs were split into discrete frag-

ments if we identified two or more non-contiguous se-

quence alignments. We then noted all contigs composed

of multiple fragments. This approach has two limita-

tions. First, it relies on correctly annotated entries in the

non-redundant protein database that are not the result

of misassembly. Second, we assume that a misassembly

does not generate a contig with similarity to a known

gene that was not present in the metatranscriptomic

sample.

Applying this procedure to our assemblies, we found

that those based on single-end reads contained a low in-

cidence of contigs composed of multiple genes (from

0.56% to 0.24% of contigs for Oases with k = 27–35 and

Metavelvet with k = 39, respectively; Figure 4). Perhaps

surprisingly, assemblies based on paired-end reads con-

tained a higher incidence of misassembled contigs (from

2.08% to 0.5% of contigs for Oases with k = 27–35 and

Metavelvet with k = 51, respectively). Both Trinity- and

IDBA-MT-based assemblies gave comparable outcomes

(1.31% and 1.03% of contigs, respectively). This increase

in misassembled contigs associated with the paired-end

reads is likely related to the increased read coverage

provided by the dataset, resulting in longer contigs.

Whether these misassembled contigs arise from the re-

construction of polycistronic mRNAs or assembly errors

remains to be resolved. In any event, it is clear that while

the higher coverage of the paired-end reads improves

both the number of contigs and number of reads

assigned to an annotatable contig, it has not improved

accuracy of contig assembly.

Given the low incidence of misassembled contigs inde-

pendent of assembler as determined by the above heur-

istic, we next looked for further evidence of potential

misassembly through the identification of contigs with

only partial matches to known proteins. For contigs (and

fragments) possessing significant sequence similarity to a

single known protein (as defined by a BLASTX match

with a bit score cutoff of 50), we identified those for

which the alignment with the protein covered less than

90% of the length of the contig or fragment. Such
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contigs or fragments may indicate either a gene fusion

event which could not be resolved into discrete regions

through the initial heuristic, a misassembly involving

reads from two or more potentially related transcripts

(e.g., members of the same gene family) that result in

the generation of a hybrid transcript, or simply a novel

gene that has yet to be captured by the non-redundant

protein database. This latter type of sequence may be

considered as a false-positive misassembly. Due to high

rates of sequence divergence in microbiome samples, we

expect such events to be a significant source of false-

positive misassemblies. For example, a previous study

suggests that ~8%–10% of genes associated with a newly

sequenced genome are novel (i.e., lack sequence similar-

ity to any known gene) [23]. Accordingly, this second

heuristic yielded a higher estimate of potential misas-

semblies for both single- and paired-end datasets (13%–

16% vs. 14%–27%, respectively; Figure 4). Interestingly,

we note that increasing the k parameter in both Metavel-

vet and Oases increased reconstruction accuracy through

both metrics.

While the incidence of contigs possessing non-

overlapping alignments with two or more proteins was

relatively low, we nonetheless propose the implemen-

tation of a post-assembly processing step such as that

outlined above to convert contigs into discrete frag-

ments associated with distinct sequence alignments.

Note also that such a processing step also has the ad-

vantage of separating individual ORFs from assemblies

of polycistronic mRNA moieties.

Assembly of simulated metatranscriptomic datasets

reveals transcript accuracy

In the absence of reference genomes, it is only possible

to estimate the accuracy of assembled transcripts from

the mouse metatranscriptomic samples. To further in-

form on assembly accuracy, we therefore generated two

simulated metatranscriptomic datasets of increasing

complexity using a modified version of the RNA-Seq

simulator, FluxSimulator [24] (Figure 5). FluxSimulator

was originally developed to generate simulated reads from

a model transcriptome, taking into account inherent

Single End Paired End Single End Paired End

Oases,k=27-35 0.56% 2.08% 14% 21%

Oases,k=39-45 0.46% 0.85% 12% 19%

Oases,k=51-53 0.27% 0.83% 16% 14%

Metavelvet,k=27 0.36% 1.30% 14% 27%

Metavelvet,k=39 0.24% 0.83% 13% 18%

Metavelvet,k=51 0.37% 0.50% 16% 14%

Trinity 0.39% 1.31% 15% 22%

IDBA-MT 1.03% 16%

Contigs Split into Multiple Fragments

Assembler

Post-Processed Contigs (Fragments)

possessing a BLASTX match that

covers <90% of their length

Contig

2. Identify set of highest scoring

non-overlapping alignments

to known proteins 

1. Perform database search to

identify alignments to known

proteins

3. Fragment contig on the basis

of non-overlapping alignments

(A)

(B)

Figure 4 Identification and evaluation of misassembled contigs. (A) Strategy used to identify misassembled contigs with the potential to

align to multiple bacterial proteins. First, we perform a database search to identify proteins aligning to the contig (1). Next, iterating from the start

of the contig, we identify the set of highest scoring non-overlapping alignments (2). Based on these, the contig is subsequently fragmented (3).

(B) Incidence of misassembles, as defined from the heuristic presented in (A), generated from both the single-end and paired-end read datasets

generated from the NOD503CecMN sample (left panel). Also shown is the proportion of intact contigs and fragments which align <90% of their

length to a known protein (right panel).
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biases that arise from both sample preparation steps such

as reverse transcription, fragmentation, adapter ligation,

and PCR amplification, as well as read error profiles that

approximate those obtained from the Illumina sequencing

platform. Two simulated datasets were generated based

on a metagenome analysis of a human stool sample

(National Center for Biotechnology Information (NCBI)

Biosample identifier: SRS011061 [26]). The first was com-

posed of sequences generated from the 73 most abundant

species within the same sample for which a reference gen-

ome is available. The second was composed of sequences

generated from the ten most abundant species associated

with the ten most abundant genera for which a reference

genome was available. Maintaining the proportion of reads

from each species as the initial sample, we generated 1.75

million 76-bp single-end reads as well as 1.75 million 76-

bp paired-end reads for each dataset using a modified ver-

sion of FluxSimulator [24]. Paired-end fragment length

distributions were taken from experimental values derived

for the mouse paired-end dataset.

The availability of a reference metatranscriptome also

allows the evaluation of assembly performance through

the DETONATE software package, a transcriptome as-

sembly evaluator [27]. In brief, we used the combined

transcriptome of the ten species dataset to train a

probabilistic model which is subsequently used to evalu-

ate the assemblies from the NOD mouse datasets. Our

results suggest that Trinity gave the worst performance

according to this measure (Additional file 6), consistent

with the previously reported N50 values. However, while

this might suggest that the Trinity assembly least

captures the properties of a real metatranscriptome,

depending on the annotation pipeline, favoring inclu-

siveness of assembly may be preferred if it does not

introduce errors which confound the interpretation of

the final assembly results.

To examine the propensity of the four short-read as-

semblers to introduce misassemblies in more detail, we

applied the assemblers to each simulated dataset and

subsequently aligned resultant assemblies to the original

reference genomes using BLAT [28]. As we are interested

in investigating the incidence of large-scale assembly er-

rors that may adversely impact functional annotation, mis-

assembled contigs were defined as those in which greater

than one read length (76 nucleotides) was unmatched in

the highest scoring alignment to the reference genomes.

To understand how sequencing error and depth could im-

pact the number of false positives found by our metric, we

also generated a ‘gold standard’ assembly by aligning simu-

lated reads to the reference genomes and collating the

List of 

predicted 

transcripts

(FASTA)

Take consensus of 

alignments to generate 

library of simulated 

transcripts

Experimental 

parameters 

(sequence errors / 

sample biases)

Gold standard 

assembly

Genomes ORFs

Assign random 

expression level for 

each gene based on 

Zipf's law distribution

Relative species 

abundance

Species A

Species B

Species C

Species D

Simulated 

metatranscriptomic

reads

Align reads to

original transcripts

Figure 5 Overview of metatranscriptome simulation pipeline based on FluxSimulator. For each species considered, the genome sequence

and ORF annotation file is used to create a list of predicted transcripts for each species. FluxSimulator then assigns each gene a random

expression value based on Zipf’s law to create a library of the mRNA molecules that are present in the sample. Given a list of experimental

parameter input (sequence errors, sample bias, and relative species abundance), a set of simulated metatranscriptomic reads are generated based

on the set of transcripts provided. A gold standard assembly is then generated by aligning reads to the original transcripts and obtaining

consensus sequences from the resulting alignments.
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resulting consensus sequences. For the ten species simu-

lated dataset, we identified far fewer (<0.3%) misassembled

contigs, compared with the NODmouse datasets (Figure 6).

Counterintuitively, we also identified fewer misassembled

contigs than the gold standard assembly. However, this re-

duction in assembly errors for the de novo assemblers is

likely related to the more limited number of contigs con-

structed (contigs assembled from reads with sequence er-

rors in low coverage regions are likely to be rejected). This

is reflected in the total number of contigs, reads assigned to

contigs, and percentage of the metatranscriptome covered

by each assembly (Additional file 6). Focusing on the 72

species simulated dataset, however, we identified many

more misassembled transcripts (up to 15% for the

simulated paired-end data assembled with Oases with

k = 27–35; Figure 6). Given the high stringency used

in matching contigs to the reference genomes, we next

investigated the impact of match stringency on the

prediction of large-scale misassembly events. Decreas-

ing the percent identity match required for misassem-

bly detection from 100% reduced the incidence to <5%

and <1% for 99% identity and 98% identity, respect-

ively. This suggests that most assembly errors in our

simulation arise from sequence errors accumulated in

the contigs rather than large-scale fusions of unrelated

genes sharing a single region of similarity. Further-

more, given their poorer performance on the 72 spe-

cies dataset relative to the gold standard assembly,

these results demonstrate that datasets of increased

complexity can result in assembly errors that are not

simply the result of errors introduced during the se-

quencing process.

Conclusions
We have shown that assembly of metatranscriptomic

reads considerably improves short-read annotation. While

only 15.5% of single-end reads obtained from the large in-

testine could be confidently assigned function, this per-

centage increases to 50.3 after assembly with Trinity.

Furthermore, the number of contigs resulting from the fu-

sion of two unrelated genes during the assembly process

was rare in simple (8–10 species) experimental and simu-

lated datasets. In a more complex simulated dataset com-

posed of sequences from 72 species, there were many

more assembly errors than expected by the sequence read

quality. However, such errors appeared confined to rela-

tively minor sequence variants rather than the merging of

two unrelated genes that share a region of sequence simi-

larity. While Trinity did not assemble the most accurate

contigs, it significantly outperformed the other three as-

semblers in terms of the number of reads that could be

aligned to a contig with known function. Future work will

focus on improving the accuracy of reconstructed contigs

in complex metatranscriptomic samples by first grouping

reads into taxonomically defined bins, thereby reducing

sample complexity prior to assembly. This algorithmic de-

velopment can be expected to reduce assembly errors that

arise from the merging of homologous transcripts from

different species and subsequently improve taxonomic as-

signment and functional annotation of assembled contigs.

Furthermore, while the focus of this study was on meta-

transcriptome assembly as well as the types of assembly

errors that could impact downstream functional analyses,

future work could focus on a systematic analysis of

types of potential misassemblies and how assembler

parameters may be optimized to differentiate between

gene fusions, transcripts cotranscribed in operons, and

genuine misassemblies.

Methods
Source and processing of sequencing reads

Single-end sequence reads from a previously published

mouse gut metatranscriptome study were obtained from

the Sequence Repository Archive (SRA051354) [29].

This dataset includes 12 samples generated from two

different body sites, four different mice using a variety of

different purification procedures described elsewhere

[12]. Paired-end sequences were generated from the

same barcoded libraries used to generate the single-end

reads following standard Illumina protocols. Sequencing

was performed with the Illumina Genome Analyzer II

(GaII) platform at the Center for Advanced Genomics

(TCAG - Hospital for Sick Children). After deconvolu-

tion of the barcodes used for multiplexing, 29,780,781

pairs of 76-bp reads were generated on a single flow cell.

This paired-end data set, supporting the results of this

article, is available from the Sequence Repository Archive

(SRA051354 - http://www.ncbi.nlm.nih.gov/sra/?term=

SRA051354) [29].

Compared with the previous publication, we applied a

stricter protocol for removal of adaptor contaminants to

optimize assembly performance; reads with adaptor

or partial adaptor sequences at their ends may inter-

fere with extension of transcripts during assembly.

Adaptor sequences were identified using Cross_match

(http://www.phrap.org) to search a database of Illu-

mina adaptor sequences. We subsequently ran a more

stringent screen focusing on the specific adaptors:

AGATCGGAAGAGCACACGTCTGAACTCCAG and

AGATCGGAAGAGCGTCGTGTAGGGAAAGA (min-

match 10, minscore 5). Poor-quality bases were re-

moved by iterating a 5-nt window across the 5′ and 3′

ends of each sequence and removing nucleotides in

windows with a mean quality score less than 20; iter-

ation was stopped when the mean quality score was

greater than 20. After trimming, reads less than 50 bp

in length were discarded; for paired-end reads, if

either read of a pair was less than 50 bp in length,

Celaj et al. Microbiome 2014, 2:39 Page 9 of 13

http://www.microbiomejournal.com/content/2/1/39

http://www.ncbi.nlm.nih.gov/sra/?term=SRA051354
http://www.ncbi.nlm.nih.gov/sra/?term=SRA051354
http://www.phrap.org


then both reads were discarded. Putative rRNA reads

were identified through BLAT [28] sequence similarity

searches (bit score ≥50) against an in-house database

of rRNA sequences [12]. Again, for paired-end reads, if

either read of a pair matched a ribosomal sequence,

both reads were annotated as being of rRNA in origin.

Putative mouse transcript sequences were identified

through BLAT sequence similarity searches (bit score ≥50)

against a database of mouse genome and transcrip-

tome sequences obtained from ENSEMBL release 67
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Figure 6 Accuracy of simulated metatranscriptome assemblies. For each simulated dataset, the accuracy of the reconstructed transcripts is

evaluated based on their matches to the original set of transcripts used to generate the datasets. (A) Ten species dataset. (B) 72 species dataset.

Shown is the percentage of contigs in each assembly which contain a region of at least one read length (76 bp) which does not align to a

transcript at a variety of sequence cutoffs (97%–100% sequence identity). The gold standard assembly indicates the number of predicted

misassemblies that are the result of introduced sequence errors during generation of the simulated datasets. Note this is higher for the ten

species dataset as it includes a larger number of contigs than are generated by the assemblers (see text).
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[30]. Depending on sample, 3%–29% of the reads

could be annotated as being of putative bacterial

mRNA origin (Additional file 1). Phylogenetic annotations

were performed by running BLASTX sequence similarity

searches against the non-redundant protein database [31],

using the highest scoring alignment (bit score >50).

Resulting species were assigned to larger taxonomic

groups with reference to the National Center for Biotech-

nology Information (NCBI) taxonomy tree [32].

Generation of simulated metatranscriptomic datasets

Simulated metatranscriptomic datasets were generated

based on sequence abundance data previously gener-

ated from the stool of a female participant of the

Human Microbiome Project (HMP) (Biosample identi-

fier: SRS011061 [26]). From an original list of 180

species, 73 were associated with a reference genome

available from the Human Microbiome Reference

Genome database (HMREFG [33]; Additional file 7).

For each of these 72 species, annotation files were

converted from GenBank format to gtf format for use

in FluxSimulator [24] using a custom script. A total of

1.75 million 76-bp single-end and paired-end reads

were generated with the proportion of each of the 72

species obtained with reference to the HMP sample.

To generate a less complex dataset consisting of ten

species, a single species representative was selected

from each of the ten most abundant genera identified

in the HMP sample. Again, 1.75 million single-end

and paired-end reads were generated with the propor-

tion of each of the ten species obtained with reference

to the HMP sample. To generate a gold standard as-

sembly for the simulated datasets that takes into ac-

count read errors introduced by FluxSimulator, we

used a parallelised version of BLAT (https://code.google.

com/p/pblat/) to align simulated reads to the set of refer-

ence genomes originally used to generate the reads. Since

FluxSimulator includes sequence upstream of start codons

in the generation of simulated transcripts, it can occasion-

ally result in the generation of reads representing a fusion

of two neighboring genes. For the purposes of defining

misassemblies, these were ignored.

Sequence assembly and mapping reads back to contigs

For Trinity [19], we used the following parameters: fastq

assembly, 16 CPUs for Inchworm and Butterfly, a max-

imum heap size of 12 GB, and an insert distance of

270 bp for the paired-end assemblies. Only contigs in

excess of 50 bp were reported. For Oases [18], we used

version 2.0.8 and varied the minimum and maximum

k-mer parameters with values listed in the text. Insert

length was defined as 270 bp for the paired-end assem-

blies. For Metavelvet [17], we used version 1.2.01 coupled

with Velvet [34] version 1.2.07. Velveth was initially run

on the fastq files, using the -short parameter for the

single-end reads and the -shortPaired parameter for the

paired-end reads. Values for minimum and maximum

k-mer parameters are listed in the text. Subsequently, vel-

vetg was run using the -exp_cov auto parameter for both

single- and paired-end reads. The ins_length parameter

was set to 270 for the paired-end reads. Finally, meta-

velvetg was run setting the -ins_length parameter to 270

for the paired assemblies. IDBA-MT [20] version 1.0 was

run on contigs initially generated using IDBA-UD [35]

version 1.0.9 on paired-end reads using default parameters

with an insert length of 270. To map reads to contigs, we

applied BWA [36] with default parameters. To calculate

the overlap between reads mapping to different contig

sets, we calculated the intersection of the reads mapping

to the two different assemblies divided by the size of smal-

lest set of mapped reads.

Additional files

Additional file 1: Sequence yields for 12 NOD mouse sample

preparations. Table showing number and breakdown of sequence

reads generated from single and paired-end sequencing runs.

Additional file 2: Number of reads and proportion with BLASTX

matches for 12 samples of single- and paired-end reads derived

from the large intestine of non-obese diabetic mice. Graph shows

the proportion of reads which can be annotated through sequence

similarity searches.

Additional file 3: Overlap in single-end assemblies. Single-end

assemblies constructed from 516,881 single-end reads of putative

bacterial mRNA origin obtained from a non-obese diabetic (NOD)

mouse cecal sample were evaluated on the uniqueness of the reads

incorporated into contigs. The size of circles and overlap areas is

approximately proportional to the reads incorporated into each assembly

and the read profile overlaps for a) Oases, b) Metavelvet, and c) Trinity

compared to Oases and Metavelvet with the lowest k parameters.

Additional file 4: Comparisons of the performance of single- and

paired-end sequence reads generated from the large intestine of

non-obese diabetic mice. Graphs show consistency of single- and

paired-end datasets in terms of rRNA, mouse RNA, and bacterial mRNA

representation, as well as phylogenetic breakdown of annotatable reads.

Additional file 5: Overlap in assemblies of paired-end reads. As for

Table 1, this table shows the overlap of reads incorporated into the

various assemblies.

Additional file 6: Statistics of simulated metatranscriptome

assemblies constructed from ten species. Table showing performance

of various assemblies on the simulated metatranscriptome dataset

constructed from ten species.

Additional file 7: List of species used to generate the simulated

datasets.
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