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Abstract The goal of this paper is to compare several widely

used Bayesian model selection methods in practical model

selection problems, highlight their differences and give rec-

ommendations about the preferred approaches. We focus on

the variable subset selection for regression and classifica-

tion and perform several numerical experiments using both

simulated and real world data. The results show that the opti-

mization of a utility estimate such as the cross-validation

(CV) score is liable to finding overfitted models due to rela-

tively high variance in the utility estimates when the data is

scarce. This can also lead to substantial selection induced

bias and optimism in the performance evaluation for the

selected model. From a predictive viewpoint, best results are

obtained by accounting for model uncertainty by forming

the full encompassing model, such as the Bayesian model

averaging solution over the candidate models. If the encom-

passing model is too complex, it can be robustly simplified

by the projection method, in which the information of the

full model is projected onto the submodels. This approach is

substantially less prone to overfitting than selection based on

CV-score. Overall, the projection method appears to outper-

form also the maximum a posteriori model and the selection

of the most probable variables. The study also demonstrates

that the model selection can greatly benefit from using cross-

validation outside the searching process both for guiding

the model size selection and assessing the predictive per-

formance of the finally selected model.
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1 Introduction

Model selection is one of the fundamental problems in statis-

tical modeling. The often adopted view for model selection is

not to identify the true underlying model but rather to find a

model which is useful. Typically the usefulness of a model is

measured by its ability to make predictions about future or yet

unseen observations. Even though the prediction would not

be the most important part concerning the modelling prob-

lem at hand, the predictive ability is still a natural measure

for figuring out whether the model makes sense or not. If

the model gives poor predictions, there is not much point

in trying to interpret the model parameters. We refer to the

model selection based on assessing the predictive ability of

the candidate models as predictive model selection.

Numerous methods for Bayesian predictive model selec-

tion and assessment have been proposed and the various

approaches and their theoretical properties have been exten-

sively reviewed by Vehtari and Ojanen (2012). This paper is

a follow-up to their work. The review of Vehtari and Ojanen

(2012) being qualitative, our contribution is to compare many

of the different methods quantitatively in practical model

selection problems, discuss the differences, and give recom-

mendations about the preferred approaches. We believe this

study will give useful insights because the comparisons to the

existing techniques are often inadequate in the original arti-

cles presenting new methods. Our experiments will focus on

variable subset selection on linear models for regression and

classification, but the discussion is general and the concepts

apply also to other model selection problems.
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A fairly popular method in Bayesian literature is to select

the maximum a posteriori (MAP) model which, in the case

of a uniform prior on the model space, reduces to maximiz-

ing the marginal likelihood and the model selection can be

performed using Bayes factors (e.g., Kass and Raftery 1995;

Han and Carlin 2001). In the input variable selection context,

also the marginal probabilities of the variables have been used

(e.g., Brown et al. 1998; Barbieri and Berger 2004; Narisetty

and He 2014). In fact, often in the Bayesian variable selection

literature, the selection is assumed to be performed using one

of these approaches, and the studies focus on choosing priors

for the model space and parameters of the individual mod-

els (see the review by, O’Hara and Sillanpää 2009). These

studies stem from the fact that sampling the high dimensional

model space is highly nontrivial, and because it is well known

that both the Bayes factors and the marginal probabilities are

sensitive to the prior choices (e.g., Kass and Raftery 1995;

O’Hara and Sillanpää 2009).

However, we want to make a distinction between prior

and model selection. More specifically, we want to address

the question, given our prior beliefs, how should we choose

the model? In our view, the prior choice should reflect our

genuine beliefs about the unknown quantities, such as the

number of relevant input variables. For this reason our goal is

not to compare and review the vast literature on the priors and

computation strategies, which is already done by O’Hara and

Sillanpää (2009). Still, we feel this literature is very essen-

tial, giving tools for formulating different prior beliefs and

performing the necessary posterior computations.

In other than variable selection context, a common

approach is to choose the model based on its estimated pre-

dictive ability, preferably by using Bayesian leave-one-out

cross-validation (LOO-CV) (Geisser and Eddy 1979) or the

widely applicable information criterion (WAIC) (Watanabe

2009), both of which are known to give a nearly unbiased

estimate of the predictive ability of a given model (Watanabe

2010). Also several other predictive criteria with different

loss functions have been proposed, for instance the deviance

information criterion (DIC) by Spiegelhalter et al. (2002)

and the various squared error measures by Laud and Ibrahim

(1995), Gelfand and Ghosh (1998), and Marriott et al. (2001)

none of which, however, are unbiased estimates of the true

generalization utility of the model.

Yet an alternative approach is to construct a full encom-

passing reference model which is believed to best represent

the uncertainties regarding the modelling task and choose

a simpler submodel that gives nearly similar predictions as

the reference model. This approach was pioneered by Lind-

ley (1968) who considered input variable selection for linear

regression and used the model with all the variables as the ref-

erence model. The idea was extended by Brown et al. (1999,

2002). A related method is due to San Martini and Spezza-

ferri (1984) who used the Bayesian model averaging (BMA)

solution as the reference model and Kullback–Leibler diver-

gence for measuring the difference between the predictions

of the reference model and the candidate model instead of the

squared error loss used by Lindley. Another related method is

the reference model projection by Goutis and Robert (1998)

and Dupuis and Robert (2003) in which the information con-

tained in the posterior of the reference model is projected onto

the candidate models. The variations of this method include

heuristic Lasso-type searching (Nott and Leng 2010) and

approximative projection with different cost functions (Tran

et al. 2012; Hahn and Carvalho 2015).

Although LOO-CV and WAIC can be used to obtain a

nearly unbiased estimate of the predictive ability of a given

model, both of these estimates contain a stochastic error term

whose variance can be substantial when the dataset is not

very large. This variance in the estimate may lead to over-

fitting in the selection process causing nonoptimal model

selection and inducing bias in the performance estimate for

the selected model (e.g., Ambroise and McLachlan 2002;

Reunanen 2003; Cawley and Talbot 2010). The overfitting

in the selection may be negligible if only a few models are

being compared but, as we will demonstrate, may become a

problem for a larger number of candidate models, such as in

variable selection.

Our results show that the optimization of CV or WAIC

may yield highly varying results and lead to selecting a model

with predictive performance far from optimal. From the pre-

dictive point of view, best results are generally obtained by

accounting for the model uncertainty and forming the full

BMA solution over the candidate models, and one should not

expect to do better by selection. Our results agree with what

is known about the good performance of the BMA (Hoeting

et al. 1999; Raftery and Zheng 2003). If the full model is

too complex or the cost for observing all the variables is too

high, the model can be simplified most robustly by the pro-

jection method which is considerably less vulnerable to the

overfitting in the selection. The advantage of the projection

approach comes from taking into account the model uncer-

tainty in forming the full encompassing model and reduced

variance in the performance evaluation of the candidate mod-

els. Overall, the projection framework outperforms also the

selection of the most probable inputs or the MAP model,

while both of these typically perform better than optimiza-

tion based on CV or WAIC.

Despite its advantages, the projection approach has suf-

fered from a difficulty in deciding how many variables should

be selected in order to get predictions close to the refer-

ence model (Peltola et al. 2014; Robert 2014). Our study

shows that the model selection can highly benefit from using

cross-validation outside the variable searching process both

for guiding the model size selection and assessing the pre-

dictive performance of the finally selected model. Using

cross-validation for choosing only the model size rather than

123



Stat Comput (2017) 27:711–735 713

Table 1 Categorization of the

different model selection

methods discussed in this paper

View Methods

Section 2.2 Generalization utility estimation

(M -open view)

Cross-validation, WAIC, DIC

Section 2.3 Self/posterior predictive criteria

(Mixed view)

L2-, L2
cv- and L2

k -criteria

Section 2.4 Reference model approach

(M -completed view)

Reference predictive method,

projection predictive method

Section 2.5 Model space approach (M -closed

view)

Maximum a posteriori model,

median probability model

the variable combination introduces substantially less over-

fitting due to greatly reduced number of model comparisons

(see Sect. 4.4 for discussion).

The paper is organized as follows. In Sect. 2 we shortly go

through the model selection methods discussed in this paper.

This part of the paper somewhat overlaps with the previ-

ous studies (especially with Vehtari and Ojanen 2012), but

is included for maintaining easier readability as a standalone

paper. Section 3 discusses and illustrates the overfitting in

model selection and the consequent selection induced bias in

the performance evaluation of the chosen model. Section 4

is devoted to the numerical experiments and forms the core

of the paper. The discussion in Sect. 5 concludes the paper.

2 Approaches for Bayesian model selection

This section discusses shortly the proposed methods for

Bayesian model selection relevant for this paper. We do not

attempt anything close to a comprehensive review but sum-

marize the methods under comparison. See the review by

Vehtari and Ojanen (2012) for a more complete discussion.

The section is organized as follows. Section 2.1 discusses

how the predictive ability of a model is defined in terms

of an expected utility and Sects. 2.2–2.5 shortly review the

methods. Following Bernardo and Smith (1994) and Vehtari

and Ojanen (2012) we have categorized the methods into

M -closed, M -completed, and M -open views, see Table 1.

M -closed means assuming that one of the candidate models

is the true data generating model. Under this assumption,

one can set prior probabilities for each model and form the

Bayesian model averaging solution (see Sect. 2.5). The M -

completed view abandons the idea of a true model, but still

forms a reference model which is believed to be the best

available description of the future observations. In the M -

open view one does not assume one of the models being true

and also rejects the idea of constructing the reference model.

Throughout Sect. 2, the notation assumes a model M

which predicts an output y given an input variable x . The

same notation is used both for scalars and vectors. We denote

the future observations by ỹ and the model parameters by θ .

To make the notation simpler, we denote the training data as

D = {(xi , yi )}
n
i=1.

2.1 Predictive ability as an expected utility

The predictive performance of a model is typically defined

in terms of a utility function that describes the quality of

the predictions. An often used utility function measuring the

quality of the predictive distribution of the candidate model

M is the logarithmic score (Good 1952)

u(M, ỹ) = log p(ỹ | D, M). (1)

Here we have left out the future input variables x̃ to simplify

the notation. The logarithmic score is a widely accepted util-

ity function due to its information theoretic grounds and will

be used in this paper. However, we point out that in princi-

ple any other utility function could be considered, and the

choice of a suitable utility function might also be application

specific.

Since the future observations ỹ are unknown, the utility

function u(M, ỹ) cannot be evaluated beforehand. Therefore

one usually works with the expected utilities instead

ū(M) = E
[

log p(ỹ | D, M)
]

=

∫

pt(ỹ) log p(ỹ | D, M)d ỹ,

(2)

where pt(ỹ) denotes the true data generating distribution.

This expression will be referred to as the generalization

utility or more loosely as the predictive performance of

model M . Maximizing (2) is equivalent to minimizing the

Kullback–Leibler (KL) divergence from the true data gener-

ating distribution pt(ỹ) to the predictive distribution of the

candidate model M .

2.2 Generalization utility estimation

2.2.1 Cross-validation

The generalization utility (2) can be estimated by using the

already obtained sample D as proxy for the true data gen-
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erating distribution pt(ỹ). However, estimating the expected

utility using the same data D that were used to train the model

leads to an optimistic estimate of the generalization perfor-

mance. A better estimate is obtained by dividing the data into

K subsets I1, . . . , IK and using each of these sets in turn for

validation while training the model using the remaining K −1

sets. This gives the Bayesian K -fold cross-validation (CV)

utility (Geisser and Eddy 1979)

K -fold-CV =
1

n

n
∑

i=1

log p(yi | xi , D\Is(i)
, M), (3)

where Is(i) denotes the validation set that contains the i th

point and D\Is(i)
the training data from which this subset has

been removed. Conditioning the predictions on fewer than n

data points introduces bias in the utility estimate. This bias

can be corrected (Burman 1989) but small K increases the

variance in the estimate. One would prefer to set K = n com-

puting the leave-one-out utility (LOO-CV) but without any

computational shortcuts this is often computationally infea-

sible as the model would need to be fitted n times. An often

used compromise is K = 10. Analytical approximations for

LOO are discussed by Vehtari et al. (2014) and computations

using posterior samples by Vehtari et al. (2016).

2.2.2 Information criteria

Information criteria offer a computationally appealing way

of estimating the generalization performance of the model. A

fully Bayesian criterion is the widely applicable information

criterion (WAIC) by Watanabe (2009, 2010). WAIC can be

calculated as

WAIC =
1

n

n
∑

i=1

log p(yi | xi , D, M) −
V

n
, (4)

where the first term is the training utility and V is the func-

tional variance given by

V =

n
∑

i=1

{

E
[

(log p(yi | xi , θ, M))2
]

− E
[

log p(yi | xi , θ, M)
]2

}

.

(5)

Here both of the expectations are taken over the poste-

rior p(θ | D, M). Watanabe (2010) proved that WAIC is

asymptotically equal to the Bayesian LOO-CV and to the

generalization utility (2), and the error is o(1/n). Watanabe’s

proof gives Bayesian LOO and WAIC a solid theoretical jus-

tification in the sense that they measure the predictive ability

of the model including the uncertainty in the parameters and

can be used also for singular models (the set of the “true

parameters” consists of more than one point).

Another still popular method is the deviance information

criterion (DIC) proposed by Spiegelhalter et al. (2002). DIC

estimates the generalization performance of the model with

parameters fixed to the posterior mean θ̄ = E[θ | D, M]. DIC

can be written as

DIC =
1

n

n
∑

i=1

log p(yi | xi , θ̄ , M) −
peff

n
, (6)

where peff is the effective number of parameters which can

be estimated as

peff = 2

n
∑

i=1

(

log p(yi | xi , θ̄ , M) − E
[

log p(yi | xi , θ, M)
])

,

(7)

where the expectation is taken over the posterior. From

Bayesian perspective, DIC is not theoretically justified since

it measures the fit of the model when the parameters are fixed

to the posterior expectation and is not therefore an unbiased

estimate of the true generalization utility (2). The use of a

point estimate is questionable not only because of Bayesian

principles, but also from a practical point of view especially

when the model is singular.

2.3 Mixed self and posterior predictive criteria

There exists a few criteria that are not unbiased estimates

of the true generalization utility (2) but have been proposed

for model selection. These criteria do not fit to the M -open

view since the candidate models are partially assessed based

on their own predictive properties and therefore these crite-

ria resemble M -closed/M -completed view (for a detailed

discussion, see Vehtari and Ojanen 2012).

Ibrahim and Laud (1994) and Laud and Ibrahim (1995)

proposed a selection criterion for regression derived by con-

sidering replicated measurements ỹ at the training inputs.

The criterion measures the expected squared error between

the new observations and the old ones y over the posterior

predictive distribution of the candidate model M . The error

measure can be decomposed as

L2 =

n
∑

i=1

(

yi − E
[

ỹ | xi , D, M
])2

+

n
∑

i=1

Var
[

ỹ | xi , D, M
]

,

(8)

that is, as a sum of the squared errors for mean predictions

plus sum of the predictive variances. The preferred model

is then the one which minimizes (8). L2-criterion is not an

unbiased estimate of (2) due to different form of the utility

function, but Ibrahim and Laud (1994) showed that in model

comparison, the criterion penalizes more complex models
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asymptotically with penalty halfway between the posterior

predictive approach (i.e. fit at the training points) and the

cross-validation approach.

Marriott et al. (2001) proposed a closely related criterion

which is a cross-validated version of (8)

L2
cv =

n
∑

i=1

(

yi − E
[

ỹ | xi , D\Is(i)
, M

])2

+

n
∑

i=1

Var
[

ỹ | xi , D\Is(i)
, M

]

. (9)

This sounds intuitively better than the L2-criterion because it

does not use the same data for training and testing. However,

little is known about the properties of the estimate (9) as the

authors do not provide a theoretical treatment. Empirically

it is found that, like L2, L2
cv-criterion has a relatively high

variance which may cause significant overfitting in model

selection as discussed in Sect. 3 and demonstrated experi-

mentally in Sect. 4.

Yet another related criterion based on a replicated mea-

surement was proposed by Gelfand and Ghosh (1998). The

authors considered an optimal point prediction which is

designed to be close to both the observed and future data

and the relative importance between the two is adjusted by a

free parameter k. Omitting the derivation, the loss function

becomes

L2
k =

k

k + 1

n
∑

i=1

(

yi − E
[

ỹ | xi , D, M
])2

+

n
∑

i=1

Var
[

ỹ | xi , D, M
]

. (10)

When k → ∞, this is the same as the L2-criterion (8). On

the other hand, when k = 0, the criterion reduces to the sum

of the predictive variances. In this case there is no inherent

safeguard against poor fit as the model with the narrowest pre-

dictive distribution is chosen. In their experiment, the authors

reported that the results were not very sensitive to the choice

of k.

2.4 Reference model approach

Section 2.2 reviewed methods for utility estimation that are

based on sample reuse without any assumptions on the true

model (M -open view). An alternative way is to construct a

full encompassing reference model M∗, which is believed to

best describe our knowledge about the future observations,

and perform the utility estimation almost as if it was the true

data generating distribution (M -completed view). We refer

to this as the reference model approach. There are basically

two somewhat different but related approaches that fit into

this category, namely the reference and projection predictive

methods, which will be discussed separately.

2.4.1 Reference predictive method

Assuming we have constructed a reference model M∗ which

we believe best describes our knowledge about the future

observations, the utilities of the candidate models M can be

estimated by replacing the true distribution pt(ỹ) in (2) by the

predictive distribution of the reference model p(ỹ | D, M∗).

Averaging this over the training inputs {xi }
n
i=1 gives the ref-

erence utility

ūref =
1

n

n
∑

i=1

∫

p(ỹ | xi , D, M∗) log p(ỹ | xi , D, M)d ỹ .

(11)

Depending on the reference model, this integral may not

be analytically available and numerical integration may be

required. However, if the output ỹ is only one dimensional,

simple quadratures are often adequate.

As the reference model is in practice different from the

true data generating model, the reference utility is a biased

estimate of the true generalization utility (2). The maximiza-

tion of the reference utility is equivalent to minimizing the

predictive KL-divergence between the reference model M∗

and the candidate model M at the training inputs

δ(M∗‖M) =
1

n

n
∑

i=1

KL(p(ỹ | xi , D, M∗) ‖ p(ỹ | xi , D, M).

(12)

The model choice can then be based on the strict minimiza-

tion of the discrepancy measure (12), or choosing the simplest

model that has an acceptable discrepancy. What is meant

by “acceptable” may be somewhat arbitrary and depend on

the context. For more discussion, see the concept of relative

explanatory power in the next section, Eq. (17).

The reference predictive approach is inherently a less

straightforward approach to model selection than the meth-

ods presented in Sect. 2.2, because it requires the construction

of the reference model and it is not obvious how it should

be done. San Martini and Spezzaferri (1984) proposed using

the Bayesian model average (20) as the reference model (see

Sect. 2.5). In the variable selection context, the model averag-

ing corresponds to a spike-and-slab type prior (Mitchell and

Beauchamp 1988) which is often considered as the “gold

standard” and has been extensively used for linear models

(see, e.g., George and McCulloch 1993, 1997; Raftery et al.

1997; Brown et al. 2002; Lee et al. 2003; O’Hara and Sillan-

pää 2009; Narisetty and He 2014) and extended and applied

to regression for over one million variables (Peltola et al.
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2012a, b). However, we emphasize that any other model or

prior could be used as long as we believe it reflects our best

knowledge of the problem and allows convenient computa-

tion. For instance the Horseshoe prior (Carvalho et al. 2009,

2010) has been shown to have desirable properties empiri-

cally and theoretically assuming a properly chosen shrinkage

factor (Datta and Ghosh 2013; Pas et al. 2014).

2.4.2 Projection predictive method

A related but somewhat different alternative to the refer-

ence predictive method (previous section) is the projection

approach. The idea is to project the information in the pos-

terior of the reference model M∗ onto the candidate models

M so that the predictive distribution of the candidate model

remains as close to the reference model as possible. Thus

the key aspect is that the candidate model parameters are

determined by the fit of the reference model, not by the data.

Therefore also the prior needs to be specified only for the ref-

erence model. The idea behind the projection is quite generic

and Vehtari and Ojanen (2012) discuss the general framework

in more detail.

A practical means for doing the projection was proposed

by Goutis and Robert (1998) and further discussed by Dupuis

and Robert (2003). Given the parameter of the reference

model θ∗, the projected parameter θ⊥ in the parameter space

of model M is defined via

θ⊥ = arg min
θ

1

n

n
∑

i=1

KL
(

p(ỹ | xi , θ
∗, M∗) ‖ p(ỹ | xi , θ, M)

)

.

(13)

The discrepancy between the reference model M∗ and the

candidate model M is then defined to be the expectation of

the divergence over the posterior of the reference model

δ(M∗‖M) =
1

n

n
∑

i=1

E
[

KL
(

p(ỹ | xi , θ
∗, M∗) ‖ p(ỹ | xi , θ

⊥, M)
)]

.

(14)

The posterior expectation in (14) is in general not available

analytically. Dupuis and Robert (2003) proposed calculat-

ing the discrepancy by drawing samples {θ∗
s }S

s=1 from the

posterior of the reference model, calculating the projected

parameters {θ⊥
s }S

s=1 individually according to (13), and then

approximating (14) as

δ(M∗‖M) ≈
1

nS

n
∑

i=1

S
∑

s=1

KL
(

p(ỹ | xi , θ
∗
s , M∗) ‖ p(ỹ | xi , θ

⊥
s , M)

)

.

(15)

Also the optimization problem in (13) cannot typically be

solved analytically, and a numerical optimization routine

may be needed. However, for the simplest models like the

Gaussian linear model, the analytical solution is available,

see Appendix 1. Moreover, even when the analytical solu-

tion does not exist, solving the optimization problem (13) in

the case of generalized linear models is equivalent to finding

the maximum likelihood parameters for the candidate model

M with the observations replaced by the fit of the reference

model (Goutis and Robert 1998).

The projected samples {θ⊥
s }S

s=1 are used for posterior

inference as usual. For example, the predictions of the can-

didate model M can be computed as

p(ỹ | x̃, D, M) =
1

S

S
∑

s=1

p(ỹ | x̃, θ⊥
s , M), (16)

which is the same as the usual Monte Carlo approximation

to the predictive distribution, we simply use the projected

samples as the posterior approximation.

For deciding which model model to choose, Dupuis and

Robert (2003) introduced a measure called relative explana-

tory power

φ(M) = 1 −
δ(M∗‖M)

δ(M∗‖M0)
, (17)

where M0 denotes the empty model, that is, the model that

has the largest discrepancy to the reference model. In terms of

variable selection, M0 is the variable free model. By defini-

tion, the relative explanatory power obtains values between 0

and 1, and Dupuis and Robert (2003) proposed choosing the

simplest model with enough explanatory power, for example

90 %, but did not discuss the effect of this threshold for the

predictive performance of the selected models. We note that,

in general, the relative explanatory power is an unreliable

indicator of the predictive performance of the submodel. This

is because the reference model is typically different from the

true data generating model Mt, and therefore both M∗ and

M may have the same discrepancy to Mt (that is, the same

predictive ability) although the discrepancy between M∗ and

M would be nonzero.

Peltola et al. (2014) proposed an alternative way of decid-

ing the model size based on cross-validation outside the

searching process. In other words, in a K -fold setting the

searching is repeated K times each time leaving 1/K of the

data for testing, and the performance of the found models are

tested on this left-out data. Note that also the reference model

is trained K times and each time its performance is evaluated

on the left-out data. Thus, one can compare the utility of both

the found models and the reference model on the indepen-

dent data and estimate, for instance, how many variables are

needed to get statistically indistinguishable predictions com-

pared to the reference model. More precisely, if um denotes

the estimated expected utility of choosing m variables and
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u∗ denotes the estimated utility for the reference model, the

models can be compared by estimating the probability

Pr [u∗ − um ≤ �u], (18)

that is, the probability that the utility difference compared

to the reference model is less than �u ≥ 0. Peltola et al.

(2014) suggested estimating the probabilities above by using

Bayesian bootstrap (Rubin 1981) and reported results for all

model sizes for �u = 0.

The obvious drawback in this approach are the increased

computations (as the selection and reference model fitting is

repeated K times), but in Sect. 4.3 we demonstrate that this

approach may be very useful when choosing the final model

size.

2.5 Model space approach

Bayesian formalism has a natural way of describing the

uncertainty with respect to the used model specification given

an exhaustive list of candidate models {Mℓ}
L
ℓ=1. The distrib-

ution over the model space is given by

p(M | D) ∝ p(D | M) p(M) . (19)

The predictions are then obtained from the Bayesian model

averaging (BMA) solution

p(ỹ | D) =

L
∑

ℓ=1

p(ỹ | D, Mℓ) p(Mℓ | D) . (20)

Strictly speaking, forming the model average means adopting

the M -closed view, that is, assuming one of the candi-

date models is the true data generating model. In practice,

however, averaging over the discrete model space does not

differ in any sense from integrating over the continuous

parameters which is the standard procedure in Bayesian

modeling. Moreover, BMA has been shown to have a good

predictive performance both theoretically and empirically

(Raftery and Zheng 2003) and especially in variable selection

context the integration over the different variable combina-

tions is widely accepted. See the review by Hoeting et al.

(1999) for a thorough discussion of Bayesian model averag-

ing.

From a model selection point of view, one may choose the

model maximizing (19) ending up with the maximum a poste-

riori (MAP) model. Assuming the true data generating model

belongs to the set of the candidate models, MAP model can

be shown to be the optimal choice under the zero-one utility

function (utility being one if the true model is found, and zero

otherwise). If the models are given equal prior probabilities,

p(M) ∝ 1, finding the MAP model reduces to maximiz-

ing the marginal likelihood, also referred to as the type-II

maximum likelihood.

Barbieri and Berger (2004) proposed a related variable

selection method for the Gaussian linear model and named

it the Median probability model (which we abbreviate sim-

ply as the Median model). The Median model is defined as

the model containing all the variables with marginal pos-

terior probability greater than 1
2

. Let binary vector γ =

(γ 1, . . . , γ p) denote which of the variables are included in

the model (γ j = 1 meaning that variable j is included). The

marginal posterior inclusion probability of variable j is then

π j =
∑

M : γ j =1

p(M | D), (21)

that is, the sum of the posterior probabilities of the models

which include variable j . The Median model γmed is then

defined componentwise as

γ
j

med =

{

1, if π j ≥ 1
2
,

0, otherwise .
(22)

The authors showed that when the predictors x=(x1, . . . , x p)

are orthogonal, that is when Q = E
[

xxT
]

is diagonal, the

Median model is the optimal choice. By optimal the authors

mean the model whose predictions for future ỹ are closest to

the Bayesian model averaging prediction (20) in the squared

error sense. The authors admit that the assumption of the

orthogonal predictors is a strong condition that does not often

apply. The Median model also assumes that the optimality is

defined in terms of the mean predictions, meaning that the

uncertainty in the predictive distributions is ignored. More-

over, the Median model is derived assuming Gaussian noise

and thus the theory does not apply, for instance, to classifi-

cation problems.

3 Overfitting and selection induced bias

As discussed in Sect. 2.1, the performance of a model is

usually defined in terms of the expected utility (2). Many

of the proposed selection criteria reviewed in Sects. 2.2–2.5

can be thought of as estimates of this quantity even if not

designed directly for this purpose.

Consider a hypothetical utility estimation method. For a

fixed training dataset D, its utility estimate gℓ = g(Mℓ, D)

for model Mℓ can be decomposed as

gℓ = uℓ + eℓ, (23)

where uℓ = u(Mℓ, D) represents the true generalization util-

ity of the model, and eℓ = e(Mℓ, D) is the error in the

utility estimate. Note that also uℓ depends on the observed

dataset D, because favourable datasets lead to better gener-

alization performance. If the utility estimate is correct on
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Fig. 1 Schematic illustration of an unbiased (left) and a biased (right)

utility estimation method. Grey lines denote the utility estimates for

different datasets Di , black is the average, and red the true expected

utility. In this case, the biased method is likely to choose better models

(dashed lines) due to better tradeoff in bias and variance

average over the different datasets ED[gℓ] = ED[uℓ], or

equivalently ED[eℓ] = 0, we say the estimate g is unbi-

ased, otherwise it is biased. The unbiasedness of the utility

estimate is often considered as beneficial for model selec-

tion. However, the unbiasedness is intrinsically unimportant

for model selection, and a successful model selection does

not necessarily require unbiased utility estimates. To see this,

note that the only requirement for a perfect model selection

criterion is that the higher utility estimate implies higher gen-

eralization performance, that is gℓ > gk implies uℓ > uk for

all models Mℓ and Mk . This condition can be satisfied even

if ED[gℓ] �= ED[uℓ].

To get an idea how the bias and variance properties of a

utility estimate affect the model selection, see Fig. 1. The left

plot shows an imaginary prototype of an unbiased but high

variance utility estimation method. The grey lines represent

the estimated utilities for each model M with different data

realizations. On average (black) these curves coincide with

the true expected utility over all datasets (red). However, due

to the high variance, the maximization of the utility estimate

may lead to choosing a model with nonoptimal expected true

utility (the maxima become scattered relatively far away from

the true optimum). We refer to this phenomenon of choosing

a nonoptimal model due to the variance in the utility estimates

as overfitting in model selection. In other words, the selection

procedure fits to the noise in the utility estimates and there-

fore it is expected that the chosen model has a nonoptimal

true utility. The left plot also demonstrates that, even though

the utility estimates are unbiased for each model before the

selection, the utility estimate for the selected model is no

longer unbiased and is typically optimistic (the maxima of

the grey lines tend to lie over the average curve). We refer to

this as the selection induced bias.

The right plot shows a biased utility estimation method

that either under or overestimates the ability of most of

the models. However, due to smaller variance, the proba-

bility of choosing a model with better true performance is

significantly increased (the maxima of the estimates focus

closer to the true optimum). This example demonstrates that

even though the unbiasedness is beneficial for the perfor-

mance evaluation of a particular model, it is not necessarily

important for model selection. For the selection, it is more

important to be able to rank the competing models in an

approximately correct order with a low variability.

The overfitting in model selection and the selection

induced bias are important concepts that have received rel-

atively little attention compared to the vast literature on

model selection in general. However, the topic has been dis-

cussed for example by Rencher and Pun (1980), Ambroise

and McLachlan (2002), Reunanen (2003), Varma and Simon

(2006), and Cawley and Talbot (2010). These authors dis-

cuss mainly the model selection using cross-validation, but

the ideas apply also to other utility estimation methods. As

discussed in Sect. 2.2, cross-validation gives a nearly unbi-

ased estimate of the generalization performance of any given

model, but the selection process may overfit when the vari-

ance in the utility estimates is high (as depicted in the left plot

of Fig. 1). This will be demonstrated empirically in Sect. 4.

The variance in the utility estimate is different for differ-

ent estimation methods but may generally be considerable

for small datasets. The amount of overfitting in selection

increases with the number of models being compared, and

may become a problem for example in variable selection

where the number of candidate models grows quickly with

the number of variables.

4 Numerical experiments

This section compares the methods presented in Sect. 2 in

practical variable selection problems. Section 4.1 discusses

the used models and Sects. 4.2 and 4.3 show illustrative
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examples using simulated and real world data, respectively.

The reader is encouraged to go through the simulated exam-

ples first as they illustrate most of the important concepts

with more detailed discussion. In Sect. 4.4 we then discuss

the use of cross-validation for guiding the model size selec-

tion and for performance evaluation of the finally selected

model. Finally, Sect. 4.5 provides a short note on the com-

putational aspects.

4.1 Models

We will consider both regression and binary classification

problems. To reduce the computational burden involved in

the experiments, we consider only linear models. For regres-

sion, we apply the standard Gaussian model

y | x, w, σ 2 ∼ N
(

wTx, σ 2
)

,

w | σ 2, τ 2 ∼ N
(

0, τ 2σ 2 I
)

,

σ 2 ∼ Inv-Gamma(ασ , βσ ),

τ 2 ∼ Inv-Gamma(ατ , βτ ) ,

(24)

where x is the p-dimensional vector of inputs, w contains the

corresponding weights and σ 2 is the noise variance. For this

model, most of the computations can be obtained analytically

because for a given hyperparameter τ 2 the prior is conjugate.

Since it is difficult to come up with a suitable value for the

weight regularising variance τ 2, it is given a weakly infor-

mative inverse-gamma prior and integrated over numerically.

For the binary classification, we use the probit model

y | x, w ∼ Ber
(

Φ(wTx)
)

,

w | τ 2 ∼ N
(

0, τ 2 I
)

,

τ 2 ∼ Inv-Gamma(ατ , βτ ),

(25)

where Φ(·) denotes the cumulative density of the standard

normal distribution. Again, a weakly informative prior for τ 2

is used. For this model, we use Markov chain Monte Carlo

(MCMC) methods to obtain samples from the posterior of the

weights to get the predictions. For both models (24) and (25)

we include the intercept term by augmenting a constant term

in the input vector x = (1, x1, . . . , x p) and a corresponding

term in the weight vector w = (w0, w1, . . . , w p). The exact

values used for the hyperparameters ατ , βτ , ασ , βσ will be

given together with the dataset descriptions in Sects. 4.2 and

4.3.

Since we are considering a variable selection problem,

the submodels have different number of input variables and

therefore different dimensionality for x and w. For nota-

tional convenience, the binary vector γ = (γ 0, γ 1, . . . , γ p)

denoting which of the variables are included in the model

is omitted in the above formulas. Both in (24) and (25) the

model specification is the same for each submodel γ , only the

dimensionality of x and w change. The reference model M∗ is

constructed as the BMA (20) from the submodels using the

reversible jump MCMC (RJMCMC) (Green 1995), which

corresponds to a spike-and-slab prior for the full model. For

an additional illustration using a hierarchical shrinkage prior,

see Appendix 2. For the model space we use the prior

γ j | π ∼ Ber(π), j = 1, . . . , p ,

π ∼ Beta(a, b).
(26)

Here parameters a and b adjust the prior beliefs about the

number of included variables. We set γ 0 = 1, that is, the

intercept term w0 is included in all the submodels. Also for

a and b, the exact values used will be given together with the

dataset descriptions in Sects. 4.2 and 4.3.

4.2 Simulated data

We first introduce a simulated variable selection experiment

which illustrates a number of important concepts and the

main differences between the different methods. The data is

distributed as follows

x ∼ N(0, R), R ∈ R
p×p,

y | x ∼ N
(

wTx, σ 2
)

, σ 2 = 1.
(27)

We set the total number of variables to p = 100. The

variables are divided into groups of five variables. Each

variable x j has a zero mean and unit variance and is corre-

lated with other variables in the same group with coefficient

ρ but uncorrelated with variables in the other groups (the

correlation matrix R is block diagonal). The variables in

the first three groups have weights (w1:5, w6:10, w11:15) =

(ξ, 0.5 ξ, 0.25 ξ) while the rest of the variables have zero

weight. Thus there are 15 relevant and 85 irrelevant vari-

ables in the data. The constant ξ adjusts the signal-to-noise

ratio of the data. To get comparable results for different lev-

els of correlation ρ, we set ξ so that σ 2/Var[y] = 0.3. For

ρ = 0, 0.5, 0.9 this is satisfied by setting approximately

ξ = 0.59, 0.34, 0.28, respectively.

The experiments were carried out by varying the training

set size n = 100, 200, 400 and the correlation coefficient

ρ = 0, 0.5, 0.9. We used the regression model (24) with

prior parameters ατ = βτ = ασ = βσ = 0.5. The posterior

inference did not seem to be sensitive to these choices. As

the reference model M∗, we used the BMA (20) over the dif-

ferent input combinations with prior a = 1, b = 10 for the

number of inputs (26). For each combination of (n, ρ), we

performed the variable selection with each method listed in

Table 2 for 50 different data realizations. As a search heuris-

123



720 Stat Comput (2017) 27:711–735

Table 2 Compared model selection methods for the experiments

Abbreviation Method

CV-10 Tenfold cross-validation optimization (3)

WAIC WAIC optimization (4)

DIC DIC optimization (6)

L2 L2-criterion optimization (8)

L2-CV L2
cv-criterion optimization (9)

L2-k L2
k -criterion optimization with k = 1 (10)

MAP Maximum a posteriori model

MPP/Median Sort the variables according to their marginal

posterior probabilities (MPP), choose all with

probability 0.5 or more (Median) (22)

BMA-ref Posterior predictive discrepancy minimization

from BMA (12), choose smallest model having

95 % explanatory power (17)

BMA-proj Projection of BMA to submodels (15), choose

smallest model having 95 % explanatory

power (17)

MAP and Median models are estimated from the RJMCMC samples,

for other methods the searching is done using forward searching (at

each step choose the variable that improves the objective function value

the most). The methods are discussed in Sect. 2

tic, we used the standard forward search, also known as the

stepwise regression. In other words, starting from the empty

model, at each step we select the variable that increases the

utility estimate (like CV, WAIC, DIC, etc.) the most. The

Median and MAP model where estimated from the RJMCMC

samples that were drawn to form the BMA (as discussed in

Sect. 4.1).

The found models were then tested on an independent

test set of size ñ = 1000. As a proxy for the generalization

utility (2), we use the mean log predictive density (MLPD)

on the test set

MLPD(M) =
1

ñ

ñ
∑

i=1

log p(ỹi | x̃i , D, M). (28)

To reduce variance over the different data realizations and

to better compare the relative performance of the different

methods, we report the utilities of the selected submodels M

with respect to the gold standard BMA solution M∗

�MLPD(M) = MLPD(M) − MLPD(M∗). (29)

On this relative scale zero indicates the same predictive

performance as the BMA and negative values worse (and

positive values better, correspondingly). A motivation for

looking at the relative performance (29) is that, as we shall see

shortly, the selection typically introduces loss in the predic-

tive accuracy, and we want to assess which of the selection

methods are able to find the simplest models with perfor-

mance close to the BMA.

Figure 2 shows the average number of selected variables

and the test utilities of the selected models in each data setting

with respect to the BMA. First, a striking observation is that

none of the methods is able to find a model with better predic-

tive performance than the BMA. From the predictive point

of view, model averaging yields generally the best results on

expectation, and one should not expect to do better by selec-

tion. This result is in perfect accordance with what is known

about the good performance of the BMA (Hoeting et al. 1999;

Raftery and Zheng 2003). Thus, the primary motivation for

selection should be the simplification of the model without

substantially compromising the predictive accuracy, rather

than trying to improve over the predictions obtained by tak-

ing into account the model uncertainty.

Second, for the smallest dataset size many of the meth-

ods perform poorly and choose models with bad predictive

performance, comparable or even worse than the model with

no variables at all (the dotted lines). This holds for CV-10,

WAIC, DIC, L2, L2-CV, and L2-k, and the conclusion cov-

ers all the levels of correlation between the variables (blue,

red and green circles), albeit the high dependency between

the variables somewhat improves the results. The observed

behaviour is due to overfitting in the selection process (as

we will show below). Due to scarce data, the high variance

in the utility estimates leads to selecting overfitted models as

discussed in Sect. 3. These methods perform reasonably only

for the largest dataset size n = 400. MAP, Median, BMA-ref,

and BMA-proj perform significantly better, choosing smaller

models with predictive ability closer to the BMA. A closer

inspection reveals that out of these four, BMA-proj performs

best in terms of the predictive ability especially for the small-

est dataset size n = 100, but the better predictive accuracy is

partially due to selecting more variables than the other three

methods. Note also that for BMA-proj the predictions are

computed using the projected samples (Eq. (16)), whereas

for all the other methods the parameter estimation is done

by fitting the submodels to data. Later in this section we

will show that the parameter estimation using the projection

can play a considerable role in achieving improved predic-

tive accuracy for the submodels, and the good performance

of BMA-proj is not simply due to superior ordering of the

variables, in fact MPP may perform even better in this aspect

(see discussion related to Figs. 5 and 6).

To get more insight to the problem, let us examine more

closely how the predictive performance of the submodels

change when variables are selected. Figure 3 shows the

CV and test utilities after sorting the variables, as a func-

tion of the number of variables selected along the forward

search path when ρ = 0.5. The CV-utility (tenfold) is com-

puted within the data used for selection (n points), and

the test utility on independent data (note that computing
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Fig. 2 Simulated data Average number of variables chosen (left col-

umn) and the average test utilities of the chosen models (right column)

with 95 % credible intervals for the different training set sizes n. The

utilities are shown with respect to the BMA (29) and the dotted lines

denote the performance of the empty model (intercept term only). The

colours denote the correlation level between the variables (see the leg-

end). The true number of relevant variables is 15 (grey line in left column

plots) and the results are averaged over 50 data realizations. See Table 2

for the used methods

the CV-curve for BMA-proj requires cross-validating the

BMA and performing the projection for the submodels sep-

arately for each fold). The search paths for CV-10 (top row)

demonstrate the overfitting in model selection; starting from

the empty model and adding variables one at a time one

finds models that have high CV utility but much worse test

utility. In other words, the performance of the models at

the search path is dramatically overestimated and the gap

between the two curves denotes the selection induced bias.

Yet in other words, after selection (sorting the variables) the

CV utility is an optimistic estimate for the selected mod-

els. Note, however, that for the empty model and the model

with all the variables the CV utility and the test utility are

on average almost the same because these models do not

involve any selection. The overfitting in the selection process

decreases when the size of the training set grows because the

variance of the error term in decomposition (23) becomes

smaller, but the effect is still visible for n = 400. The

behaviour is very similar also for WAIC, DIC, L2, L2-CV

and L2-k (the results for the last three are left out to save

space).

Ordering the variables according to their marginal pos-

terior probabilities (MPP) and selecting the Median model

works much better than CV-10, leading to selection of smaller

models with good predictive performance. However, even

better results are obtained by using the reference model

approach, especially the projection (BMA-proj). The results

clearly show that the projection approach is much less vulner-

able to the overfitting than CV, WAIC and DIC, even though

the CV utility is still a biased estimate of the true predictive

ability for the chosen models. Even for the smallest dataset

size, the projection is able to find models with predictive

ability very close to the BMA with about 10–15 variables

on average. Moreover, the projection has the inherent advan-

tage over the other methods performing reasonably well (like

MPP/Median) that when more variables are added, the sub-

models get ever closer to the reference model (BMA), thus

avoiding the dip in the predictive accuracy apparent with the

other methods around 10 variables. This is simply because

the submodels are constructed to be similar than the model

averaging solution which yields the best results (this point

will be further discussed below, see discussion related to

Fig. 6).

Figure 4 shows the variability in the performance of the

selected models for the same selection methods as in Fig. 3.

The grey lines denote the test utilities for the selected mod-

els as a function of number of selected variables for different

data realizations and the black line denotes the average (same

as in Fig. 3). For small training set sizes the variability in

the predictive performance of the selected submodels is very
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Fig. 3 Simulated data Average forward search paths for some of the

selection methods for different training set sizes n when ρ = 0.5. Red

shows the CV utility (tenfold) and black the test utility with respect to

the BMA (29) after sorting the variables, as a function of number of

variables selected averaged over the 50 different data realizations. The

difference between these two curves illustrates the selection induced

bias. The dotted vertical lines denote the average number of variables

chosen with each of the methods (see Table 2)

high for CV-10, WAIC, DIC, and MPP. The reference model

approach, especially the projection, reduces the variability

substantially finding sparse submodels with predictive per-

formance close to the BMA in all the data realizations. This is

another property that makes the projection approach appeal-

ing. Figure 4 further emphasizes how difficult it is to improve

over the BMA in predictive terms; most of the time the

model averaging yields better predictions than any of the

found submodels. Moreover, even when better submodels are

found (the cases where the grey lines exceed the zero level),

the difference in the predictive performance is relatively

small.

Although our main focus is on the predictive ability of the

chosen models, we also studied how the different methods

are able to choose the truly relevant variables over the irrel-

evant ones. Here by “relevant” we mean those 15 variables

that were used to generate the output y even though it might

not be completely clear how the relevance should be defined

when there are correlations between the variables (for exam-

ple, should we select one or both of two correlating variables

which both correlate with the output). Figure 5 shows the

proportion of relevant variables chosen (vertical axis) versus

proportion of irrelevant variables chosen (horizontal axis) on

average (the larger the area under the curve, the better). In
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Fig. 4 Simulated data Variability in the predictive performance of the

found submodels with respect to the BMA (29) along the forward search

path as a function of number of variables selected for the same methods

as in Fig. 3 for different training set sizes n when ρ = 0.5. The grey

lines show the test utilities for the different data realizations and the

black line denotes the average (the black lines are the same as in Fig. 3).

The dotted vertical lines denote the average number of variables chosen

this aspect, ordering the variables according to their mar-

ginal probabilities seems to work best, slightly better than

the projection. The other methods seem to perform some-

what worse. Interestingly, although the projection does not

necessarily order the variables any better than the marginal

posterior probability order, the predictive ability of the pro-

jected submodels is on average better and varies less as Fig. 4

demonstrates.

To explain this behaviour, we did one more experiment

and studied the difference of learning the submodel para-

meters by the projection from the BMA compared to fitting

the submodels to the data. We performed this analysis both

when the selection was done by the marginal probabilities

or by forward search minimizing the discrepancy to the

BMA, see Fig. 6. The results show that constructing the

submodels by projection improves the results regardless of

which of the two methods is used to sort the variables, and

in this example, there seems to be little difference in the

final results as long as projection is used to construct the

submodels.

This effect can be explained by transmission of infor-

mation from the reference model. Recall that the BMA

corresponds to setting the sparsifying spike-and-slab prior

for the full model. Because the prior information is transmit-
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Fig. 5 Simulated data Proportion of relevant (vertical-axis) versus

proportion of irrelevant variables chosen (horizontal axis) for the dif-

ferent training set sizes n. The data had 100 variables in total with 15

relevant and 85 irrelevant variables, relevant being defined as a vari-

able that was used to generate the output y. The colours denote the

correlation level between the variables (see the legend). The curves are

averaged over the 50 data realizations

ted also to the submodels in the projection, it is natural that

the submodels benefit from this [compared to the Gaussian

prior in (24)] especially when some irrelevant variables have

been included. Furthermore, the noise level is also learned

from the full model [see Eq. (31)], which reduces overfitting

of the submodels as the full model best represents the uncer-

tainties related to the problem and best captures the correct

the noise level. More detailed analysis of these effects would

be useful, but we do not focus on it more in this paper and

leave it to the future research.

To summarize, it clearly appears that the full model

averaging solution produces best predictive results, and the

projection appears the most robust method for simplifying the

full model without losing much predictive accuracy. How-

ever, the number of variables actually selected depends on

the arbitrary 95 % explanatory power rule, and although it

seems to work quite well for the examples above, it does not

always lead to optimal results (see the real world examples

in the next section). We discuss this problem and a possible

solution further in Sect. 4.4.
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Fig. 6 Simulated data The average test utility with respect to the

BMA (29) as a function of number of variables selected when the sub-

model parameters are learned by projection from the BMA (solid line)

and by standard fitting to the data (dotted line). The projection improves

the performance of the submodels regardless of whether the variables

are sorted by their marginal posterior probabilities (top row) or by a

forward search minimizing the discrepancy to the BMA (bottom row)

Table 3 Summary of the real

world datasets and used priors
Dataset Type p n Prior parameters

Crime Regression 102 1992 ατ = βτ = 0.5, ασ = βσ = 0.5, a = b = 2

Ionosphere Classification 33 351 ατ = βτ = 0.5, a = b = 2

Sonar Classification 60 208 ατ = βτ = 0.5, a = b = 2

Ovarian cancer Classification 1536 54 ατ = βτ = 2, a = 1, b = 1200

Colon cancer Classification 2000 62 ατ = βτ = 2, a = 1, b = 2000

p denotes the total number of input variables and n is the number of instances in the dataset (after removing

the instances with missing values). The classification problems deal all with a binary output variable

4.3 Real world datasets

We also studied the performance of the different methods on

several real world datasets. Five publicly available1 datasets

were used and they are summarized in Table 3. One of the

datasets deals with regression and the rest with binary clas-

sification. As a preprocessing, we normalized all the input

variables to have zero mean and unit variance. For the Crime

dataset we also log-normalized the original non-negative tar-

get variable (crimes per population) to get a real-valued and

more Gaussian output. From this dataset we also removed

some input variables and observations with missing values

(the given p and n in Table 3 are after removing the missing

values). We will not discuss the datasets in detail but refer to

the sources for more information.

For the regression problem we applied the Gaussian

regression model (24) and for the classification problems

the probit model (25). The prior parameters in each case

are listed in Table 3. For all the problems we used relatively

1 The first three datasets are available at the UCI Machine Learning

repository https://archive.ics.uci.edu/ml/index.html.

Ovarian cancer dataset can be found at http://www.dcs.gla.ac.uk/

~srogers/lpd/lpd.html and the Colon cancer data at http://genomics-

pubs.princeton.edu/oncology/affydata/index.html.

uninformative priors for the input weights (and measurement

noise). As the reference model, we again used the BMA solu-

tion estimated using reversible jump MCMC. For the first

three problems (Crime, Ionosphere, Sonar) we used a very

uninformative prior for the number of input variables (i.e.,

a = b = 2) because there was basically no prior infor-

mation about the sparsity level. For the last two datasets

(Ovarian and Colon) for which p ≫ n we had to use priors

that favor models with only a few variables to avoid overfit-

ting. Figure 7 shows the estimated posterior probabilities for

different number of variables (top row) and marginal pos-

terior probabilities for the different inputs (bottom row) for

all the datasets. Although these kind of plots may give some

idea about the variable relevancies, it is still often difficult to

decide which variables should be included in the model and

what would be the effect on the predictive performance.

We then performed the variable selection using the meth-

ods in Table 2 except the ones based on the squared error

(L2, L2-CV, L2-k) were not used for the classification prob-

lems. For Ovarian and Colon datasets, due to large number of

variables, we also replaced the tenfold-CV by the importance

sampling LOO-CV (IS-LOO-CV) to reduce the computation

time. For these two datasets we also performed the forward

searching only up to 10 variables.
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Fig. 7 Real datasets Prior and posterior probabilities for the differ-

ent number of variables (top row) and marginal posterior probabilities

for the different variables sorted from the most probable to the least

probable (bottom row). The posterior probabilities are given with 95 %

credible intervals estimated from the variability between different RJM-

CMC chains. The results are calculated using the full datasets (not

leaving any data out for testing). For Ovarian and Colon datasets the

plots are truncated at 30 variables

To estimate the predictive ability of the chosen models, we

repeated the selection several times each time leaving part

of the data out and then measuring the out-of-sample per-

formance using these observations. The Crime dataset was

sufficiently large (n = 1992) to be splitted into training and

test sets. We repeated the selection for 50 random splits each

time using n = 100, 200, 400 points for training and the

rest for testing. This also allowed us to study the effect of

the training set size. For Ionosphere and Sonar we used ten-

fold cross-validation, that is, the selection was performed 10

times each time using 9/10 of the data and estimating the out-

of-sample performance with the remaining 1/10 of the data.

For Ovarian and Colon datasets, due to few observations, we

used leave-one-out cross-validation for performance evalua-

tion (the selection was performed n times each time leaving

one point out for testing). Again, we report the results as

the mean log predictive density on the independent data with

respect to the BMA (29).

Figure 8 summarizes the results. The left column shows

the average number of variables selected and the right column

the estimated out-of-sample utilities for the chosen models

(out-of-sample utilities are estimated using hold-out sam-

ples not used for selection as explained above). The results

are qualitatively very similar to those obtained for the sim-

ulated experiments (Sect. 4.2). Again we conclude that the

BMA solution gives better predictions than any of the selec-

tion methods when measured on independent data. Moreover,

the results demonstrate again that model selection using CV,

WAIC, DIC, L2, L2-CV, or L2-k is liable to overfitting espe-

cially when the dataset is small compared to the number of

variables. Overall, MAP and Median models tend to perform

better but show non-desirable performance on some of the

datasets. Especially the Median model performs badly for

Ovarian and Colon datasets where almost all the variables

have marginal posterior probability less than 0.5 (depending

on the split into training and validation sets). The projection

(BMA-proj) shows the most robust performance choosing

models with predictive ability close to the BMA for all the

datasets.

Figure 9 shows the CV (red) and out-of-sample (black)

utilities for the chosen models as a function of number of

chosen variables for the classification problems. CV-utilities

(tenfold) are computed after sorting the variables within the

same data used for selection, and the out-of-sample utilities

are estimated on hold-out samples not used for selection as

explained earlier. This figure is analogous to Fig. 3 showing

the magnitude of the selection induced bias (the difference

between the red and black lines). Especially for the last three

datasets (Sonar, Ovarian, Colon) the selection induced bias

is considerable for all the methods, which emphasizes the

importance of validating the variable searching process in

order to avoid bias in performance evaluation for the found

models. Overall, the projection (BMA-proj) appears to find

models with best out-of-sample accuracy for a given model

complexity, albeit for Ovarian dataset choosing about five

most probable inputs (MPP) would perform even better.

Moreover, the uncertainty in the out-of-sample performance

for a given number of variables is also the smallest for the

projection over all the datasets.

The same applies to the Crime dataset, see Fig. 10. For any

given number of variables the projection is able to find models

with predictive ability closest to the BMA and also with the

least variability, the difference to the other methods being the

largest when the dataset size is small. For Crime data, some

additional results using hierarchical shrinkage prior for the

full model are presented in Appendix 2.2.
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Fig. 8 Real datasets The number of selected variables (left column)

and the estimated out-of-sample utilities of the selected models (right

column) on average and with 95 % credible intervals for the different

datasets. The out-of-sample utilities are estimated using hold-out sam-

ples not used for selection (see text) and are shown with respect to the

BMA (29). The dotted line denotes the performance of the empty model

(the intercept term only). For Ovarian and Colon datasets the searching

was performed only up to 10 variables although both of these datasets

contain many more variables
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Fig. 9 Classification datasets CV (red) and out-of-sample (black) util-

ities on average for the selected submodels with respect to the BMA (29)

along the forward search path as a function of number of variables

selected. CV utilities (tenfold) are computed within the same data used

for selection and the out-of-sample utilities are estimated on hold-out

samples not used for selection (see text) and are given with 95 % cred-

ible intervals. The dotted vertical lines denote the average number of

variables chosen. CV optimization (top row) is carried out using tenfold-

CV for Ionosphere and Sonar, and IS-LOO-CV for Ovarian and Colon

4.4 On choosing the final model size

Although the search paths for the projection method (BMA-

proj) seem overall better than for the other methods (Figs. 3,

4, 9, 10), the results also demonstrate difficulty in deciding

the final model size; for instance, for Ionosphere and Sonar

datasets the somewhat arbitrary 95 % explanatory power rule

chooses rather too few variables, but for Ovarian and Colon

unnecessarily many variables (the out-of-sample utility close

to the BMA can be obtained with fewer variables). The same

applies for the Crime dataset with the smallest number of

training points (n = 100). As discussed in Sect. 2.4, a nat-

ural idea would be to decide the final model size based on the

estimated out-of-sample utility (the black lines in Figs. 9, 10)

which can be done by cross-validation outside the searching

process. This opens up the question, does this induce a sig-

nificant amount of bias in the utility estimate for the finally

selected model?

To assess this question, we performed one more exper-

iment on the real world datasets by adding another layer
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Fig. 10 Crime dataset Variability in the test utility of the selected sub-

models with respect to the BMA (29) along the forward search path as

a function of number of variables selected. The selection is performed

using n = 100, 200, 400 points and the test utility is computed using the

remaining data. The grey lines show the test utilities for the 50 different

splits into training and test sets and the black line denotes the average.

The dotted vertical lines denote the average number of variables chosen

of cross-validation to assess the performance of the finally

selected models on independent data. In other words, the

variable searching was performed using the projection, the

inner layer of cross-validation (tenfold) was used to decide

the model size and the outer layer to measure the perfor-

mance of the finally selected models (tenfold for Ionosphere

and Sonar, LOO-CV for Ovarian and Colon, and hold-out

with different training set sizes for Crime). As the rule for

deciding the model size, we selected the smallest number of

variables satisfying

Pr [�MLPD(m) ≥ U ] ≥ α

for different thresholds U and α. Here �MLPD(m) denotes

the estimated out-of-sample utility for m variables in the

inner validation. This probability is the same as (18), the

inequality is merely organized differently. Here U denotes

how much one is willing to sacrifice the predictive accuracy

in order to reduce the number of variables, and α denotes how

certain we want to be about not going below U . We estimate

the above probability using the Bayesian bootstrap.

Figure 11 shows the final expected utility on independent

data for different values of U and α for the different datasets.

The results show that for a large enough credible level α =

0.95, the applied selection rule appears to be safe in the sense
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Fig. 11 Real datasets Vertical axis shows the final expected util-

ity on independent data with respect to the BMA (29) for the

selected submodels when the searching is done using the projection

(BMA-proj) selecting the smallest number of variables m satisfying

Pr [�MLPD(m) ≥ U ] ≥ α, where �MLPD(m) denotes the estimated

out-of-sample utility for m variables estimated using the CV (tenfold)

outside the searching process (same as the black lines in Fig. 9). The

final utility is estimated using another layer of validation (see text). The

dotted line denotes the utility for the empty model. When α = 0.95,

the final utility remains equal or larger than U (the dots stay above the

diagonal line) indicating that the applied selection rule does not induce

bias in the performance evaluation for the finally selected model

that the final expected utility remains always above the level

of U (the dots stay above the diagonal line). This means that

there is no substantial amount of selection induced bias at

this stage, and the second level of validation is not necessarily

needed. However, this does not always hold for smaller values

of α (α = 0.5 and 0.05).

We can make these results more intuitive by looking at an

example. Consider the projection search path for the Sonar

dataset in Fig. 9 (bottom row, second column). Assume now

that U = −0.01, meaning that we are willing to lose 0.01

in the MLPD compared to the BMA, which is about 5 % of

the difference between the BMA and the empty model. Since

the grey bars denote the central 95 % credible intervals, set-

ting α = 0.975 would correspond to choosing the smallest

model for which the lower limit of the grey bar falls above

U = −0.01 (because then the performance of the submodel

is greater than this with probability 0.975). This would lead

to choosing about 35 variables, and we could be quite confi-

dent that the final expected utility would be within 0.01 from

the BMA. On the other hand, setting α = 0.025 corresponds

to choosing the smallest model for which the upper limit of

the grey bar falls above U = −0.01 (because then the perfor-

mance of the submodel is greater than this with probability

0.025). This would lead to choosing only three variables,

but in this case we cannot expect confidently that the final

expected utility would be within 0.01 from the BMA, and in

fact it would be lower than this with high probability.

Following the example above, one can get an idea of the

effect of α and U to the final model size and the final expected

utility. Generally speaking, U determines how much we are

willing to compromise the predictive accuracy and α deter-

mines how condident we want to be about the final utility

estimate. It is application specific whether it is more impor-

tant to have high predictive accuracy or to reduce the number

of variables at the cost of losing predictive accuracy, but a

reasonable recommendation might be to use α ≥ 0.95 and U

to be 5 % of the difference between the reference model and

the empty model. Based on Fig. 11, this combination would

appear to give predictive accuracy close to the BMA, and

based on Fig. 9 yield quite effective reduction in the num-

ber of variables (choosing about 20 variables for Ionosphere,

35 for Sonar, and 5–10 variables for Ovarian and Colon by

visual inspection).

As a final remark, one might wonder why the cross-

validation works well if used only to decide the model size

but poorly if used directly to optimize the variable combi-
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nation (as depicted e.g. in Fig. 3)? As discussed in Sect. 3,

the amount of overfitting in the selection and the consequent

selection bias depends on the variance of the utility estimate

for a given model (over the data realizations) and the number

of candidate models being compared. For the latter reason,

the overfitting is considerably smaller when cross-validation

is used only to decide the model size by comparing only p+1

models (given the variable ordering), in contrast to select-

ing variable combination in the forward search phase among

O(p2) models. Moreover, the utilities of two consecutive

models at the search path are likely to be highly correlated,

which further reduces the freedom of selection and therefore

the overfitting at this point. It is for this same reason why

cross-validation may yield reasonable results when used to

choose a single hyperparameter among a small set of val-

ues, in which case essentially only a few different models

are being compared.

Based on the results presented in this section, despite

the increased computational effort, we believe the use of

cross-validation on top of the variable searching is highly

advisable both for choosing the final model size and giving a

nearly unbiased estimate of the out-of-sample performance

for the selected model. We emphasize the importance of this

regardless of the method used for searching the variables,

but generally we recommend using the projection given its

overall superior performance in our experiments.

4.5 Computational considerations

We conclude with a remark on the computational aspects.

The results in Sects. 4.2 and 4.3 emphasized that from the

predictive point of view, the model averaging over the dif-

ferent submodels yields often better results than selection

of any single model. Forming the model averaging solu-

tion over the variable combinations may be computationally

challenging, but is quite feasible up to problems with a few

thousand variables or less with, for instance, a straightfor-

ward implementation of the RJMCMC algorithm with simple

proposal distributions. Scalability up to a million variables

can be obtained with more sophisticated and efficient pro-

posals (Peltola et al. 2012b). The computations could also be

sped up by using a hierarchical shrinkage prior such as the

horseshoe (see Appendix 2.1) for the regression weights in

the full model, instead of the spike-and-slab (which is equiv-

alent to the model averaging over the variable combinations).

After forming the full reference model (either the BMA

or using some alternative prior), the subsequent compu-

tations needed for the actual selection are typically less

burdensome. Computing the MAP and the Median models

from the MCMC samples from the model space is easy, but

these cannot be computed with alternative priors. Construct-

ing the submodels by projection and performing a forward

search through the variable combinations is somewhat more

laborous, but takes still usually considerably less time than

forming the reference model. The projection approach can

also be used with any prior for the full model, as the poste-

rior samples are all that is needed (see Appendix 2).

The methods that do not rely on the construction of the

full reference model (CV, WAIC, DIC, and the L2-variants)

are typically computationally easier as they avoid the burden

of forming the reference model in the first place. However, if

one has to go through a lot of models in the search, the proce-

dure is fast only if the fitting of the submodels is fast. This is

the case for instance for the Gaussian linear model for which

the posterior computations are obtained analytically, but in

other problems like in classification, sampling the parame-

ters separately for each submodel may be very expensive,

and one may be forced to use faster approximations (such

as the Laplace method or expectation propagation). On the

other hand, it must be kept in mind that the possible com-

putational savings from avoiding the construction of the full

model may come at the risk of overfitting and reduced pre-

dictive accuracy, as our results show.

5 Conclusions

In this paper we have shortly reviewed many of the proposed

methods for Bayesian predictive model selection and illus-

trated their use and performance in practical variable selec-

tion problems for regression and binary classification, where

the goal is to select a minimal subset of input variables with a

good predictive accuracy. The experiments have been carried

out using both simulated and several real world datasets.

The numerical experiments show that the overfitting in the

selection may be a potential problem and hinder the model

selection considerably. This is the case especially when the

dataset is small (high variance in the utility estimates) and

the number of models under comparison large (large number

of variables). Especially vulnerable methods for this type of

overfitting are CV, WAIC, DIC and other methods that rely

on data reuse and have therefore relatively high variance in

the utility estimates. From the predictive point of view, better

results are generally obtained by accounting for the model

uncertainty and forming the full encompassing (reference)

model with all the variables and best possible prior informa-

tion on the sparsity level. Our results showed that Bayesian

model averaging (BMA) over the candidate models yields

often the best results on expectation, and one should not

expect to do better by selection. This agrees with what is

known about the good performance of the BMA (Hoeting

et al. 1999; Raftery and Zheng 2003).

If the full model is too complex or the cost for observing

all the variables is too high, the model can be simplified most

robustly by the projection method which is considerably less

vulnerable to the overfitting in the selection. The advantage
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of the projection approach comes from taking into account

the uncertainty in forming the full encompassing model and

then finding a simpler model which gives similar answers

as the full model. Overall, the projection framework out-

performs also the selection of the most probable variables

or variable combination (Median and MAP models) being

able to best retain the predictive ability of the full model

while effectively reducing the model complexity. The results

also demonstrated that the projection does not only outper-

form the other methods on average but the variability over

the different data realizations is also considerably smaller

compared to the other methods. In addition, the numerical

experiments showed that constructing the submodels by the

projection from the full model may improve the predictive

accuracy even when some other strategy, such as marginal

probabilities, are used to rank the variables.

Despite its advantages, the projection method has the

inherent challenge of forming the reference model in the

first place. There is no automated way of coming up with a

good reference model which emphasizes the model criticism.

However, as already stressed, incorporating the best possible

prior information into the full encompassing model is for-

mally the correct Bayesian way of dealing with the model

uncertainty and often seems to also provide the best predic-

tions in practice. In this study we used the model averaging

over the variable combinations as the reference model, but

similar results are obtained also with the hierarchical shrink-

age prior (see Appendix 2).

Another issue is that, even though the projection method

seems the most robust way of searching for good submodels,

the estimated discrepancy between the reference model and

a submodel is in general an unreliable indicator of the predic-

tive performance of the submodel. In variable selection, this

property makes it problematic to decide how many variables

should be selected to obtain predictive performance close to

the reference model, even though the minimization of the

discrepancy from the reference model typically finds a good

search path through the model space.

However, the results show that this problem can be solved

by using cross-validation outside the searching process, as

this allows studying the tradeoff between the number of

included variables and the predictive performance, which we

believe is highly informative. Moreover, we demonstrated

that selecting the number of variables this way does not pro-

duce considerable overfitting or selection induced bias in

the utility estimate for the finally selected model, because

the selection is conditioned on a greatly reduced number of

models (see Sect. 4.4). While this still leaves the user the

responsibility of deciding the final model size, we empha-

size that this decision depends on the application and the

costs of the inputs. Without any costs for the variables, we

would simply recommend using them all and carrying out

the full Bayesian inference on the model.
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Appendix 1: Projection for the linear Gaussian

model

Consider the single output linear Gaussian regression model

with several input variables (24). For this model, the projected

parameters (13) can be calculated analytically. Assume now

that the reference model M∗ is the full model with all the

inputs with any prior on the weights w and noise variance σ 2.

Given a sample (w, σ 2) from the posterior of the full model,

the projected parameters are given by (see the derivation in

Piironen and Vehtari 2015)

w⊥ = (X⊥
T X⊥)−1 X⊥

T Xw, (30)

σ 2
⊥ = σ 2 +

1

n
(Xw − X⊥w⊥)T(Xw − X⊥w⊥), (31)

where X = (xT

1 , . . . , xT
n ) denotes the n × p predictor matrix

of the full model, and X⊥ the contains those columns of X

that correspond to the submodel M we are projecting onto.

The associated KL-divergence (for this particular sample) is

given by

d(w, σ 2) =
1

2
log

σ 2
⊥

σ 2
. (32)

The projection equations (30) and (31) have a nice inter-

pretation. The projected weights (30) are determined by

the maximum likelihood solution with the observations y

replaced by the fit of the full (reference) model f = Xw.

The projected noise variance (31) is the noise level of the

full model plus the mismatch between the reference and the

projected model.

As discussed in Sect. 2.4.2, we draw a sample {ws, σ
2
s }S

s=1

from the posterior of the reference (full) model, compute

the projected parameters {ws,⊥, σ 2
s,⊥}S

s=1 and associated KL-

divergences according to Eqs. (30), (31) and (32), and then

estimate the discrepancy between the full and submodel as

δ(M∗‖M) =
1

S

S
∑

s=1

d(ws, σ
2
s ) . (33)
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For a given number of variables, we then seek for a variable

combination that gives minimal discrepancy. This procedure

will produce a parsimonious model with exactly zero weights

for the variables that are left out and predictive distribution

similar to the full model. The predictive distribution of the

submodel (16) is given by

p(ỹ | x̃, D, M) =
1

S

S
∑

s=1

N
(

ỹ | ws,⊥
T x̃, σ 2

s,⊥

)

. (34)

Appendix 2: Projection with hierarchical shrinkage

prior

Here we will briefly illustrate that the projection approach

(Sect. 2.4.2) can also be used with other priors than the spike-

and-slab (corresponding to the Bayesian model averaging,

BMA) that we used in the main experiments in Sect. 4.

Appendix 2.1: Hierarchical shrinkage prior

Consider again the linear Gaussian regression model with

several inputs (24). A hierarchical shrinkage (HS) prior for

the regression weights w = (w1, . . . , wp) can be obtained as

wi | λi , τ ∼ N
(

0, λ2
i τ

2
)

λi ∼ t+ν (0, 1) .
(35)

where t+ν (·) denotes the half-Student-t prior with ν degrees

of freedom. Intuitively, we expect the local variance parame-

ters λ2
i to be large for those inputs that have large weight, and

small for those with negligible weight, while the global vari-

ance term τ 2 adjusts the overall sparsity level. The shrinkage

property of the prior (35) comes from the fact that the half-t

prior evaluates to a positive constant at the origin and places

therefore probability mass for small values of λi . Moreover,

if the tails of the half-t densities are heavy enough, they allow

some of the weights to remain unshrunk. The horseshoe prior

(Carvalho et al. 2009, 2010) is obtained by setting ν = 1,

that is, by introducing half-Cauchy priors for the local scale

parameters λi . The horseshoe prior has been shown to pos-

sess desirable theoretical properties and performance close

to the gold standard BMA in practice (Carvalho et al. 2009,

2010; Datta and Ghosh 2013; Pas et al. 2014). However, it

is observed that when using Stan (Stan Development Team

2015) for fitting the model, the NUTS sampler can produce

a lot of divergent transitions even after the warm-up period

(Piironen and Vehtari 2015). Therefore we use ν = 3 which

is observed to behave numerically well and yield good results

(see Piironen and Vehtari 2015 for more details).

Appendix 2.2: Crime dataset revisited

Let us now revisit the Crime dataset from Sect. 4.3, which

contains 1992 observations and p = 102 predictor variables.

We split the data randomly into two so that n = 1000 points

are used for model training and variable selection, and the

remaining ñ = 992 points are used for testing. We apply the

regression model (24) with the HS prior (35) with ν = 3 for

the weights in the full model. Note that we use these hierar-

chical priors only for the weights of the nonconstant inputs.

For the intercept term we use a weakly informative prior

w0 ∼ N
(

0, 52
)

.

For the global scale parameter τ and for the noise variance

σ 2, we use the following uninformative priors

τ ∼ C+(0, 1),

σ 2 ∝ 1 ,

where C+(·) denotes the half-Cauchy distribution. The full

model is fitted by drawing S = 4000 samples from the pos-

terior using Stan (4 chains, 2000 samples per each, first halfs

discarded as a warmup).

After fitting the full model, we performed the forward

variable selection as in Sect. 4 using the projection predictive

method. In other words, by starting from the empty model,

at each step we add the variable that decreases the discrep-

ancy (33) to the full model the most. The performance of the

found models was then studied on the test set. For illustra-

tion, we also cross-validated the selection within the training

data. In other words we repeated the model fitting and selec-

tion K = 10 times each time leaving n/K points out for

validation, and evaluated the performance of the full model

and the found submodels using these left-out data. This was

done to illustrate that the cross-validation gives a reliable

estimate of the generalization performance for a given num-

ber of variables if the whole search process is cross-validated

(as discussed in Sect. 4.4).

Figure 12 shows the difference in the mean log predictive

density and mean squared error between the projected sub-

model and the full model as a function of number of added

variables up to 50 variables. The black line is the average

over the K = 10 cross-validation folds and the green line

shows the result when the fitting and searching is performed

using all the training data and the performance is evaluated

on the test data. As expected, there is a good correspondence

between the cross-validated and test performance. For this

dataset, most of the predictive ability of the full model is cap-

tured with about five variables, and 20 variables are enough

for getting predictions indistinguishable from the full model

for all practical purposes. These results are essentially the
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Fig. 12 Crime data with HS prior for the full model Difference in the

mean log predictive density (MLPD) and mean squared error (MSE)

between the projected submodel and the full model as a function of

number of chosen variables up to 50 variables. Black is the average over

the K = 10 cross-validated searches within n = 1000 data points, grey

bars denote the 95 % credible interval, and green is the test performance

on the remaining ñ = 992 test points when the search is done using all

the n = 1000 training data points

same that were obtained using the BMA as the reference

model (Sect. 4.3), that is, the spike-and-slab prior for the full

model.
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