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Comparison of Bayesian and Frequentist
Multiplicity Correction for Testing Mutually

Exclusive Hypotheses Under Data Dependence∗

Sean Chang† and James O. Berger‡

Abstract. The problem of testing mutually exclusive hypotheses with dependent
test statistics is considered. Bayesian and frequentist approaches to multiplicity
control are studied and compared to help gain understanding as to the effect of
test statistic dependence on each approach. The Bayesian approach is shown to
have excellent frequentist properties and is argued to be the most effective way of
obtaining frequentist multiplicity control, without sacrificing power, when there
is considerable test statistic dependence.
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1 Introduction

Modern scientific experiments often require considering a large number of hypotheses
simultaneously (Efron (2004), Noble (2009)) and has led to extensive interest in con-
trolling for multiple testing (henceforth, just termed controlling for multiplicity). Many
multiplicity control methods have been proposed in the frequentist literature, such as
the Bonferroni procedure which controls the family-wise error rates, and various ver-
sions of false discovery rates (cf. Benjamini and Hochberg (1995) and Storey (2003))
which control for the fraction of false discoveries to stated discoveries. The asymptotic
behavior of false discovery rate has been studied in Abramovich et al. (2006).

The Bayesian approach to controlling for multiplicity operates through the prior
probabilities assigned to hypotheses. For instance, in the scenario that is considered
herein of testing mutually exclusive hypotheses (only one of n considered hypotheses can
be true), one can simply assign each hypothesis prior probability equal to 1/n and carry
out the Bayesian analysis; this automatically controls for multiplicity. That multiplicity
is controlled through prior probabilities of hypotheses or models is extensively discussed
in Scott and Berger (2006), Scott and Berger (2010), Berger et al. (2014) for a two-groups
model, variable-selection in linear models, and subset analysis, respectively.
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One of the appeals of the Bayesian approach to multiplicity control is that it does
not depend on the dependence structure of the test statistics; the Bayes procedure will
automatically adapt to the dependence structure through Bayes theorem, but the prior
probability assignment that is controlling for multiplicity is unaffected by dependence. In
contrast, frequentist approaches to multiplicity control are usually highly affected by test
statistic dependence. For instance, the Bonferroni correction is fine if the test statistics
for the hypotheses being tested are independent, but can be much too conservative
(losing detection power), if the test statistics are dependent.

An interesting possibility for frequentist multiplicity control in dependence situations
is thus to develop the procedure in a Bayesian fashion and verify that the procedure
has sufficient control from a frequentist perspective. This has the potential of yielding
optimally powered frequentist procedures for multiplicity control. There have been other
papers that study the frequentist properties of Bayesian multiplicity control procedures
(Bogdan et al. (2008), Guo and Heitjan (2010), Abramovich and Angelini (2006)), but
they have not focused on the situation of data dependence.

We investigate the potential for this program by an exhaustive analysis of the
simplest multiple testing problem which exhibits test statistic dependence. The data
X = (X1, . . . Xn)

′ arises from the multivariate normal distribution

X ∼ multinorm

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝
θ1
θ2
...
θn

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ , (1.1)

where ρ is the correlation between the observations; and x is a realization ofX. Consider
testing the n hypotheses M i

0 : θi = 0 versus M i
1 : θi �= 0, but under the assumption

that at most one alternative hypothesis could be true. (It is possible that no alternative
is true.) Although our study of this problem is pedagogical in nature, such testing
problems can arise in signal detection, when a signal could arise in one and only one of
n channels, and there is common background noise in all channels, leading to the equal
correlation structure. More generalized results may be obtained by carefully investigate
signals and noises among exponential number of models. We will, for convenience in
exposition, use this language in referring to the situation.

In Section 2 we introduce two natural frequentist procedures for multiplicity control
in this problem and, in Section 3, we introduce a natural Bayesian procedure. Section
4 explores a highly curious phenomenon that is encountered when ρ is near 1; when
n > 2, the Bayesian procedure finds the true alternative hypothesis with near certainty,
while an ad hoc frequentist procedure fails to do so. Sections 5 and 6 study the frequen-
tist properties of the original Bayesian procedure and a Type-II maximum likelihood
estimation (MLE) approach, showing that, as n → ∞, the Bayesian procedures have
strong frequentist control of error. Section 7 considers the situation in which there is
a data sample of growing size m for each θi. Most omitted proofs can be found in the
supplementary (cf. Chang and Berger, 2020); an added prefix ‘S-’ refers to the theorem
or equation in the supplementary.
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2 Frequentist Multiplicity Control

Two natural frequentist procedures are considered, and motivated by Donoho-Johnstone
type hard thresholding in Donoho and Johnstone (1994).

2.1 An Ad Hoc Procedure

Declare the signal exist if max
1≤j≤n

|Xj | > c, where c is determined to achieve overall

family-wise error control

α = P

(
max
1≤j≤n

|Xj | > c
∣∣ θi = 0 ∀i

)
. (2.1)

Lemma 2.1. (2.1) can be expressed as

α = 1− E
Z

{[
Φ

(
c−√

ρZ√
1− ρ

)
− Φ

(−c−√
ρZ√

1− ρ

)]n}
,

where the expectation is with respect to Z ∼ N(0, 1).

Proof. By Lemma S.1, under the null model,Xi can be written asXi =
√
ρZ+

√
1− ρZi,

where the Z and the Zi are independent standard normal random variables. Thus

P

(
max
1≤j≤n

|Xj | > c
∣∣ θi = 0 ∀i

)

= 1− E
Z

{
P

(
for all j, |√ρZ +

√
1− ρZj | < c | Z

)}

= 1− E
Z

{
n∏
1

P

(−c−√
ρZ√

1− ρ
< Zj <

c−√
ρZ√

1− ρ

∣∣ Z)
}

= 1− E
Z

{[
Φ

(
c−√

ρZ√
1− ρ

)
− Φ

(−c−√
ρZ√

1− ρ

)]n}
.

Corollary 2.2. The α and the cutoff c in the ad hoc procedure (2.1) have these prop-
erties:

• When ρ = 0, Φ(c) = 1+ log(1−α)
2n +O(1/n2), essentially calling for the Bonferroni

correction.

• When ρ → 1, Φ(c) → 1− α
2 , so the critical region is the same as that for a single

test.

The extreme effect of dependence on frequentist multiplicity correction is clear here;
the correction ranges from full Bonferroni correction to no correction, as the correlation
ranges from 0 to 1.
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2.2 Likelihood Ratio Test

A more principled frequentist procedure would be the likelihood ratio test (LRT):

Theorem 2.3. The test statistic arising from the likelihood ratio test is

T = max
j

[√
1− ρ xj + nρ

(
xj − x̄√
1− ρ

)]2
and the LRT would be to reject the null hypothesis if T > c, where c satisfies α = P (T >
c | θi = 0 ∀i).

When ρ = 0, T = max
i

x2
i , and the LRT reduces to the ad hoc testing procedure

in the previous section. On the other hand, as ρ → 1, T 	 n2(1 − ρ)−1 maxi(xi − x̄)2,
which exhibits a quite different behavior that will be discussed later. Notice that the
null distribution of T is well-behaved in ρ, i.e., the cutoff c in the likelihood ratio test
is bounded as ρ → 1 (Lemma S.2).

3 A Bayesian Test

On the Bayesian side, it is convenient to view this as the model selection problem of
deciding between the n+ 1 exclusive models

M0 : θ1 = . . . = θn = 0 (null model) ,

Mi : θi �= 0, θ(−i) = 0 , (3.1)

where θ(−i) is the vector of all θj except θi.

A simple prior assumption for an nonzero θi (if any) is:

θi ∼ N(0, τ2) ;

initially we will assume τ2 to be known, but later will consider it to be unknown. Then
under model Mi, the marginal likelihood of model Mi is

m0(x) ∼ N(0,Σ0) ,

mi(x) =
∫
f(x | θ)π(θ)dθ ∼ N (0,Σi) , (3.2)

where

Σi =

⎛
⎜⎜⎜⎝
1 ρ · · · ρ
ρ 1 · · · ρ
...

... 1 + τ2
...

ρ ρ · · · 1

⎞
⎟⎟⎟⎠ .

The posterior probability of Mi (that the ith channel has the signal) is then

P (Mi | x) =
mi(x)P (Mi)

n∑
j=0

mj(x)P (Mj)
,

where P (Mj) is the prior probability of model Mj .



S. Chang and J. O. Berger 115

We will consider the prior P (M0) = r for some r ∈ (0, 1) and P (Mi) = (1− r)/n for
alternative models in the rest of the article.

Theorem 3.1. For any ρ ∈ [0, 1) and positive integer n > 1, then the null posterior
probability is:

P (M0 | x) =
{
1 +

(
1− r

n r

)
1√

1 + τ2a

n∑
i=1

exp

{
τ2

2(1 + τ2a)

(
xi

1− ρ
+ bnx̄

)2
}}−1

,

and the posterior probability of an alternative model Mi is

P (Mi | x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1 + aτ2( n r

1−r ) exp

{
−τ2

2(1+τ2a)

(
xi

1−ρ + nx̄b

)2
}

+
n∑

k=1

exp

{
−τ2

2(1+τ2a)

(
x2
i−x2

k

(1−ρ)2 + 2b
1−ρ (nx̄)(xi − xk)

)}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−1

, (3.3)

where a = an = 1+(n−2)ρ
(1+(n−1)ρ)(1−ρ) , b = bn = −ρ

(1+(n−1)ρ)(1−ρ) .

Corollary 3.2. In particular, when n = 2, the null posterior probability is:

P (M0 | x) =⎧⎨
⎩1 +

1− r

2r

√
1− ρ2

1− ρ2 + τ2

∑
i∈{1,2}

exp

{
τ2

2(1− ρ2 + τ2)

(
xi − ρx(−i)√

1− ρ2

)2
}⎫⎬
⎭

−1

,
(3.4)

and the posterior probability of the alternative Mi, i ∈ {1, 2} is:

P (Mi | x) =

⎧⎪⎨
⎪⎩

√
1−ρ2+τ2

1−ρ2

(
2r
1−r

)
exp

{
−τ2

2(1−ρ2+τ2)

(xi−ρx(−i))
2

1−ρ2

}
+1 + exp

{
−τ2

2(1−ρ2+τ2) (x
2
i − x2

(−i))
}

⎫⎪⎬
⎪⎭

−1

.

4 The Situation as the Correlation Goes to 1

The following theorem shows the surprising result that, when the dimension is greater
than 2, the Bayesian method can correctly select the true model when the correlation
goes to one. In two dimensions, however, there is nonzero probability of choosing the
wrong alternative model if a non-null model is true.

Theorem 4.1. If n = 2, i ∈ {1, 2} and ρ → 1, then:

P (M0 | X) → 1 under the null model ,

P (Mi | X) →
(
1 + exp

{
−1

2

(
X2

i −X2
(−i)

)})−1

under M1 or M2 .

If n > 2, i, j ∈ {0, 1, . . . , n} and ρ → 1, under model Mj :

P (Mi | X) → δji =

{
1 if i = j,

0 else .
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Theorem 4.2. The likelihood ratio test (Theorem 2.3) is fully powered (i.e., rejects the
null with probability 1 under an alternative hypothesis) when ρ → 1 and n > 2, but (as
with the Bayesian test) is not fully powered when n = 2.

Proof. By Lemma S.3:⎧⎨
⎩

xi−x̄√
1−ρ

= zi − z̄ under the null model M0 ,

xi−x̄√
1−ρ

=
θj(δ

i
j−1/n)√
1−ρ

+ zi − z̄ under an alternative model Mj .

When n = 2, under Mi, when ρ → 1:

lim
ρ→1

T = lim
ρ→1

max
j∈{1,2}

[√
1− ρxj + 2ρ

(
xj − x̄√
1− ρ

)2]
= 2 lim

ρ→1
max

j∈{1,2}
ρ

(
xj − x(−j)

2
√
1− ρ

)2

.

For both j = i or j = (−i), the corresponding likelihood ratios go to infinity at the

same asymptotic rate since
[
θi/(2

√
1− ρ) + (zi − z(−i))/2

]2
=
[
− θi/(2

√
1− ρ)− (zi −

z(−i))/2
]2
. When n > 2, under Mj , when ρ → 1:

max
i

[√
1− ρxi + nρ

(
xi − x̄√
1− ρ

)2]
= max

i
n

[
θi − θj/n√

1− ρ
+ zi − z̄

]2
+ o(1)

= n

[
θj(1− 1/n)√

1− ρ
+ zj − z̄

]2
+ o(1) .

In this case, the true alternative model has largest likelihood ratio (= ∞), hence, LRT
is fully powered.

From Theorem 4.1 and 4.2, when the correlation goes to 1 and the dimension is larger
than 2, both the Bayesian procedure and the LRT are fully powered. This surprising
behavior as the correlation goes to one can be explained by the following observations
using (S.2).

When n = 2, ρ → 1:

xi − xj = [θi +
√
ρz +

√
1− ρzi]− [θj +

√
ρz +

√
1− ρzj ] =

{
0 under M0 ,

θi or − θj else .

Hence, one can correctly distinguish the null model if it is true, but can not declare
which non-null model is true when xi − xj is not 0.

When n > 2, ρ → 1: if all pairs xi −xj are zero, then the null model is true. If there
are pairs xi−xj , xj −xi that are nonzero, we can further check whether xi−xk (k �= j)
equals zero or not to see whether θi or θj is nonzero.

Note that the ad hoc frequentist test does not have this behavior. As ρ → 1, the test
still has probability α of incorrectly rejecting a true M0; and has positive probability of
not detecting a signal when Mi is true.

This highlights the danger (in terms of lack of power) of using ‘intuitive’ procedures
for multiplicity control.
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5 Asymptotic Frequentist Properties of Bayesian
Procedures

In this section, we will be studying the false positive probability (FPP) theoretically
and numerically. We first need to obtain asymptotic posteriors.

5.1 Posterior Probabilities

Lemma 5.1. As n → ∞ under the null model,

P (Mi | x) =
(
1 +

n

1− r

√
1− ρ+ τ2

1− ρ
exp

{
−τ2

2(1− ρ+ τ2)

(
xi − x̄√
1− ρ

)2
})−1

(1 + o(1))

(5.1)
almost surely.

Remark 5.2. Figure 1 shows the ratio of the estimated P (M1 | x) (from Lemma 5.1) and
the true probability (from Theorem 3.1), as n grows. Each plot contains 200 different
ratio curves based on independent simulations with fixed ρ, P (M0) and τ . As can be
seen, the ratio goes to 1 when n grows and the convergence rate indeed depends on the
correlation.

The following theorem shows the surprising result that, as n grows when the null
model is true, the posterior probability of the null model converges to its prior proba-
bility. Thus one cannot learn that the null model is true.

Theorem 5.3. As n → ∞ and ρ ∈ [0, 1), under the null model,

P (M0 | X) → P (M0) .

Proof. First note that{
an = 1

1−ρ + −ρ
(1−ρ)(1+(n−1)ρ) =

1
1−ρ +O(1/n) ,

nbn = −1
1−ρ + 1−ρ

(1−ρ)(1+(n−1)ρ) =
−1
1−ρ +O(1/n) .

(5.2)

The summation term in the null posterior (Theorem 3.1) becomes

(
1− r

nr

)
1√

1 + τ2/(1− ρ)

n∑
1

exp

{
τ2

2(1 + τ2/(1− ρ))

[
xi − x

1− ρ

]2}
(1 + o(1))

=

(
1− r

r

)
1/n

√
1− ρ

1− ρ+ τ2

n∑
1

exp

{
τ2

2(1− ρ+ τ2)
z2i

}
(1 + o(1)) (by Lemma 5.1)

→ 1− r

r
(by the Strong Law of Large Numbers).

Therefore, P (M0 | X) →
(
1 + (1− r)/r

)−1
= r = P (M0).
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Figure 1: Ratio of estimated and true posterior probability of M1 as n grows under
the null model and fixed τ, r, different ρ. Each subplot is for different correlations and
contains 200 simulations.

Remark 5.4. Figure 2 shows simulations of the null posterior probability for different
numbers of hypotheses and different correlations. Interestingly, by Theorem 4.1, the
Bayes procedure identifies the correct model (here the null model) when n is fixed and
the correlation goes to 1, resulting in higher initial posterior probability of the null model
for highly correlated cases. On the other hand, by Theorem 5.3, this posterior probability
converges to its prior probability regardless of the correlation. This convergence can be
seen in Figure 2.

5.2 False Positive Probability

Here we focus on the major goal, to find the frequentist false positive probability under
the null model of the Bayesian procedure. To begin, we must formally define the Bayesian
procedure for detecting a signal.

Definition 5.5 (Bayesian detection criterion). Reject the null model M0 if any alter-
native model has posterior probability greater than a specified threshold p ∈ (0, 1), i.e.
max1≤i≤n P (Mi | x) > p. Otherwise, accept M0.
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Figure 2: Convergence of P (M0 | x) to the prior probability (0.5) under the null model.
Each subplot has a different correlation and contains 50 simulations.

Definition 5.6 (False positive probability, FPP). Under the null model, the FPP is
the frequentist probability of accepting a non-null model.

Theorem 5.7 (False positive probability). Under the null model, as n → ∞,

P (false positive | r, ρ, τ2) = O(n− 1−ρ

τ2 (log n)−1/2) .

In the situations when users have a good sense of prior distribution, variance of the
prior τ2 can be assigned as a fixed number, which yields a false positive probability
that goes to zero at a polynomial rate. On the other hand, if there is no good a priori
knowledge of the variance, empirical Bayes offers an estimation of τ2. The following
section discusses empirical Bayes approach of the problem.

6 Adaptive Choice of τ 2

To increase the frequentist power of the Bayes test, we consider adaptive choices of τ2.
First, we consider the choice that maximizes the false positive probability. Then we
consider a Type II maximum likelihood approach based on estimating τ2.

6.1 The Adaptive τ 2 Which Maximizes FPP

Theorem 6.1. Given null model prior probability r, correlation ρ, and decision thresh-
old p, as n → ∞, the choice of τ2 that maximizes FPP is

τ2n = (1− ρ)[2 log n+ log log n+ 2 log
p

(1− p)(1− r)
+ log 2] . (6.1)
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The resulting FPP is

P (false positive | nullmodel , τ2n)

=

(
e−1/2

√
2

π

)(
(1− p)(1− r)

p

)(
2 log n+ log log n+ cτ

)−1

(1 + o(1)) ,
(6.2)

where cτ = 2 log p
(1−p)(1−r) + log 2 + 1.

Proof. Without loss of generality, assume max
i

z2i = z21 . By the model selection criteria

(S.20), z1 is a false positive if:

z21 ≥ 2

(
1 +

1− ρ

τ2n

)
log

(
n p

(1− p)(1− r)

√
1− ρ+ τ2n

1− ρ

)
+ o(1) . (6.3)

Lemma S.21 establishes that (6.1) maximizes the FPP and, with this choice of τ2n, the
rejection region becomes

z21 > 2 log n+ log log n+ 2 log
p

(1− p)(1− r)
+ 1 + log 2︸ ︷︷ ︸

c(p,r)

+o(1) .
z (6.4)

Finally,

P (false positive | τ̂2n, p, r)

= 1−

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
1− 2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
2π

exp

⎧⎨
⎩− 1

2 2
(
1+ 1−ρ

τ̂2
n

)
log

(
n

1−r
p

1−p

√
1−ρ+τ̂2

n
1−ρ

)
+o(1)

⎫⎬
⎭√

2
(
1+ 1−ρ

τ̂2
n

)
log
(

np
(1−r)(1−p)

√
1−ρ+τ̂2

n
1−ρ

)
+o(1)

+o

(
1

n ( log n)2

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

n

= 1−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1−

√
2

π

(
np

(1−p)(1−r)

√
1 + cn,τ

)−
(
1+c−1

n,τ

)
(1 + o(1))√(

1 + c−1
n,τ

)
2 log

(
np

(1−r)(1−p)

√
1 + cn,τ

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

n

where cn,τ = 2 log n+ log log n+ cτ

= 1−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1− 1

n

√
2 (1−p)(1−r)

p

(
n p

(1−p)(1−r)

√
1 + cn,τ

)−c−1
n,τ

√
π

(
1 + cn,τ

)(
2 logn+ 2c+ log log n+ log 2 + 1

)
︸ ︷︷ ︸

dn

(1 + o(1))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

n
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Figure 3: Comparison of the simulated FPP and its asymptotic approximation when
p = r = 0.5, ρ = 0 as n varies from 101 to 3e5, τ2 is the adaptive choice.

= dn(1 + o(1)) +O

(
1

(log n+ log log n)2

)

=

(
e−1/2

√
2

π

)(
(1− p)(1− r)

p

)(
2 log n+ log log n+ cτ

)−1

(1 + o(1)) .

So, with this adaptive choice of τ2, the FPP only goes to zero at a 1/(logn+log logn)
rate, much slower than the polynomial rate achieved for fixed τ2.

Remark 6.2. Figure 3 provides the simulated (red curve) and theoretical (in blue) false
positive probability (FPP) with respect to the number of hypotheses (denoted by n). As
expected, the simulated results match the theoretical prediction, the rate of convergence
being around 1/(2 logn+ log log n). Note that the FPP does not become extremely small
even for very large n.

6.2 Type II Maximum Likelihood Estimation of τ 2

The type II maximum likelihood estimation approach to choice of the prior under the
alternative model replaces a pre-specified τ2 with that prior variance, τ̂2n, which max-
imizes the marginal likelihood over all possible τ2; see Berger (1985) for discussion of
this approach.

Lemma 6.3. Let L̃n(τ
2) be the marginal likelihood of τ2 given (x1, . . . , xn), namely

L̃n(τ
2) =

n∑
i=0

P (Mi)mi(x | τ2) .
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Defining

Ln(τ
2) =

1

n
√
1 + τ2a

n∑
i=1

exp

{
τ2

2(1 + τ2a)

( xi

1− ρ
+ bnx̄

)2}
,

the Type II MLE, τ̂2n, can be found as

argmax
τ2

L̃n(τ
2) = argmax

τ2

Ln(τ
2) .

Proof.

L̃n = r|Σ0|
−1
2 exp{−1

2
x′Σ−1

0 x}+ 1− r

n
|Σ1|

−1
2

n∑
i=1

exp{−1

2
x′Σ−1

i x}

= r|Σ0|
−1
2 exp

{
−1

2
x′Σ−1

0 x

}
+

1− r

n
|Σ0|

−1
2 (1 + τ2a)

−1
2

∗ exp
{
−1

2
x′Σ−1

0 x

} n∑
i=1

exp

{
τ2

2(1 + τ2a)

(
xi(a− b) + bnx̄

)2
}

= |Σ0|
−1
2 exp

{
−1

2
x′Σ−1

0 x

}
∗

⎧⎪⎨
⎪⎩

r + 1−r
n (1 + τ2a)

−1
2

∗
n∑

i=1

exp

{
τ2

2(1+τ2a)

(
xi(a− b) + bnx̄

)2
} ⎫⎪⎬
⎪⎭ .

Noting that a, b, Σ0 and x′Σ−1
0 x are independent of τ2, the result follows.

Theorem 6.4 (Type II MLE false positive probability). Given null prior probability
P (M0) = r, correlation ρ, and decision threshold p, as n → ∞

P (false positive | nullmodel , τ̂2n) =
1

log n

(
1

k∗
− 1

2

)
(1 + o(1)) ,

where k∗ satisfies:

−2 log

(√
π

(
1

k∗
− 1

2

))
= log k∗ + 2 log

(
p

(1− p)(1− r)

)
+ 2

(
1

k∗

)
. (6.5)

Proof. First, Lemma S.21 shows that (6.4) provides the absolute lower bound for z21 to
be in the rejection region; namely 2 logn + log logn + c(p, r). So the rejection region,
denote it by Ω, corresponding to the Type II MLE choice of τ2 must be a subset of
(2 logn+ log logn+ c(p, r),∞). Divide this interval into

Ω1 = (2 logn+ log logn+ c(p, r), 2 log n+ log logn+ c(p, r) +K) ,

Ω2 = (2 logn+ log logn+ c(p, r) +K,∞) ,

where K will be chosen large, but fixed. We first determine Ω ∩ Ω1.
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For any z21 = 2 logn+ log logn+ c ∈ Ω1, Lemma S.27, shows that the Type-II MLE
estimate is

τ̂2n = (1− ρ)k(c) log n(1 + o(1)) where k(c) =
(
1/2 + exp {−c/2} /

√
π
)−1

.

Thus, letting z∗21 = 2 logn + log logn + c∗ denote the smallest value in Ω ∩ Ω1 (if it
exists) and letting τ̂∗2n = (1− ρ)k(c∗) log n(1 + o(1)) denote the corresponding Type-II
MLE estimate, the smallest value must satisfy, by (6.3),

z∗21 = 2

(
1 +

1− ρ

τ̂∗2n

)
ln

(
n

1− r

p

1− p

√
1− ρ+ τ̂∗2n

1− ρ

)
+ o(1)

= 2

(
1 +

1

k(c∗) log n(1 + o(1))

)

∗
(
log n+ log

p

(1− p)(1− r)
+

1

2
log(1 + k(c∗) log n (1 + o(1)))

)
+ o(1)

= 2 log n+ log log n+

[
log k(c∗) + 2 log

(
p

(1− p)(1− r)

)
+ 2

(
1

k(c∗)

)]
︸ ︷︷ ︸

l∗

+o(1)

)
.

This is equivalent to

c∗ = log k(c∗) + 2 log

(
p

(1− p)(1− r)

)
+ 2

(
1

k(c∗)

)

= − log

(
1

2
+

exp {−c∗/2}√
π

)
+ 2 log

(
p

(1− p)(1− r)

)
+ 1 + 2

exp {−c∗/2}√
π

,

(6.6)

which, using Lemma S.28 (which shows that l∗ > c(p, r)), can easily be shown to have a
unique solution in Ω ∩ Ω1 (assuming K is larger than, say, 4 log ( p

(1−p)(1−r) )). It is also

then easy to show that

Ω ∩ Ω1 = (2 log n+ log log n+ l∗ + o(1), 2 log n+ log log n+ c(p, r) +K) .

By S.4,

P (Ω2)

P (Ω ∩ Ω1)

≤ exp (−[2 log n+ log logn+ c(p, r) +K]/2)/
√
2 logn+ log logn+ c(p, r) +K

√
2 logn+log logn+l∗ exp (−[2 logn+log logn+l∗]/2)

2 logn+log log n+c(p,r)+l∗ − exp (−[2 logn+log logn+c(p,r)+K]/2)√
2 logn+log logn+c(p,r)+K

= (exp ([c(p, r) +K − l∗]/2)− 1)
−1

(1 + o(1)) .

c(p, r) and l∗ are fixed, we can clearly choose K large enough to make this smaller than
any specified ε. Hence the region Ω2 can be ignored in the computation of the FPP.
(It is almost certainly part of the rejection region, but we do not know what τ̂2n is for
observations in that region and, hence can’t say for sure.)



124 Comparison of Bayesian and Frequentist Multiplicity Correction

We can also use the same argument to say that

P (Ω ∩ Ω1) = P ((2 log n+ log logn+ l∗,∞))(1 + ε) .

Writing k∗ for k(c∗), it follows that the FPP is

FPP = 1−
{
1−

2√
2π

exp
{−1

2 (2 log n+ log logn+ l∗)
}
(1 + o(1))(1 + ε)

√
2 log n+ log log n+ l∗

}n

= 1−
{
1− 1

n

√
2

π

(1− p)(1− r) exp(−1/k∗)

p
√
k∗
√

(logn)(2 log n+ log logn)
(1 + o(1))(1 + ε)

}n

=

√
2

πk∗
exp

{
−1

k∗

}(
(1− p)(1− r)

p

)[
(log n)(2 log n+ log log n)

]−1/2

(1 + o(1))(1 + ε)

=

(
1

k∗
− 1

2

)
1

log n
(1 + o(1))(1 + ε) by (6.6) .

Since ε can be made arbitrarily small, the result follows.

Note that (6.5) can be solved numerically. For instance, when p = r = 0.5, k∗ ≈
1.6142. The solution of 1

k∗ − 1
2 with respect to p

(1−r)(1−p) is, indeed, given in Figure 5.

The Type II MLE FPP converges to 0 at a logarithmic rate in n, as did the maximal
Bayesian FPP. Thus both are far less conservative than the Bayesian procedures with
specified τ2. Finally, it is interesting that neither of the adaptive asymptotic FPP’s
depend on ρ.

Remark 6.5. Figure 4 demonstrates how the threshold p (Definition 5.5) can be chosen
to achieve a fixed FPP of 0.05. Because, for a fixed p, the FPP goes to zero as a function
of n, smaller p are needed to achieve a fixed FPP as n grows. Note that the variation
in p is actually quite small over the very large range of n considered in the figure.

Remark 6.6. Figure 5 gives the value of 1
k∗ − 1

2 for different p
(1−r)(1−p) .

Remark 6.7. Figure 6 demonstrates how the detection power varies when the signal size
increases.

7 Analysis as the Information Grows

In this section, we generalize model (3.1) to the scenario where each channel has m i.i.d.
observations. Then the sample mean satisfies

X̄ ∼ multinorm

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝
θ1
θ2
...
θn

⎞
⎟⎟⎟⎠ ,

1

m

⎛
⎜⎜⎜⎝
1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ . (7.1)
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Figure 4: For fixed prior probability of 0.5 for the null model, this gives, as the number
of hypotheses n increases, the Bayesian threshold probability p that would achieve an
FPP of = 0.05.

Hence, m can be seen as the precision of X̄. More generally, we will replace 1/m by a
function σ2

n, where σ2
n decreases to zero as n grows.

The theorem below gives the rate of decrease of σ2
n which guarantees consistency.

For the i.i.d. case, consistency of all models is only guaranteed if m grows faster than
logn; consistency fails if m grows slower than logn; and consistency depends on the
parameter value if m is O(log n).

Theorem 7.1. Consider model (3.1), with the altered covariance matrix below:

X ∼ multinorm

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝
θ1
θ2
...
θn

⎞
⎟⎟⎟⎠ , σ2

n

⎛
⎜⎜⎜⎝
1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ , (7.2)

1. When σ2
n log n → 0, consistency holds for both the null and alternative models.

2. When σ2
n log n → d ∈ (0,∞),

• Under M0: P (M0 | X) →
(
1+ 1−r

r

[
2Φ
( (1−ρ)d

τ2

)
− 1

])−1
, failing to be consis-

tent.

• Under an alternative model Mj, if d ∈ (0,
θ2
j

2(1−ρ) ), consistency holds for Mj,

whereas consistency does not hold otherwise.

3. When σ2
n log n → ∞ and σ2

n log n = o(log n), consistency does not hold for any
model. In addition, when the null hypothesis is true,

P (M0 | X) → P (M0) .
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Figure 5: Solution of 1
k∗ − 1

2 (y-axis) with respect to different p
(1−p)(1−r) (x-axis).

Figure 6: Power versus θi for fixed p = r = 0.5, ρ = 0, and different n (see the color
legend on the top left). Each point is the average acceptance rate of the true non-null
model when θi is as specified on the x-axis.

8 Conclusions

The main purpose of this work was to gain understanding of the behavior of Bayesian
procedures that control for multiple testing, under a scenario of high dependence among
test statistics, where frequentist methods for multiplicity control become more difficult
to implement when trying to maintain high power. In Section 4, the Bayesian procedure
was shown to have unexpectedly high power as the correlation gets large, providing an
illustration of the gains that can be had by approaching multiplicity control from the
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Bayesian side. (Bayes theorem often produces things that we could not have produced
through our intuition alone.)

The other main issue concerning the behavior of the Bayesian procedure is the
extent to which it also exhibits desirable frequentist control. Surprising to us was that
the Bayesian procedure exhibited too-strong frequentist control, with the FPP (false
positive probability under the null model) going to zero at a polynomial rate, as the
number n of tests grows. To a Bayesian who believed in the prior distribution that
was utilized this would not be viewed as a problem, but we tend to prefer procedures
that have a dual Bayesian/frequentist interpretation. To this end, adaptive versions of
the Bayesian procedure were considered, and found to have FPP’s going to 0 at the
much slower 1/ logn rate; indeed, unless n is huge, the resulting FPPs were reasonably
moderate.

A number of other surprises were also encountered, such as the fact that, as the
number of tests n grows, the posterior probability of the null model converges to its
prior probability. (This is actually a very general phenomenon that will be reported
elsewhere.) The situation of having i.i.d. replicate observations m was also considered,
and it was shown that one needs m to grow faster than log n to achieve consistency,
under both the null and alternative models.

Methodologically, if a frequentist were to encounter this particular multiple testing
problem and desired a procedure that is fully powered and achieves an FPP of α, we
would suggest using the adaptive Bayesian procedure in Section 6.1. One solves (6.2) for
the Bayesian rejection threshold p (with, say, the default choice of r = 1/2 for the prior
probability of the null model), and then rejects the null and acceptsMi if P (Mi | x) > p,
where P (Mi | x) is as in (3.1) with τ2 chosen as in (6.1). This Bayesian procedure will
have the unusual power benefits outlined in Section 4 when the correlation is high,
while achieving the desired frequentist FPP (at least asymptotically) and likely having
the greatest power against alternatives, since the τ2 in (6.1) was chosen, in essence, to
maximize the power.

Supplementary Material

Supplementary Material to “Comparison of Bayesian and Frequentist Multiplicity Cor-
rection for Testing Mutually Exclusive Hypotheses Under Data Dependence” (DOI:
10.1214/20-BA1196SUPP; .pdf).
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