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Comparison of bacterial 
communities of conventional and 
A-stage activated sludge systems
Alejandro Gonzalez-Martinez1, Alejandro Rodriguez-Sanchez2, Tommaso Lotti3, Maria-

Jesus Garcia-Ruiz1, Francisco Osorio1, Jesus Gonzalez-Lopez2 & Mark C. M. van Loosdrecht3

The bacterial community structure of 10 different wastewater treatment systems and their influents 
has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors 
had different technological configurations: conventional activated sludge (CAS) systems and very 
highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing 
municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community 
structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. 
Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core 
of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, 
respectively, showing that different geographical locations in The Netherlands and Spain did not affect 
the functional bacterial communities in these technologies. The ecological roles of these bacteria 

were discussed. Influents and A-stage bioreactors shared several core genera, while none of these 
were shared with CAS bioreactors communities. This difference is thought to reside in the different 
operational conditions of the two technologies. This study shows that bacterial community structure of 
CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention 
time (HRT), as suggested by multivariate redundancy analysis.

�e activated sludge process is the most common treatment of wastewater at municipal and industrial wastewater 
treatment facilities1. �is technology can e�ectively eliminate many pollutants from wastewater with high e�ciency 
and at reasonable costs. �e so-called Adsorption-Belebungsverfahren (AB) process was developed in the 70’s as 
an energy e�cient wastewater treatment process2. It is currently proposed as an essential element in an energy 
producing and e�cient wastewater treatment process3–5.

�e AB technology consists of a system of two bioreactors with an intermediate and a �nal clari�er a�er them, 
respectively. �e �rst bioreactor, named A-stage, is highly loaded and mainly intended for organic matter removal; 
the second, named B-stage, is lowly loaded and mainly intended for nutrients removal. �is technology does not 
need a primary sedimentation tank6. On the other hand, CAS consists of a one-bioreactor system, followed by a 
�nal clari�er. In this sense, the same processes of biological organic matter and nutrients removal are achieved in 
one bioreactor for CAS and in two bioreactors for the AB technology. AB systems have proved several advantages 
over conventional activated sludge (CAS) systems, such as lower energy consumption, lower reactor volume, and 
the capability to absorb better high variations in the in�uent characteristics6.

�e hydraulic retention time (HRT) and sludge retention time (SRT) are two of the most important param-
eters in operation of bioreactors. �ey express the mean time that the �uid spends inside the bioreactor before 
becoming treated and the mean time that biomass spends inside the bioreactor a�er it is washed away with the 
e�uent, respectively. In practical operation of bioreactors, variations of HRT and SRT are done in order to control 
the performance of bioprocesses.

�e purpose of this work was to study the di�erences in bacterial community in CAS systems and AB systems. 
In�uents and activated sludge of 10 full-scale plants - 7 with CAS technology and 3 with AB technology - were 
analyzed. �is allowed to study the impact of the in�uent microbiome on the two processes. Given that bacterial 
community composition and diversity is thought to drive the performance of activated sludge systems7, di�erences 
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between the CAS and AB systems are explained through bacterial community structure di�erences. Core genera 

for in�uent, CAS and A-stage samples were de�ned as follows: for the in�uent samples, genera with at least 1% 
relative abundance in at least 8/10 samples; for the CAS samples, genera with at least 1% relative abundance in 
at least 5/7 samples; for A-stage bioreactors, genera with at least 1% relative abundance in at least 2/3 samples.

Results and Discussion
Different configuration and operational conditions among systems studied: the CAS and the 
A-stage bioreactors. �e di�erent characteristics and operational conditions of the two technologies covered 
in this study (CAS and A-stage bioreactors) can be seen in Table 1. �e most de�ning di�erence between these two 
technologies is the shorter HRT of A-stage bioreactors with respect to CAS. It is expected that microbial community 
structures of these bioprocesses respond to these di�erent characteristics.

Species richness, rarefaction and Hill diversity indices analysis. �e rarefaction curves of in�uent 
and bioreactor samples are shown in Fig. 1. �e calculated species richness, ACE, Chao1, Chao standard deviation, 
Shannon and Simpson indices of all samples are shown in Table 2. Overall, diversity and richness indices showed 
similar values among in�uent and A-stage bioreactor samples, while these values were higher for the CAS biore-
actor samples. �is suggests that diversity of bacterial communities is higher in CAS bioreactors than in in�uent 
samples or A-stage bioreactor samples.

Bacterial community structure in influent and bioreactor samples: statistical analysis.  
Phylogeny-based cluster analysis of OTUs with > 1% relative abundance in in�uent or bioreactor samples is shown 
in Fig. 2. Taking 0.6 as benchmark for di�erentiation8 we can cluster the samples in 6 groups. Group I comprises 
5 CAS bioreactor samples, while Group III contains a single CAS bioreactor. Groups II, V and VI stand for single 
samples of an A-stage bioreactor. Group IV clusters all in�uent samples of CAS and AB systems, and a single CAS 
bioreactor sample. Non-phylogeny-based cluster analysis at class and genus level showed identical patterns than 
phylogeny-based cluster analysis (Fig. S1 and Fig. 2).

Phylogeny-based principal coordinates analysis of OTUs with > 1% relative importance (Fig. S2) showed the 
same trend observed in phylogeny-based cluster analysis. �ere is a remarkable similarity among all CAS biore-
actor samples, and also among all in�uents. A-stage bioreactor samples appear scattered and show uniqueness in 

WWTP Code Country Technology
HRT 
(h)

SRT 
(d)

BODinf 
(mg/L)

BODe� 
(mg/L)

TNinf 
(mg-
N/L)

TNe� 
(mg-
N/L)

MLSS 
(g/L)

TPinf 
(mg-
P/L)

TPe� 
(mg-
P/L)

Dissolved 
Oxygen 

(mg-O/L)
Temperature 

(°C) pH

Amsterdam West 1 �e Netherlands CAS 17 - 262 <  5 53 10 5 9 1 1.5 20 7.2

Harnaschpolder 2 �e Netherlands CAS 27 25 343 <  5 33 1.5 4 6.7 < 1 1.5 19 –

Houtrust 3 �e Netherlands CAS 15 14 350 <  5 46.8 8.4 4,2 8.1 1.1 1 16.2 –

Vianen 4 �e Netherlands CAS 35 27 212 2.2 47 3.4 4 6.5 1.3 1 15 7.0

Granada 5 Spain CAS 23 – 449 20 75 9 3.7 16 1 2.5 22 7.5

Kralingseveer 6 �e Netherlands CAS 16 20 107 <  5 43 5.3 3.8 6 1.3 1.5 18.1 7.3

Kortenoord 7 �e Netherlands CAS 20 20 220 <  5 56 2.6 – 10 0.3 1.5 18.8 –

Dokhaven 8 �e Netherlands A-stage 0.7 0.27 170 <  5 44 12 – 6 1 1 18 7

Breda 9 �e Netherlands A-stage 0.41 0.60 207 <  5 47 24 2.5 6 3.4 0.2 18 7

Utrecht 10 �e Netherlands A-stage 0.89 0.42 157 <  5 45 10 – 7.6 - 0.2 18 7

Table 1.  Characteristics and operational conditions of bioreactors sampled in the study. All CAS plants 

have a presettling tank except Vianen and Kortenoord.

Figure 1. Rarefaction curves of in�uent samples (le�) and bioreactor samples (right). 
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similarity with all other samples. Samples 5I and 5B collected in Spain does not appear isolated and show similarity 
with samples collected in �e Netherlands. Non-phylogeny-dependent principal coordinates analysis at class 
and genus level showed close similarity with the phylogeny-based principal coordinates analysis (Fig. S1 and S2).

It is shown that similarity exists among all in�uent samples regardless of the location they were collected. 
Bacterial composition of the feed has been suggested as a major factor in bioreactor bacterial community structure9, 
but given the similarity shown by all in�uent samples its impact on the variation between the di�erent activated 
sludge processes studied can be considered negligible in this study. All CAS bioreactor samples are similar but 
scatter of A-stage bioreactor samples show that microbial diversity of these systems is much more unique than that 
of CAS bioreactors. Samples collected in Spain 5I and 5B showed a high similarity with samples collected in �e 
Netherlands. Even though geographic location has been suggested as a major factor controlling microbial commu-
nity structure8, it can be assumed that its impact in this study is negligible. We can say that, as a major hypothesis, 
the responsible for bacterial community structure in CAS and AB systems analyzed are the di�erent operational 
parameters and wastewater treatment technology rather than the in�uent microbial community.

Bacterial community structure of influent samples. In the phylogeny-based cluster analysis and prin-
cipal coordinates analysis, all 10 in�uent samples were clustered in Group IV using the 0.6 benchmark. Regardless 
of the WWTP they feed, all in�uent samples have a similar bacterial community structure (Fig. 2). Similarities 
among bacterial community structure of all in�uents might be de�ned by wastewater characteristics and geographic 
proximity between all WWTPs sampled. All in�uents were composed by urban sewage coming from human use 
of wastewater and it is expected that all in�uents harbor similar communities, mostly coming from human gut. As 
well, it has been reported that bacterial communities in WWTPs tend to be similar for close geographical areas8.

At class level the dominance in all in�uents belong to β -Proteobacteria, ϒ -Proteobacteria, ε-Proteobacteria and 
Bacteroidia, although Clostridia was found to have a relatively high importance in a couple of the in�uent samples. 
Of 13 di�erent major classes (> 1% total abundance) appearing among all samples, 6 were found in all of them and 
3 were represented in at least 7/10 of the samples. Only 4 classes - Actinobacteria, α -Proteobacteria, Chloro�exi 
and δ -Proteobacteria - were covered in 3/10 samples or less. �ese results are in accordance with previous studies10.

At family level, the most common taxonomic representation was that of Campylobacteraceae, Aeromonadaceae, 
Bacteroidaceae and Comamonadaceae, found at high relative abundance in all samples. 31 di�erent families were 
identi�ed among all in�uent samples. 6 families were found in all of them, and other 10 were represented in 7/10 
samples and higher. 15 families were found in 3/10 of samples or lower, and all of these 15 accounted for relatively 
minor importance (< 5% total abundance).

Bacterial community composition of all in�uent samples at genus level (> 1% relative abundance) is represented 
in Fig. 2. A core of genera can be observed among the samples. Aeromonas (2.5–13%), Arcobacter (3–42%) and 
Bacteroides (5.5–19.5%) are present in all samples, Acidovorax (1–8%) and Pseudomonas (1–5%) are present in 
9/10, and Clostridium (1–2.5%) in 8/10. �ese species comprehend both aerobic heterotrophs and fermenters. 
Among the core genera described, the genus Clostridium and Bacteroides have been reported to be two of the 
main consistent human gut bacteria11. In this sense, human gut bacteria are part of the core genera of in�uent 
wastewater in urban WWTPs.

Bacterial community structure of CAS bioreactor samples. Cluster analysis and principal coordinates 
analysis showed the close similarity among all CAS bioreactor samples, clustered in Group III, Group IV and 
Group I (Fig. 2).

Group III is formed by a sample from Kortenoord CAS bioreactor without presettling. At genus level the het-
erotrophic, �oc-forming Haliscomenobacter is the most represented (> 11%). Other genera such as Rhodocyclus 
(> 4.4%), Rhodoferax (> 3.1%) and Chloro�exus (> 3.9%) might play an important role for the system such as 
phosphorous removal, nitrogen removal and �oc-backbone, respectively.

Sample 4B from Vianen WWTP is clustered within the Group IV, which also contains all in�uent samples. 
�e most abundant genus in this bioreactor are Arcobacter (28%) and Bacteroides (25%), which together express 

1I 2I 3I 4I 5I 6I 7I 8I 9I 10I

Shannon 4.415 4.249 4.878 4.320 4.844 4.403 4.225 3.283 5.133 4.649

Simpson 0.961 0.9510 0.977 0.954 0.978 0.964 0.963 0.878 0.982 0.962

ACE 640.194 820.548 1038.800 903.701 980.148 664.993 533.928 390.813 1230.179 1079.984

Chao1 733.209 943.500 1160.961 1032.281 1254.806 788.079 670.750 493.782 1483.651 1247.112

Chao SD 16.011 19.260 18.295 19.117 31.488 19.336 21.639 19.145 28.746 23.033

1B 2B 3B 4B 5B 6B 7B 8B 9B 10B

Shannon 5.061 4.772 4.915 4.621 5.137 3.964 4.783 3.663 2.831 4.488

Simpson 0.986 0.978 0.983 0.973 0.982 0.932 0.980 0.949 0.873 0.964

ACE 844.504 766.150 732.992 568.832 922.002 510.606 653.682 381.137 437.350 1188.606

Chao1 1000.869 885.045 841.079 638.847 1145.876 609.405 768.445 441.150 663.409 1395.003

Chao SD 22.004 19.110 18.272 14.177 27.075 17.848 19.125 14.362 33.242 25.268

Table 2. Hill diversity indices of order 1 and order 2 (Shannon and Simpson index, respectively), ACE, 
Chao1 and Chao standard deviation (Chao SD) of all samples, letter “I” represent In�uent samples, Letter 
“B” represents Bioreactor samples. Each number represent each wwtp following the code of the table 1.
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more than 50% of total bacterial population inside the system. Other genera such as Fluviicola and Aeromonas, 
are represented at relatively low (< 5%) abundance.

CAS systems at Vianen and Koortenord are operated without presettling, while all others have a primary 
sedimentation process. In this sense, the statistical deviation in clustering of samples 4B and 7B with respect to 
Group I might be caused by this fact.

Group I is formed by all other �ve CAS bioreactors. At class level the dominant are clearly the β -Proteobacteria, 
accounting for 16–30% relative abundance in all samples. Analysis of activated sludge systems through pyrose-
quencing has shown domination of Proteobacteria in activated sludge, with β -Proteobacteria found to be the 
dominant Proteobacteria in activated sludge systems in some of these studies7,9,12. Bacteroidetes also have a high 

Figure 2. Phylogeny-dependent cluster analysis of all samples taking into account OTUs belonging to 
genera with >1% relative abundance in at least one of the samples (above) and heat map of all samples at 
genus level (below). �e benchmark used for clustering groups de�nition is marked with a dashed line in the 
clustering tree.
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importance in all samples. At genus level, 64 di�erent genera were identi�ed among all CAS samples in Group I 
(Fig. 2). Among these, Acidobacterium (~1–4%), Chloro�exus (~1.5–6.5%), Flavobacterium (~1–3.5%), Rhodocyclus 
(~1–3%) and Rhodoferax (~1.5–6.5%) were found in all samples, while Dechloromonas (~1–4%), Fluviicola (~1–
4.5%), Haliscomenobacter (~3–16%) and Sterolibacterium (~1–1.6%) were found in 4/5 samples.

�ere are several genera shared by all CAS bioreactors, which might develop important roles for the functioning 
of CAS systems, as stated by Wang et al.9. Rhodocyclus was the only genus found in all 7 CAS bioreactors. �ese 
microorganisms are responsible for biological phosphate removal and all WWTPs investigated were designed as 
EBPR for this purpose. Acidobacterium, Chloro�exus, Dechloromonas, Fluviicola and Rhodoferax genera were found 
in 6/7 CAS bioreactors. Also, Flavobacterium, Haliscomenobacter and Sterolibacterium genera were found in 5/7 
CAS bioreactors. Acidobacterium is thought to be responsible for BOD degradation in activated sludge systems13. 
Fluviicola species are ubiquitous in freshwater systems, respire only oxygen and develop colonies that form long 
�laments in rare occasions. Furthermore, metabolic machinery for degradation of complex organic compounds has 
been identi�ed from the complete genome of Fluviicola ta�ensis14. �e �rst Sterolibacterium species isolated came 
from a UASB reactor treating land�ll leachate, and developed degradation of organic matter with oxygen or nitrate 
as terminal electron acceptor, with reduction of nitrate to dinitrogen15. In this way, Acidobacterium, Sterolibacterium 
and Fluviicola are the core genera members that carry out organic matter biodegradation in CAS systems. 
Rhodocyclus genus has been previously associated with N and P removal in WWTPs16. Species of Rhodoferax 
are thought to utilize nitrate as both electron acceptor and nitrogen source17 while Dechloromonas species have 
been reported for phosphorus removal and denitri�cation in WWTPs7. In this way, Rhodocyclus, Rhodoferax and 
Dechloromonas-related species are responsible for denitri�cation and biological phosphorous removal in CAS 
bioreactors. Also, Sterolibacterium could play an important role in nitrogen removal. Chloro�exus-related micro-
organisms have been found as backbone of �occular biomass in nutrient removal bioreactors in WWTPs18,19, and 
their role in the hydrolysis of proteins has been suggested18. Haliscomenobacter species were also found as backbone 
of �occular biomass18 and have been reported for the breakdown of N-acetylglucosamine20, thus able of scavenging 
decaying cell biomass. Flavobacterium have been found in WWTPs and have been reported to produce extracellular 
polymers that bound cells together21, thus they might act as �oc-forming microorganisms.

None of the core genera de�ned for the CAS bioreactors have a nitri�cation metabolism. On the other hand, 
studies in 25 full-scale enhanced biological phosphorous removal (EBPR) wastewater treatment plants suggested the 
ammonium oxidizers Nitrosomonas and Nitrosospira and the nitrite oxidizer Nitrospira as core nitrifying genera18. 
In this study, Nitrosomonas genus was found in 6/7 of the CAS analyzed (~0.44–1.23%) and the genus Nitrosospira 
was found in only 1/7 of these bioreactors at 1.31% relative abundance (WWTP of Granada, sample 5B). �e 
ammonium oxidizing genus Nitrosococcus was found in 3/7 of the CAS (~0.20–1.93%). While these ammonium 
oxidizing genera were not considered as core genera in CAS systems, the presence of these phylotypes is consistent 
among all CAS analyzed. �ese genera are responsible for the ammonium oxidation in these bioreactors. Also, the 
nitrite oxidizing genus Nitrospira was found in 6/7 CAS studied (~0.21–1.83%). As suggested by Nielsen et al.18, 
this genus is the responsible for nitrite oxidation in these activated sludge systems. �e low contribution of the 
organisms in the microbial community is in accordance with the low growth yields of these autotrophic bacteria.

�e bacterial communities found in these 7 CAS bioreactors showed many similarities with those presented in 
other studies regarding EBPR bioreactors in Denmark18. Notably, the presence and ecological roles of Chloro�exus, 
Haliscomenobacter and Dechloromonas suggested in this work are in accordance with those proposed by these 
authors. Major deviations in both ecological analysis were found on the biological phosphorous removing bacte-
ria. Our pyrosequencing analysis showed that Rhodocyclus was the main phosphorous-removing bacteria in the 
7 CAS bioreactors analyzed, while FISH techniques used by other authors showed that Accumulibacter was the 
main phylotype developing this ecological role in EBPR bioreactors18. Di�erences might reside in the geographical 
location, as it has been reported to impact bacterial community structure of activated sludge systems8, as well as 
di�erences in bioreactor technology and operational conditions. In this way, potential ecological roles in CAS 
bioreactors are shown in Table 3.

Bacterial community structure of A-stage bioreactor samples. �e three samples coming from 
A-stage bioreactors are not similar between them, all cluster separately in Groups, II, V and VI (Fig. 2).

Group II relates to a sample from Utrecht A-stage bioreactor. At class level dominance belongs to Bacteroidia 
class, with β -Proteobacteria relegated to a second role. �is is di�erent from CAS investigated in this study, where 
β -Proteobacteria were dominant in all cases. At genus level (> 1%), Bacteroides and Arcobacter species are the 
most represented (~15%), with Dechloromonas, Aeromonas, Geobacter and Clostridium having a high relative 
abundance (~5%). Bacteroides and Arcobacter genera are aerotolerant, heterotrophic bacteria consistently found 
in urban WWTPs.

Group V includes only a sample from Breda A-stage bioreactor. At class level the majority of bacterial commu-
nity is formed by β -Proteobacteria with an unprecedented abundance (> 70%). At genus level the domination of the 
system belongs to Hydrogenophaga (> 45%), with other genera being of relatively much lower importance, such as 
Pseudomonas or Rhodoferax (~11%). Hydrogenophaga has been identi�ed as a heterotrophic bacterium which can 
utilize carbon under aerobic conditions and under anaerobic conditions through a denitri�cation metabolism22.

Group VI contains only a sample from Dokhaven A-stage bioreactor. At class level Flavobacteriia (~38%) and 
β -Proteobacteria (~29%) are the most represented, with ϒ -Proteobacteria having lower importance (~14%). At 
genus level, �oc-forming Flavobacterium is the most represented with a high relative abundance (~32%). Genera 
such as Zoogloea (~10%), Acidovorax (~7%) and Arcobacter (~5%) are also of importance within the system.

In general, pyrosequencing analysis showed that bacterial community structure of A-stage bioreactors was 
clearly dominated by a few genera, leading to a low bacterial diversity of the bioreactors. Even though statistically 
all A-stage bioreactor samples were di�erent in bacterial community structure, there existed some genera that 
were shared by all samples (Fig. 2). Being encountered in 2/3 samples were Acidovorax (2.5–7.5%), Aeromonas 
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(3.3–6.0%), Arcobacter (1–25%), Bacteroides (4–23%), Dechloromonas (1–7%), Hydrogenophaga (3.6–46.1%) and 
Rhodoferax (1.1–11.6%), among others. �e only genus found in all A-stage bioreactors sampled was Zoogloea 
(2–10%). Filamentous bacteria, such as Zoogloea, are thought to be crucial in the formation of �ocular biomass in 
activated sludge systems23. A-stage bioreactors have a very short SRT and could be expected to have a population 
that is close to the in�uent microbial population. However this wasn’t the case indicating that the bioconversion 
of the soluble COD in the A-stage bioreactor is di�erent from the sewer microbiome and specialized to the local 
conditions.

Following Wang et al.9, shared genera are found able to develop di�erent important features for the function-
ing of activated sludge systems. A species of Arcobacter has been isolated from sewage sludge showing growth 
under aerobic conditions and poor growth under anaerobic conditions, with utilization of organic carbon and 
capability of nitrate reduction24. Species of Acidovorax have been reported from WWT systems being capable 
of aerobic, heterotrophic growth and of anaerobic growth through denitri�cation25. Strains of Hydrogenophaga 
isolated from activated sludge have been reported as putative heterotrophs26. Aeromonas have been found to pro-
duce chitin-degrading enzymes27, thus being capable of predation on cell biomass. �us, Arcobacter, Acidovorax, 
Aeromonas and Hydrogenophaga genera, among others, state as core BOD-removal microorganisms in A-stage bio-
reactors. Zoogloea are thought to be capable of �occular biomass formation28. Environmental strains of Bacteroides 
spp. isolated from anaerobic digesters have shown heterotrophic metabolism and the capacity of forming extremely 
long �laments29. �erefore, presence of Zoogloea and Bacteroides species trigger �occular biomass formation in 
A-stage bioreactors. None of the core genera found in the A-stage samples were able to develop ammonium or 
nitrite oxidation. Ammonium oxidizing consistently found in activated sludge systems, such as Nitrosomonas 
or Nitrosospira, accounted for low relative abundance (0.33% maximum), as well as nitrite oxidizing Nitrobacter 
(below 0.01% in all A-stage samples). �is is in line with the absence of nitri�cation in the A-stage bioreactor. 
Accordingly, Dechloromonas, Acidovorax and Arcobacter species are able to drive the denitri�cation taking place 
in A-stage bioreactors. Nitrate is supplied to these systems by e�uent recirculation from the B-stage nitrifying 
bioreactor. In this way, potential ecological roles in A-stage bioreactors are shown in Table 3.

Differences in bacterial community structure among CAS and A-stage bioreactors. Species richness.  
A�er pyrosequencing post-run analysis in�uent samples and bioreactor samples were cut to 10535 reads to provide 
the same sequencing depth for each sample to conduct further ecological analysis.

Species richness of samples was estimated through number of OTUs, ACE and Chao 1 estimators. Mean 
number of OTUs is greater for CAS bioreactor samples than for A-stage bioreactor samples, and mean ACE and 
Chao 1 richness estimators for CAS bioreactor samples are as well greater than that of A-stage bioreactor samples 
(Table 2). �is is also con�rmed by the rarefaction curves (Fig. 1).

Higher species richness in CAS bioreactors can be explained by the longer SRT and the presence of aerobic/
anaerobic zones in these systems. Longer SRT bene�ts the proliferation of slow-growth microorganisms and 
consumption of a wide range of substrates. �e long SRT also makes a cryptic growth cycle being relevant in these 
systems. In the A-stage bioreactor only very fast growing bacteria can maintain themselves and only the readily 
degradable BOD is converted. �is likely associates with the lower species diversity.

Di�erences in core genera of CAS and A-stage bioreactors. Selection of di�erent genera that carry out similar 
functions in activated sludge systems between CAS and A-stage bioreactors should be explained by di�erences in 
WWT technology, given the statistical insigni�cance of in�uent WW characteristics and geographical location. 
In fact, WWT system con�guration has been proposed as way of selection for microbial communities thriving 
in these systems. In this case the di�erence in SRT can explain changes in bacterial communities among di�erent 
types of WWT systems12.

Genus Bioreactor BOD removal Denitri�cation P removal Suspended biomass formation Predation

Acidobacterium CAS Chen et al.14 – – – –

Acidovorax AB Heylen et al.26 Heylen et al.26 – – –

Aeromonas AB Chong et al.25 – – – Chong et al.28

Arcobacter AB Collado et al.25 Collado et al.25 – – –

Bacteroides AB Ueki et al.30 – – Ueki et al.30 –

Chloro�exus CAS - - – Gonzalez-Gil & Holliger20 –

Dechloromonas CAS & AB Kim et al. 2013 Kim et al. 2013 – – –

Flavobacterium CAS - – – Guo et al.22 –

Fluviicola CAS Woyke et al.15 – – – –

Haliscomenobacter CAS Kragelund et al.21 – – Kragelund et al.21 Kragelund et al.21

Hydrogenophaga AB Kämpfer et al.27

Rhodocyclus CAS - �omsen et al.17 �omsen et al.17 – –

Rhodoferax CAS & AB Yao et al.19 Yao et al.19 – – –

Sterolibacterium CAS Tarlera & Denner16 Tarlera & Denner16 – – –

Zoogloea AB – – Martins et al.24; Shao et al.29 –

Table 3. Potential ecological roles of core genera in CAS and A-stage bioreactors.
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Core genera identi�ed for in�uent, CAS bioreactors and A-stage bioreactors are shown in Table 4. As well, 
the phylogenetic trees of CAS and A-stage are shown in the supplementary material as Figure S3 and Figure S4, 
respectively. As can be seen, several core genera of in�uent samples were also core genera in A-stage bioreactors, 
while in�uent samples shared none with CAS bioreactors core genera. Sameness of in�uent samples and A-stage 
bioreactors core genera is caused by the short SRT of the A-stage bioreactors. �us, in�uent microbial community 
reaching the A-stage bioreactors has a short time to shi� and therefore it leaves the bioreactor with small changes. 
On the contrary, the longer SRT in the CAS bioreactors impacts microbial community structure coming in with 
the in�uent. With su�cient time in the bioreactor, microbial community of the in�uent will decay (e.g. by protozoa 
predation) and will therefore not accumulate in the sludge. Accordingly, bacterial species that thrive on bacterial 
biomass accounted for 3.4–16.2% relative abundance in CAS and 3.3–6% in A-stage, respectively. Di�erence in 
relative abundance of N-acetylglucosamine utilizers implies that cell decay in CAS bioreactors is greater than in 
A-stage bioreactors.

Redundancy analysis of environmental variables and bacterial community structure. RDA has been proven as a 
reliable method for the understanding of the relationship between microbial species and environmental param-
eters30. In this sense, an RDA expressing the relationship of bioreactor samples, their environmental parameters 
(in�uent BOD, in�uent nitrogen concentration, HRT, SRT, dissolved oxygen concentration and temperature) and 
relative abundance of CAS and A-stage core genera is shown in Fig. 3. �e RDA showed that the most important 
variables explaining the ordination of the samples were the SRT and the HRT. As well, the RDA showed that the 
in�uence of temperature was negligible with respect to the composition of bacterial community structure. Also, 
the in�uence of dissolved oxygen concentration did not show a strong importance with the bacterial community 
composition. With the exception of Arcobacter, Bacteroides and Haliscomenobacter, all the 15 core genera were dis-
tributed in correlation with this variable. Interestingly, genera Fluviicola, Rhodocyclus, Chloro�exus, Sterolibacterium 
and Acidobacterium were correlated with positive HRT, while genera Aeromonas, Acidovorax, Hydrogenophaga, 
Flavobacterium, Zoogloea and Dechloromonas showed a clear relation with negative HRT. In this sense, the core 
genera of CAS bioreactors are correlated with positive HRT and SRT (with exception of Flavobacterium), and 
core genera of A-stage are correlated with negative values of HRT and SRT. RDA results suggested that CAS core 
genera increased their relative abundance as the HRT and SRT increases, while the contrary happens for the core 
genera of A-stage bioreactors’ core genera. In this way, statistical analysis supports the hypothesis that SRT and 
HRT are the factors that drive the di�erent composition of bacterial core genera in the CAS and A-stage systems 
analyzed in this study. �e negligible in�uence of temperature could be caused by the relatively slow contribution 
with respect to other operational parameters such as HRT or SRT.

Another RDA analysis for the di�erentiation of species within core genera was also constructed, and it is 
shown in Figure S5 in the supplementary material. Interestingly, some species within the same genus experienced 
di�erences in ordination with respect to the environmental variables temperature, dissolved oxygen, HRT, SRT, 
in�uent BOD and in�uent total nitrogen concentration. Remarkable di�erences existed among Rhodoferax and 

Genera Influent CAS A-stage 

Acidobacterium <1% 1.5-3.4% <1% 

Acidovorax 1.3-7.75% <1% 2.5-7.5% 

Aeromonas 2.5-13.3% <1% 3.3-6% 

Arcobacter 3-42% <1% 5.4-25% 

Bacteroides 5.6-19.4% <1% 1.85-23% 

Chloroflexus <1% 3.2-6.4% <1% 

Clostridium 1-2.4% <1% <1% 

Dechloromonas <1% 1.8-4% 1.1-7.2% 

Flavobacterium <1% 1-3.3% <1% 

Fluviicola <1% 1.2-4.4% <1% 

Haliscomenobacter <1% 3.4-16.2% <1% 

Hydrogenophaga 1.1-4.3% <1% 3.6-46.1% 

Pseudomonas 1.3-5.1% <1% <1% 

Rhodocyclus 1.1-2.25% 1.8-5.3% <1% 

Rhodoferax <1% 1.5-6.4% 1.1-11.6% 

Sterolibacterium <1% 1.4-1.6% <1% 

Zoogloea 1.2-7.5% <1% 2.2-9.6% 

Table 4. Shared genera in in�uent, CAS bioreactor and A-stage bioreactor samples (core genera are 
depicted in green)41.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:18786 | DOI: 10.1038/srep18786

Bacteroides genera. In this sense, RDA showed that Rhodoferax antarticus is more favored than Rhodoferax sp at 
lower HRT, SRT and in�uent BOD. Also, Bacteroides graminisolvens dominated within its genus at higher HRT 
and SRT and lower in�uent BOD. All other genera showed that their belonging species were similarly a�ected by 
these environmental variables.

On the other hand, di�erences in bacterial community structure of CAS and A-stage bioreactors could also 
be driven by the in�uence of other operational variables. In this sense, temperature, conductivity and pH have 
been found to drive bacterial community structure of geographically distant WWTPs in China9, with especial 
relevance of temperature. In this study, the e�ects of temperature seemed to be hindered by the strong in�uence 
of other parameters such as HRT or SRT.

Similarities in bacterial community structure of influent and A-stage bioreactor sam-
ples. Phylogeny-based cluster analysis and principal coordinates analysis of in�uent samples and A-stage bio-
reactor samples show that these two groups of samples are not similar in terms of > 1% relative abundance OTUs 
assemblages (Fig. 2). Nevertheless, the bacterial core genera de�ned for in�uent samples and A-stage bioreactor 
samples shared signi�cant similarities (Table 4). �e four core genera Acidovorax, Aeromonas, Arcobacter and 
Bacteriodes were present in in�uent and A-stage bioreactor core genera in similar relative abundances. �e simi-
larity in core genera among these samples could be related to the SRT values in A-stage bioreactors. In general, the 
SRT in A-stage bioreactors is short. Moreover, conditions are more close to sewer conditions, the biodegradable 
COD in the reactor is still relatively high (i.e. no competition on substrate a�nity, growth at maximal growth rate). 
In CAS, BOD is overall very low inside the reactor, i.e. competition on substrate a�nity and not on growth rate. 
�e A-stage resembles aerated sewer conditions more, so likely similar microbial genera will be active although 
the actual microbial species deviate due to the more aerated conditions

Conclusions
�e microbial community structure of ten di�erent wastewater treatment systems and their in�uent were analyzed 
by high-throughput pyrosequencing. Seven of these were conventional activated sludge (CAS) systems, while the 
other three were A-stage stages of AB systems. Statistical phylogeny-based and non-phylogeny-based analyses 
showed that in�uents were similar in terms of microbial community structure, and the same holds for the di�erent 
CAS systems analyzed. On the other hand, A-stage system samples showed statistical independence from them-
selves and other samples, showing that the bacterial communities of these bioreactors are very case speci�c. Several 
genera were found in all the samples for the in�uent, CAS or A-stage bioreactors. �ese genera were identi�ed 
as core genera of these systems, and their ecological roles in urban wastewater treatment processes were hinted. 
�e variability and uniqueness of the A-stage bioreactor microbiome likely result from the very high loading and 
growth rates applied in these systems, selecting for unique microbial communities as compared to the CAs and 
sewer systems. Multivariate analysis identi�ed that HRT and SRT are the main operational parameters that drive 
the di�erences in bacterial core genera among the CAS and A-stage bioreactors analyzed.

Materials and Methods
Wastewater treatment plants characteristics. Ten activated sludge bioreactors were subjected to 
pyrosequencing analysis of their in�uent and bioreactor microbiota. Among these, seven were CAS and three 
were A-stage bioreactors. Nine of these bioreactors were located in �e Netherlands, and one of them in Spain. 
�e seven CAS bioreactors were con�gured as enhanced biological phosphorous (EBPR) bioreactors, with some 

Figure 3. Multivariate redundancy analysis triplot of bioreactors pyrosequencing samples (1B–10B: 
circles), environmental parameters (dissolved oxygen concentration, BODinf, TNinf, HRT, SRT: arrows) 
and core genera of CAS and A-stage bioreactors analyzed (triangles). 
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of them presenting a presedimentation basin prior to activated sludge process. Characteristics and operational 
conditions of the bioreactors sampled in the study are shown in Table 1.

Collection of biomass samples and DNA extraction. Sludge samples were collected by WWTP operators 
at the di�erent plants, all of them following the same collection procedure. For each in�uent and each bioreactor, 
�ve points evenly distributed among its cross-sectional area and its volume, respectively, were chosen, and one sam-
ple of 200 mL was taken from each sample point. Sample harvesting and pretreatment for DNA extraction was done 
in accordance to Ni et al.31. For biomass collection, samples were centrifuged at 5000 rpm for 10 min at ambient 
temperature. Biomass was stored at − 20 °C for future DNA extraction.�en �ve subsamples, one for each sampling 
point of each bioreactor, were treated as independent samples for DNA extraction purposes. 300 mg of pelleted 
biomass of each sample was collected for DNA extraction using the FastDNA SPIN Kit for Soil (MP Biomedicals, 
Solon, OH). �e �ve DNA extracts of each bioreactor were then merged together for PCR tag-pyrosequencing32.

PCR amplification and pyrosequencing. Forward primer 28F (5′ -GAGTTTGATCNTGGCTCAG-3′ ) 
and reverse primer 519R (5′ -GTNTTACNGCGGCKGCTG-3′ )33 were used to amplify the 500 bp hypervariable 
regions V1–V3 of 16S rRNA gene of Bacteria34. Pyrosequencing was developed by Research & Testing Laboratory 
(Lubbock, Texas, USA) and followed the procedure described in Dowd et al.35. PCR ampli�cation for pyrosequenc-
ing started with preheating at 94 °C for 3 minutes, then proceeded with 40 cycles of: 94 °C for 30 seconds; 60 °C for 
40 seconds and 72 °C for 1 minute; ampli�cation ended with an elongation step at 72 °C for 5 minutes.

Pyrosequencing post-run analysis. Raw reads from pyrosequencing process were trimmed based on 
quality to eliminate poor-quality end reads. Quality trimming was done based on quality scores. Quality trimmed 
data was then clustered to clean particularly noisy reads. Using USEARCH36, seed sequences were provided and 
quality trimmed reads were clustered to them in a 4% divergence threshold, thus eliminating sequences that fail 
to encounter similar reads. Chimeric sequences were detected using de novo method implemented in UCHIIME37 
over clustered data collected during the previous step. Denoising was then conducted to correct base pair errors 
and eliminate bad sequences. A�er denoising, a quality control screening was conducted in which sequences that 
did not meet quality criteria were eliminated. Quality criteria taken were 1) sequences with low quality tags (more 
than 1 error in barcode tag sequence) and 2) sequences shorter than 250 bp. Reads were then clustered into 0% 
divergence using USEARCH37 for taxonomy identi�cation. A seed sequence for each cluster was then queried 
from a high-quality sequences database derived from NCBI using Kraken38 so�ware that utilizes BLASTN+ . 
Based upon the BLASTN+  identity, sequences were a�liated to di�erent taxa levels as following: 1) at species 
level if divergence is less than 3%, 2) at genus level if divergence is 3–5%, 3) at family level if divergence is 5–10%, 
4) at order level if divergence is 10–15%, 5) at class level if divergence is 15–20% and 6) phylum level if divergence 
is 20–23%. Sequences that fail to encounter queried sequences with less than 23% divergence were discarded. 
A�er this procedure the number of reads for in�uent wastewater samples ranged from 10535 to 22925, while for 
bioreactor samples ranged from 13227 to 28138, adding to a total of 283486 (140550 and 142936 for in�uent and 
bioreactor samples, respectively). For further analysis, in�uent wastewater samples and bioreactor samples were 
rari�ed and cut to 10535 for proper ecological comparison.

Cluster analysis and principal coordinates analysis. Cluster analysis of amended samples was done for 
in�uent and bioreactor samples separately. Cluster analysis was developed a) at class level, b) at genus level and 
c) with phylogeny-dependent method. For the �rst two cases, sequences in each sample were merged to class and 
genus a�liation. Relative abundance of each class and genus, respectively, was used as weight for cluster analysis. 
Cluster analysis was based on Bray-Curtis dissimilarity and was conducted in R-Project. For phylogeny-dependent 
method the so�ware Fast UniFrac39 was used. A reference tree that comprised all OTUs from genera with < 1% 
total abundance level cuto� was generated utilizing pyrosequencing reads using MEGA 6.0 so�ware40. A sample 
mapping �le and a category mapping �le were created following UniFrac tutorial (http://unifrac.colorado.edu/). 
Relative abundance was taken as weight for weighted phylogeny-dependent cluster analysis. Cluster analysis was 
conducted in UniFrac according to the instructions given in the so�ware tutorial. Following the procedure devel-
oped by Zhang et al.8, the di�erent samples were grouped a�er the 60% similarity in the cluster analysis, stating 
that samples belonged to the same group if they were clustered together past the 0.6 benchmark.

Principal coordinates analysis was developed for in�uent and bioreactor amended samples separately. Principal 
coordinates analysis was done a) at class level, b) at genus level and c) with phylogeny-dependent method. For the 
non-phylogeny-dependent method in a) and b), pyrosequencing reads were merged at class and genus levels, taking 
relative abundance as weight for principal coordinates analysis. Principal coordinates analysis was conducted using 
R-Project so�ware. For phylogeny-dependent method Fast Unifrac38 was used. A reference tree that comprised 
all OTUs from genera with < 1% total abundance level cuto� was generated utilizing pyrosequencing reads using 
MEGA 6.0 so�ware40. Sample mapping �le and category mapping �le were developed as described above. Relative 
abundance of each OTU was also taken as weight for weighted principal coordinates analysis. Principal coordinates 
analysis was conducted in UniFrac according to the instructions given in the so�ware tutorial.

Heat maps. Heat maps of the microbial community at genus level of > 1% for all samples were done for the 
characterization of the microbial community structure of all in�uents and bioreactors. Heat maps were developed 
using Microso� Excel 2010.

Species richness analysis and Hill diversity indices. ACE richness estimator and Chao1 richness esti-
mator were calculated for all samples utilizing fossil package in R-Project so�ware41. Rarefaction curves for all 
samples were calculated using the so�ware aRarefactWin by S. Holland (University of Georgia, Athens; http://

http://unifrac.colorado.edu/
http://www.uga.edu/strata/AnRareReadme.html
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www.uga.edu/strata/AnRareReadme.html). Hill diversity indices of �rst order (Shannon-Wiener index) and of 
second order (Simpson index) were calculated for all samples using the package vegan implemented in R-Project.

Phylogenetic analysis. A phylogenetic tree was made for the analysis of diversity of CAS bioreactor sam-
ples and A-stage bioreactor samples separately using MEGA 6.0 so�ware40. Sequences obtained through pyrose-
quencing process were used for the study. �ese were phylogenetically related to close-similarity sequences in the 
GenBank database by BLAST searching. All sequences were then aligned using ClustalW alignment algorithm. 
�e phylogenetic trees were calculated through the neighbor-joining statistical method, with test of phylogeny 
consisting on a bootstrap model of 1000 bootstrap replications and using the Jukes-Cantor substitution model, 
as has been previously done42.

Redundancy analysis of environmental variables and bacterial community structure. Multivariate 
constrained redundancy analysis (RDA) was used to investigate the relationship between environmental parameters 
of the bioreactors analyzed in this study (in�uent BOD, in�uent nitrogen, HRT, SRT, dissolved oxygen and temper-
ature) with the relative abundance of bacterial members at genus level in each of these bioreactors. Environmental 
variables were weighted by taking the decimal logarithm of their values plus 1. As well, the relative abundance 
of the core genera de�ned for both CAS and A-stage bioreactors was taken for this analysis. RDA was calculated 
through 499 unconstrained Monte Carlo simulations using the Canoco for Windows 4.5 so�ware. Another RDA 
was developed to observe the organization of each of the species found for each of the core genera. �is was done 
in the same way as previously described with the exception that the relative abundance of bacterial members at 
OTU level was taken for the analysis.
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