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Comparison of Basis-Vector Selection Methods for
Target and Background Subspaces as Applied to Subpixel

Target Detection

Peter Bajorskia, Emmett J. Ientiluccib, John R. Schottb

aCenter for Quality and Applied Statistics, Rochester Institute of Technology,
Rochester, NY, USA

bDigital Imaging and Remote Sensing Laboratory, Rochester Institute of Technology
Rochester, NY USA

ABSTRACT

This paper focuses on comparing three basis-vector selection techniques as applied to target detection in hyper-
spectral imagery. The basis-vector selection methods tested were the singular value decomposition (SVD), pixel
purity index (PPI), and a newly developed approach called the maximum distance (MaxD) method. Target
spaces were created using an illumination invariant technique, while the background space was generated from
AVIRIS hyperspectral imagery. All three selection techniques were applied (in various combinations) to target
as well as background spaces so as to generate dimensionally-reduced subspaces. Both target and background
subspaces were described by linear subspace models (i.e., structured models). Generated basis vectors were then
implemented in a generalized likelihood ratio (GLR) detector. False alarm rates (FAR) were tabulated along
with a new summary metric called the average false alarm rate (AFAR). Some additional summary metrics are
also introduced. Impact of the number of basis vectors in the target and background subspaces on detector per-
formance was also investigated. For the given AVIRIS data set, the MaxD method as applied to the background
subspace outperformed the other two methods tested (SVD and PPI).

Keywords: Hyperspectral, Subpixel Target Detection, Endmember, Basis Vector, Subspace, AVIRIS

1. INTRODUCTION

This paper introduces a method for detection of subpixel targets in image spectrometer data cubes. It is based
on the premise that we know what the target is and can characterize it in terms of its reflectance spectrum.
Furthermore, we assume the target may exist at spatial scales such that it will present itself as a fraction of a
pixel and that it may exist in a significant number of pixels (more specifically we can’t assume that we can insure
that a significant region of the scene does not contain any targets). We desire a data processing approach that
can mitigate atmospheric and illumination effects such that atmospheric correction is not a required prerequisite
for the method. The approach presented here involves defining a target spectral subspace that is common across
the wide range of atmospheric illumination and viewing conditions that might exist in the scene (i.e., the target
subspace is invariant to environmental changes within the scene). The target may manifest itself at different
locations within this subspace but is not expected to appear outside the subspace. We then introduce a method
to characterize a background subspace using the same convex hull geometry used to define the target subspace
(i.e., the target and background subspaces are defined in a common spectral space but ideally there is little or
no overlap between the two subspaces). We then introduce a subpixel target detection algorithm that is based
on how well each pixel spectrum can be described by either a set of background basis vectors or a combination of
target and background basis vectors. The result is a subpixel target detection algorithm that only requires the
target spectrum and a radiance image cube (i.e., an image spectrometer data set calibrated into sensor reaching
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radiance). The performance of the resulting algorithm is shown for an AVIRIS image. These results demonstrate
the potential of the approach showing very good background suppression (low false alarms) and a high degree
of target detection.

2. THEORY AND APPLICATION

2.1. The Invariant Approach and Physics Based Modeling

In target detection, we often seek to atmospherically correct hyperspectral imagery so as to convert sensor reach-
ing radiance to ground leaving spectral reflectance. Once the imagery has been corrected, detection algorithms
are used to compare image reflectances to library or measured reflectances in search of a desired target. Another
approach that mitigates atmospheric and illumination effects involves the creation of an invariant target space
that spans the potential variability of the target as seen by the sensor.1 This approach involves defining a
(sensor-reaching) target radiance space that is common across a wide range of atmospheric illumination and
viewing conditions that might exist in the scene. It can be shown that the target may only occupy a relatively
small portion of the space and can be described by a small set of basis vectors that describe a target subspace.
It is the selection and comparison of these basis vectors (in a target detection scheme) which is the focus of this
paper.

In order to create a target space we need to know how the atmospheric and illumination conditions will affect
the target reflectance as it propagates through the atmosphere to the sensor. Schott2 derives a relationship for
the spectral radiance reaching an airborne or satellite sensor which can be expressed in simplified form as

Lp(λ) =
∫

λ

βp(λ)
[(

GE′
s(λ)τ1(λ) cos θ + FEd(λ)

)
τ2(λ)

r(λ)
π

+ Lu(λ)
]

dλ (1)

where Lp(λ) is the effective spectral radiance in the pth band in units of [Wcm−2sr−1µm−1], E′
s(λ) is the

exoatmospheric spectral irradiance from the Sun in units of [Wcm−2µm−1], τ1(λ) is the transmission through
the atmosphere along the Sun-target path, θ is the angle from the surface normal to the Sun, F is the fraction of
the spectral irradiance from the sky (Ed(λ)) incident on the target (i.e., not blocked by adjacent objects), G is
the fraction of direct sunlight incident on the target, τ2(λ) is the transmission along the target-sensor path, r(λ)
is the spectral reflectance factor for the target of interest (i.e., r(λ)/π is the bidirectional reflectance [sr−1]),
Lu(λ) is the spectral path radiance [Wcm−2sr−1µm−1], and βp(λ) is the normalized spectral response of the pth

spectral channel of the sensor under study where

βp(λ) =
β′

p(λ)∫
β′

p(λ) dλ
(2)

with β′
p(λ) being the peak normalized spectral response of the pth channel. Schott2 also describes how the

MODTRAN radiative transfer code3 can be used to solve for each of the radiometric terms in Eq. (1) (i.e.,
E′

s(λ), τ1(λ), τ2(λ), Ed(λ), and Lu(λ)) given a set of atmospheric and illumination descriptors. Once the terms
are solved for, the spectral radiance target vector, x observed by a p-channel sensor can be expressed as

x = [L1(λ), L2(λ), . . . , Lp(λ)]T . (3)

Similarly, a range of possible target vectors can also be be generated by using the MODTRAN radiation prop-
agation model. By changing the inputs to MODTRAN to span a range of variables representing atmospheric,
illumination and viewing conditions, a wide range of potential target spectral vectors can be generated from a
single target reflectance spectrum.

2.2. Structured Models

For the purpose of sub-pixel target detection, we use a geometric approach to model spectral variability that
leads to structured models. An overview of target detection approaches and their classification has been published
throughout the literature.4, 5
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2.2.1. Model Formulation

Let us consider an image consisting of N pixels. Each pixel is represented by a p-dimensional vector of spectrum
xi, where p is the number of spectral channels or bands, and i = 1, 2, . . . , N . We assume the following structured
model:

xi = Tai + Bbi + εi (4)

where T is a matrix of target basis vectors, B is a matrix of background basis vectors, and ai and bi, are
unknown weighting vectors. The vector εi represents approximation errors, which can be due to noise in the
data or modeling error (or both). If an endmember selection method (such as PPI or MaxD) is used on the
background, then the resulting basis vectors are endmembers representing real materials present in the image.
The vector bi represents the abundances of those materials in the given pixel xi. Conceptually, one would like to
have endmembers representing pure materials though this is not a necessity for the purpose of target detection.
The target endmembers, however, should not be interpreted as real materials. Consequently, we can think of
the target endmembers as basis vectors that attempt to describe the whole target space through their linear
combinations. Clearly, the basis vectors generated by an SVD approach cannot be regarded as endmembers.
Their interpretation is similar to that of the target endmembers, that is, the target (or background) space is
described by linear combinations of the SVD basis vectors.

If certain assumptions about εi are made, some elegant results can be obtained, as described in Sec. (2.2.2).
Unfortunately, such assumptions are rarely met in practice. The results presented in this paper do not require
any assumptions about εi . However, the idea is to have the modeling error be as small as possible. To this end,
the unknown vectors ai and bi, are usually estimated using a least-squares method, which is also implemented
in this paper.

2.2.2. Target Detection in Structured Models

The structured model in Eq. (4) may arise in one of two scenarios, i) we are trying to detect several targets
(columns of T) at once. A pixel is identified as containing the target if at least one of the targets is present and ii)
the exact spectrum of the target is unknown. The target space is known to be defined by linear combinations of
target basis vectors generated by various illumination and atmospheric conditions. In this paper, we concentrate
on the latter scenario where we have an estimate of the target subspace. We now make the following assumptions:

1. The matrix T is a known matrix of the target basis vectors (independent of the image spectra xi, i =
1, 2, . . . , N).

2. The matrix B is a known matrix of the background basis vectors (independent of the image spectra
xi, i = 1, 2, . . . , N).

3. The vectors εi follow the multivariate normal distribution such that ε ∼ N(0, σ2I).

Under these assumptions, optimal target detectors can be defined. As we will see, some of these assumptions
are not usually fulfilled in real data. However, the constructed detectors can still be used even though they are
not guaranteed to have optimal properties.

Assumption (1) is realistic because T represents the target space which is constructed based on a known
target spectrum and the illumination invariant technique described previously. That is, it is independent of the
image spectra. Assumption (2) is not realistic because B is derived directly from the image spectra. Lastly, the
assumption about normality of the residuals is typically not met in real data. This result is widely recognized
in current literature.6

For notation purposes, we will concentrate on a fixed pixel spectrum and omit the index i. Consequently Eq.
(4) becomes

x = Ta + Bb + ε. (5)

The target detection problem can be defined as a hypothesis-testing problem for testing the null hypothesis that
all values in vector a are zero. That is,

H0 : a = 0 (6)
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where 0 is a vector of zeros, versus the alternative hypothesis

H1 : a �= 0. (7)

Due to physical constrains, the coordinates of the vector a could be required to be positive (or even sum to 1),
however, such constraints are not explicitly needed in the detection methods presented in this paper. Under
assumptions (1-3), the generalized likelihood ratio (GLR) test for testing H0 versus H1 is based on the following
statistic

GLR(x) =
(

xTP⊥
Bx

xTP⊥
Zx

)p/2

(8)

where Z = [T,B] is a matrix consisting of all columns of T and B, and P⊥
Y (for Y equal to B or Z) is the matrix

of the projection onto the space orthogonal to the space generated by columns of Y. That is,

P⊥
Y = I − Y(YTY)

−1
YT (9)

where I is the identity matrix. The GLR statistic is a monotonic function of a matched subspace detector
(MSD)7

MSD(x) =
xT(P⊥

B − P⊥
Z )x

xTP⊥
Zx

. (10)

More specifically,
GLR(x) = (MSD(x) + 1)p/2

. (11)

That is, the MSD is equivalent to the GLR. Consequently, the target detector to be used in this paper will be
the MSD. The MSD is also called a partial F-statistic in statistics.

It is a well-known result in statistics that, under assumptions (1-3), the MSD follows an F-distribution under
the null hypothesis H0 : a = 0, and a non-central F-distribution under the alternative hypothesis H0 : a �= 0.
These results, in the context of remote sensing and signal detection, are presented throughout the literature.6, 7

Consequently, if assumptions (1-3) held in practice, one could find a threshold value f for detecting the target
when MSD(x) > f , and theoretical receiver operator characteristic (ROC) curves could easily be constructed.
Unfortunately, assumptions (2-3) do not usually hold in practice, which causes difficulties with choosing the
appropriate threshold value f . To resolve this issue, we assess the performance of the basis vector selection
methods using the observed ROC curves (cf. Sec. 3.2).

2.3. Approaches to Generating Basis Vectors

In this section, we briefly describe three basis vector selection methods used in this paper.

2.3.1. Singular Value Decomposition (SVD)

Let us now define a p × N matrix Y of all image pixels (given as columns) and consider the singular value
decomposition (SVD) of Y:

Y = UDVT (12)

where Up×p = [uj ]j=1,...,p is the matrix of eigenvectors of YYT and D is the diagonal matrix of singular values
σi, such that σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. Healey and Slater1 use the first r columns of U, that is, B = [u1, . . . , ur],
as the background basis vectors. If some of the image pixels are easily identified as containing target (for
instance, by using the spectral angle mapper8 algorithm), they are removed from the matrix Y before the SVD
is calculated. Some criteria for choosing the number of basis vectors r are presented in Thai et al.9 They are
mostly based on the percent of variability explained by the first r vectors. Since the SVD is very efficient in
capturing the directions (vectors) explaining most of the variability, a relatively small number of basis vectors
tends to explain more than 99.99% of the overall variability. Unfortunately, it is difficult to decide how much
explained variability is sufficient for the purpose of target detection.
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Figure 1. Illustration of (a) the preservation of vertices of a simplex through projection of a data set onto the difference
in two vertices of a simplex and (b) the concept of maximum distance determination and sequential projection to find the
vertices of a simplex spanning the data space.

2.3.2. Pixel Purity Index (PPI)

In the PPI method,10 pixel vectors are repeatedly projected into random directions. The coordinates of the
direction vectors are generated using a standard normal distribution, so that all directions in the p-dimensional
space are equally likely. Once all projections on a given random vector are calculated, two extreme projections are
identified (the shortest and the longest one). Each of the two pixels associated with the two extreme projections
receives one extremity score. This process is repeated many times (150,000 iterations in this paper), and a
desired number of pixels with the top extremity scores are identified as the set of endmembers.

One problem with the PPI method is that clusters of pixels that are close to each other tend to receive large
extremity scores. Consequently, identification of those similar pixels is needed, so that only one pixel per cluster
is represented in the final set of endmembers. Such clustering was also implemented in this paper.

2.3.3. Maximum Distance Method (MaxD)

The maximum distance (MaxD) method is a new endmember selection method suggested by Lee11 and further
investigated by Schott.12 The method consists of finding native (i.e., vectors that are in the original image
space) endmember vectors that best approximate a simplex defining the target subspace. The technique starts
with identifying two pixels, one with the largest magnitude vector (denoted by v1) and one with the smallest
magnitude (denoted by v2). Next, all pixel vectors are projected along v1 − v2 onto the subspace orthogonal to
v1 − v2 [cf. Figure 1(a)]. In this projection, both v1 and v2 project on the same point (which we will call v12).
Then, the distance between v12 and the remaining projections are calculated. The pixel with the maximum
distance to v12 is the third endmember (denoted by v3). All projected points are now projected along v12 − v3.
The resulting end-member is denoted by v123. The process is repeated until a desired number of endmembers
is identified. If this process is continued until (p + 1) endmembers are identified, all projected points reduce to
one point, and the process can no longer be continued. That is, we can identify up to (p + 1) endmembers using
MaxD, which is not a limitation in practice when working with hyperspectral images. Additionally, the MaxD
method is very fast computationally and is fully automated.

2.4. Metrics for Evaluating Target Detection Methods

As explained in Sec. 2.2.2, the performance of the basis vector selection techniques is evaluated based on observed
ROC curves. The curve is a plot of detection rate (DR) versus false alarm rate (FAR). We specifically use the
term “detection rate” rather than “probability of detection” because these results are based on the observed
frequency of detecting the target rather than on theoretical calculations of probabilities.
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Figure 2. Example ROC curves illustrating summary metrics for (a) AFAR and ADR (up to a FAR value of 4/n) and
(b) partial AFAR (for m out of all k targets).

Due to a large number of cases considered (cf. Sec 3.2), it would not be effective to simply plot the observed
ROC curves (e.g., for our analysis we would need 1440 curves). Hence, there was a need to use some summary
metrics. In addition to summarizing detection rates (DR) at several FAR levels, we also used a new summary
metric called the average FAR (AFAR). In order to define AFAR, let us assume that there are k pixels in the
image that contain the target. The observed ROC curve is fully described by k numbers ri, i = 1, . . . , k, where
ri is the lowest FAR to achieve i/k detection rate (DR). The AFAR is defined as

AFAR =
1
k

k∑
i=1

ri. (13)

If the observed ROC curve is plotted as a step function then

ROC(x) = min{i/n : ri ≤ x}, for 0 ≤ x ≤ 1 (14)

where n is the total number of pixels in the image. The AFAR is now the area above the observed ROC curve
(to be more precise, the area between the observed ROC curve and a DR level of 1). Consequently, AFAR can
also be expressed as one minus the area under the observed ROC curve. As an example, consider a detector,
D(x) and its sorted (descending) values for all n = 10000 pixels. Assume that the the top 20 values are labelled
as follows:

T, T, . . . , T︸ ︷︷ ︸
7 occurances

, F, T, T, F, T, T, F,F,F,F, T, T, T, . . .

where the label T is for a target pixel and F a non-target pixel or false alarm. Subsequently, all the remaining
detector values are non-target pixels. This produces the ROC curve shown in Figure 2. For this example,
following Eq. (13), we have k = 14 and r1 = r2 = . . . = r7 = 0. Additionally, r8 = r9 = 1/n, r10 = r11 = 2/n
and r12 = r13 = r14 = 6/n. The AFAR is then,

AFAR =
1
14

(
1
n

+
1
n

+
2
n

+
2
n

+
6
n

+
6
n

+
6
n

)
=

12
7n

.

The result of this calculation can be seen in Figure 2(a) as the shaded region above the ROC curve.

The AFAR is a convenient overall measure of detection performance. Sometimes, we might be interested in
detection of only a certain fraction of targets (for example, m out of all k targets). In such cases, we can define
the partial AFAR as

AFARpartial(m) =
1
k

m∑
i=1

ri. (15)
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Equation (15) contains the factor 1/k rather than 1/m to keep the interpretation consistent with that of the
AFAR. In keeping with our example, we let m = 11 and calculate the partial AFAR as,

AFARpartial(11) =
1
14

(
1
n

+
1
n

+
2
n

+
2
n

)
=

3
7n

.

This area calculation is illustrated in Figure 2(b) as the shaded region between 7/k and 11/k.

If we are interested in the detector performance only up to a certain level of FAR, we can define the partial
DR as

DRpartial(LFAR) =

LF AR∫

0

ROC(x) dx (16)

where LFAR is the desired FAR level. Since we are considering the observed ROC curve as a step function,
alternative formulas for DRpartial are

DRpartial(LFAR) =
1
k

m∑
i=1

(LFAR − ri) (17)

and
DRpartial(LFAR) =

m

k
LFAR − AFARpartial(m) (18)

where m = k · ROC(LFAR). Setting LFAR = 4/n, using Eq. (18), and referring back to our example above, we
have

DRpartial(4/n) =
11
14

· 4
n
− 3

7n
=

19
7n

.

This last metric is illustrated in Figure 2(a) as the shaded region below the ROC curve.

3. RESULTS

3.1. Experimental Design

The basis-vector selection algorithms were implemented on a cluttered AVIRIS urban scene in Rochester, NY near
the Lake Ontario shoreline (cf. Figure 3). A 100× 100 pixel region was selected for evaluation [cf. Figure 3(b)].
This section had a wide range of natural and man-made clutter including a mixture of commercial/warehouse
and residential neighborhoods to add a wide range of spectral diversity. The target of interest was a reddish
brown paint used on basketball and tennis court playing surfaces, as can be seen in Figures 3(c-d). From the
100× 100 image, 14 pixels were identified as target, 7 on the basketball court and 7 on the tennis court. Prior to
processing, invalid bands, due to atmospheric water absorption, were removed reducing the overall dimensionality
to 152 bands.

Basis-vector selection methods were also implemented on a MODTRAN generated target space. The target
space was created by first obtaining a ground measurement of the reddish brown surface with a field spectrometer.
This signature was then implemented in the physics based model introduced in Eq. (1). MODTRAN was used
to solve for the various atmospheric parameters, in which variables such as aerosol, pressure depth, and water
vapor were varied. This created an overall target space of 720 vectors × 152 bands.

3.2. Results Using AVIRIS Data

In this section, we present numerical results on comparisons of the three basis-vector selection techniques (SVD,
MaxD, and PPI). Specifically, we used each of the three techniques for generating both the target and background
basis vectors. This created a total of 9 combinations. For each of the 9 combinations, we identified up to 8 target
basis vectors and up to 20 background basis vectors. This created a matrix of 8 · 20 = 160 combinations (by
taking the first i = 1, . . . , 8 target basis vectors and j = 1, . . . , 20 background basis vectors). If we wanted the
observed ROC curves for all these cases, we would need 9 · 160 = 1, 440 curves. Thus the motivation to develop
the metrics outlined in Section 2.4.

Proc. of SPIE Vol. 5425     103



Figure 3. (a) AVIRIS image of Rochester, NY and Lake Ontario. (b) Actual 100 × 100 pixel image used for evaluation.
Image contains targets of interest as illustrated by the two encircled regions. (c-d) High resolution aerial images of target
regions showing a (c) red colored basketball court and a (d) red and green colored tennis court. Each high resolution
image has a 20m × 20m square illustrating the nominal size of an AVIRIS pixel.

As explained in Section 3.1, we identified 14 pixels as containing target spectrum. This means that k = 14
in the notation of Section 2.4. For each of the 1,440 cases, we calculated the 14 FAR values ri, i = 1, . . . , 14.
The summary detection rate (DR) results presented in this section were inspected at several FAR levels, and
the conclusions were quite similar in all cases, so we are only presenting the results at the FAR level of 10−4. In
a similar fashion, results on partial AFAR and average DR were inspected, but only the results on AFAR are
reported here.

Table 1 shows the optimum (largest) DR values out of the 160 cases for the combination of up to 8 target
basis vectors and up to 20 background basis vectors. The results clearly show MaxD as the best method for the
background basis vectors, while the dependence on the method used for the target basis vectors is quite weak.
Our interpretation is that the target space is relatively simple and any of the three methods performs well. On
the other hand, the background space is much more complex, and the benefits of using a more efficient method
are more apparent. In a similar fashion, Table 2 shows the optimum (smallest) AFAR values out of the 160
cases. Again, MaxD performs best as the background basis-vectors selection technique.

Of course, the above best-case-scenario results are very crude measures of performance. The difficulty is that
the 9 best results were obtained under different numbers of target (i) and background basis vectors (j). To gain
more insight, one needs to investigate plots of DR values as a function of the number of basis vectors.

Figure 4 shows DR values as functions of the number of background basis vectors at the FAR level of 10−4,
when the SVD method was used for the target space and MaxD was used for the background space. The seven
curves are representative of the different number of target basis vectors. The best performance is observed in the
range between 13 and 19 background basis vectors using at least 3 target basis vectors. Similar detection rate
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Table 1. Best (largest) detection rates (DR) for up to 8 target and 20 background basis vectors at FAR of 10−4. Next
to each DR entry, in parenthesis (i, j), are the number of target (i) and background (j) basis vectors used to achieve the
presented DR value.

Target Space Method Background Space Method

SVD MaxD PPI
SVD 0.43 (2,6) 0.79 (4,17) 0.43 (2,2)
MaxD 0.50 (2,6) 0.71 (3,14) 0.43 (2,3)
PPI 0.50 (2,6) 0.79 (3,14) 0.43 (2,3)

Table 2. Best (smallest) AFAR values (·104) for detection of all 14 target pixels for up to 8 target and 20 background
basis vectors. Next to each AFAR entry, in parenthesis (i, j), are the number of target (i) and background (j) basis
vectors used to achieve the presented AFAR value.

Target Space Method Background Space Method

SVD MaxD PPI
SVD 76.6 (8,10) 6.5 (2,17) 102.3 (2,17)
MaxD 87.7 (2,10) 8.4 (2,15) 128.8 (3,11)
PPI 54.4 (6,9) 5.9 (3,14) 138.9 (2,17)

plots (not shown in this paper) using MaxD and PPI for target basis vector generation, and at other FAR levels,
showed similar results to those found in Figure 4. Furthermore, investigation into using SVD as the method for
background basis vector selection, revealed the best performance to be in the range between 6 and 13 background
basis vectors. Lastly, when PPI was used as the method for the background basis vector selection, the largest
detection rates were observed when using between 10 and 20 background basis vectors.
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Figure 4. Detection rate as a function of background basis vectors at the FAR level of 10−4. The SVD method was used
to generate target basis vectors.

It is apparent, from Figure 4, that the DR values are not strongly influenced by the number of target basis
vectors. Consequently, we calculate the average detection rate (ADR) values over the range of 2 to 8 target basis
vectors for SVD, MaxD, and PPI. Again, MaxD was used to generate the background basis vectors. The results
of this detection rate averaging can be seen in Figure 5. It is clear that all three methods used to generate target
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Figure 5. Average DR as a function of background basis vectors (FAR level of 10−4). Target basis vectors were found
using SVD, MaxD and PPI.
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Figure 6. Average detection rate (ADR) as functions of the number of background basis vectors at the FAR level of
10−4. The target space method used was fixed at SVD while the background basis vectors selection methods were SVD,
MaxD, and PPI.

basis vectors have similar average detection rate values and the choice of target basis vector technique has little
impact on the overall results. Plots similar to Figure 5 (but not shown in this paper), which investigate SVD
and PPI as the methods for the background basis vector selection, also show little impact of the target basis
vector technique on the detector performance. By reporting average DR values, we are not entirely dependent
on a particular number of target basis vectors.

It is apparent that all three methods, when applied to the target space, performed equally well. However, this
was not the case when the methods were applied to the background. In order to make direct comparisons among
the three background basis vector techniques, we fixed the target basis vector technique as SVD. We do not need
to report the number of target basis vectors because of the lack of dependance stated earlier. The background
basis vectors were generated with SVD, MaxD, and PPI. The results are summarized in Figure 6. We can see
that in the range of 5 to 12 background basis vectors, all three methods performed about the same with the
MaxD technique slightly out-performing SVD and PPI. However, the ADR values are significantly higher for
MaxD over both SVD and PPI in the range of 13 to 19 background basis vectors.
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Figure 7. Average AFAR values as a function of the number of background basis vectors. The target space method
used was fixed at SVD while the background basis vectors selection methods were SVD, MaxD, and PPI. Recall that low
AFAR values indicate better performance.

The results presented thus far are in the form of DR’s and averaged DR’s. Analysis can also be made in terms
of false alarm rates (FAR) and average FAR’s (AFAR), after detecting all 14 target pixels. Further analysis on
plots similar to those of Figures 4 and 6 but not presented in this paper, show that AFAR values over the range
between 2 and 8 target basis vectors illustrated little impact by the number of the target basis vectors. This
result was also found in evaluating DR’s (cf. Figure 4). There is one exception, however, when PPI was used
for the background space, choosing only 2 target basis vectors gave performance that was much better than that
for more than 2 target basis vectors, no matter which technique was used for the target space. Since there is
no significant dependency on the number of target basis vectors, we can summarize by computing an average
AFAR. Figure 7 shows such a plot for comparison of the three background basis vector techniques, when the
target basis vector technique was fixed as SVD. Again, we see uniformly lower false alarms over SVD and PPI
when using the MaxD technique to select background basis vectors.

4. CONCLUSIONS AND FUTURE WORK

This paper focused on comparing the results of using 3 basis vectors selection methods as applied to hyperspectral
imagery while introducing a new basis vector selection method called the maximum distance method (MaxD).
Summary metrics, such as a newly developed average false alarm rate, were used to draw conclusions. All
three basis vector selection techniques used for the target space were about equally good. However, MaxD out-
performed both SVD and PPI when applied to the background space. Since there was no major dependency
on which method to use on the target space, MaxD could be used for both background and target spaces to
ensure uniformity. In general, a relatively large number of background basis vectors is recommended (larger
than usually considered in the current literature). For the presented AVIRIS data set, 13 to 17 background
basis vectors produce the highest detection rates, using the MaxD technique. The poor performance of SVD
is surprising because SVD is by definition the most efficient way to generate subspaces explaining most of the
variability in the data. We suspect that the reason for the SVD poor performance is that the SVD generated
background subspace is, in fact, too large and it gets very close to the target space. More research is needed
in order to develop guidelines on the optimal number of background and target basis vectors. This could be in
the form of additional testing and evaluation of other hyperspectral data sets that have targets and backgrounds
that are different from the AVIRIS data set tested in this paper. Additionally, this paper did not address the
issue of sensor noise or data reduction via principal components (or similar), which could be the subject of future
work.

Proc. of SPIE Vol. 5425     107



ACKNOWLEDGMENTS

This work was funded under the Office of Naval Research Multi-disciplinary University Research Initiative
“Model-based Hyperspectral Exploitation Algorithm Development” #N00014-01-1-0867

REFERENCES
1. G. Healey and D. Slater. Models and methods for automated material identification in hyperspectral imagery

acquired under unknown illumination and atmospheric conditions. IEEE Transactions on Geoscience and
Remote Sensing, 37(6):2706–2717, November 1999.

2. J.R. Schott. Remote Sensing: The Imaging Chaing Approach. Oxford University Press, New York, 1997.
3. A. Berk, L.S. Bernstein, and D.C. Robertson. MODTRAN: A moderate resolution model for LOWTRAN

7. Technical Report GL-TR-89-0122, Air Force Geophysics Laboratory, Hanscom AFB, MA, 1988.
4. D. Manolakis. Overview of algorithms for hyperspectral target detection: theory and practice. In Proc.

SPIE, Algorithms and Technologies for Multispectral,Hyperspectral, and Ultraspectral Imagery VIII, volume
4725, pages 202–215, Orlando, FL, April 2002.

5. D. Manolakis and G. Shaw. Detection algorithms for hyperspectral imaging applications. IEEE Signal
Processing Magazine, 19(1):29–43, January 2002.

6. D. Manolakis, C. Siracusa, and G. Shaw. Hyperspectral subpixel target detection using the linear mixing
model. IEEE Transactions on Geoscience and Remote Sensing, 39(7):1392–1409, July 2001.

7. L. Scharf and B. Friedlander. Matched subspace detectors. IEEE Transactions on Signal Processing,
42(8):2146–2157, August 1994.

8. F.A. Kruse, A.B. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon, and A.F.H. Goetz.
The spectral image processing system (SIPS) - interactive visualization and analysis of imaging spectrometer
data. Remote Sensing of Environment, 44:145–163, 1993.

9. B. Thai, G. Healey, and D. Slater. Invariant subpixel material identification in AVIRIS imagery. In Proc.
JPL AVIRIS Workshop, JPL Publication 99-17, Pasadena, CA, February 1999.

10. J. W. Boardman, F. A. Kruse, and R. O. Green. Mapping target signatures via partial unmixing of AVIRIS
data. In Fifth JPL Airborne Earth Science Workshop, volume 1 of JPL Publication 95-1, pages 23–26, 1995.

11. K. Lee. A subpixel scale target detection algorithm for hyperspectral imagery. PhD dissertation, Rochester
Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY, 2003.

12. J.R. Schott, K. Lee, R. Raqueno, G. Hoffmann, and G. Healey. A subpixel target detection technique based
on the invariance approach. To be published, 2004.

108     Proc. of SPIE Vol. 5425


	Rochester Institute of Technology
	RIT Scholar Works
	8-12-2004

	Comparison of Basis-Vector Selection Methods for Target and Background Subspaces as Applied to Subpixel Target Detection
	Peter Bajorski
	Emmett J. Ientilucci
	John Schott
	Recommended Citation


	 

