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Comparison of Beam and Shell
A . W . LeissaTheories for the Vibrations of Thin

Profan ,
	Department of Engineering Mechan ics ,	Turbo machinery Blades

Ohio State University

A great deal of published literature exists which analyzes the free vibrations of
	M. S. Ewing	turbomachinery blades by means of one-dimensional beam theories. Recently, a
	Asst. Prof., Department of Engineering	more accurate, two-dimensional analysis method has been developed based upon
	Mechanics,	shallow shell theory. The present paper summarizes the two types of theories and
	United States Air Force Academy	makes quantitative comparisons of frequencies obtained by them. Numerical results

are presented for cambered and/or twisted blades of uniform thickness. Significant
differences between the theories are found to occur, especially for low aspect ratio
blades. The causes of these differences are discussed.

INTRODUCTION

Vibration analysis of turbomachinery

blades has traditionally been carried out by

means of beam theory. One can find literally

hundreds of references in the literature

incorporating considerations such as

coupling between bending and torsion, taper,

shear deformation, rotary inertia, pretwist

and rotational effects into one-dimensional

beam vibration analyses. For example, a

recent literature survey [1] uncovered

approximately 150 references dealing with

rotational effects in beam vibration

analysis. Particularly notable among the

carefully developed beam theories are those

presented by Carnegie [2-8], Houbolt and

Brooks [9] and Montoya [10]; these incorp-

orate most of the considerations needed in

blade vibration analysis by means of beam

models and are widely used.

However, beam analysis becomes

inadequate for low aspect ratio blades.

Most obviously, vibration modes which

involve predominantly chordwise bending are

completely missed. These modes become more

important as blade thicknesses and aspect

ratios decrease. Furthermore, another

important question arises: "Even for those

modes obtainable from beam analysis (i.e.,

spanwise bending and torsion), how accurate

is beam theory for low aspect ratio blades?"

In recent years two-dimensional methods

of blade vibration analysis have been

developed. As seen in a recent survey

Contributed by the Gas Turbine Division of the ASME.

article [11], most of these utilize finite

elements and tend to require considerable

computation time. However, the chordwise

bending effects are accounted for and, with

properly conformable finite elements,

accurate results are obtainable if suffic-

ient elements are employed.

More recently a two-dimensional method

of blade analysis has evolved which does

not require finite elements and is based

upon shell equations [12-14]. The method

assumes general forms for the three comp-

onents of displacement of a cantilever

shell in terms of continuous functions, and

utilizes the well known Ritz method to

obtain frequencies and mode shapes. The

method has been demonstrated to be compu-

tationally more efficient than finite

elements [12] for the blade configurations

that it can accomodate, and is well suited

for parametric studies.	It is also capable

of providing very accurate solutions against

which one-dimensional, beam model results

can be compared.

The primary purpose of the present

paper is to demonstrate the accuracy and

limitations of blade vibration analyses

which utilize one-dimensional, beam theories.

From the thorough literature search

previously performed by the senior author,

it appears that no quantitative comparisons

between the one-dimensional and the more

accurate two-dimensional models have been

previously undertaken. Furthermore, where

the results of beam analysis have been

compared with experiment, it has only been

for blades of relatively large aspect ratio.

For this reason the present work makes

comparisons between the theories and

experiment for low aspect ratios as well.

Of particular importance are the effects of

shear deformation, rotary inertia and

warping which should be properly dealt with

Copyright © 1982 by ASME
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by beam models, and which can become more

significant for smaller aspect ratios.

In the two sections which follow the

essential descriptions of the beam theory

and shell theory to be used in subsequent

comparisons are laid out. Each section has

its own notation, independent of the other,

consistent with widespread usage in beam

and shell theory and following closely the

notation used in the relevant references.

In subsequent sections quantitative

comparisons of vibration frequencies

obtained from beam theory and shell theory

are made for blades having camber and/or

twist. Models are chosen for which other

accurate analyses can also be found in the

published literature.	Finally, a concluding

section summarizes the limitations of beam

theory and what is needed to make it more

accurate for the spanwise bending and

torsional modes which it may reasonably

represent.

BEAM THEORY DESCRIPTION

Undoubtedly the most thorough work to

develop a comprehensive set of equations

representing a vibrating blade as a beam

was presented in a sequence of papers by

Carnegie [2-8] which appeared during the

period 1957-1967.	In the first work [2]

potential energy functionals were derived

for a twisted blade of arbitrary cross-

section, and variational methods were then

employed to obtain static equations of

equilibrium describing bending about two

axes and torsion. These equations were then

integrated for the case of cross-sections

uniform along the length subjected to either

concentrated or uniformly distributed

transverse static loadings, and numerical

results were obtained for blades of

rectangular and airfoil cross-sections.

Vibrations were taken up in a sub-

sequent paper [3].	The strain energy of

elastic deformation used in the static

analysis [2] was taken, i.e.,

z1 
( 

(EIS(? ) f 2EISa;a

and the kinetic energy was written as
1

T = z f {P Cu f 9)= > /o (li, x 9)". r 9 "^d3 (z)
where .is the longitudinal (i.e., spanwise)

coordinate passing through the centers of

flexure (see Fig. 1) of the cross-sections,

% and n- are coordinates orthogonal to /., and
Li and,vare displacements in the 4and M.
directions, respectively.	Figure 1 also
shows an XYZ coordinate system, with Z being
parallel to .. and passing through the

centroid of the blade cross-section, and

X and ' being the axes of principal moments
of inertia %, and I (more properly, the

principal second moments of areas). The

moments and product of inertia ^ , I^^ and Jr.
are taken with respect to axes parallel

to % and.- and passing through the centroid.

The angular displacement during torsional

vibration is given by 6 , and C is the

torsional stiffness of the cross-section,

/O is mass per unit length and Z, is the polar

mass moment of inertia per unit length with

respect to the centroid. Time derivatives

in Eq. 2 are denoted by dots above the

variables. Applying the Euler-Lagrange

equations of the calculus of variations

yielded the equations of motion [3]

a^, {EI^,^ Z t E4 J a Ẑ _ -o (u f ) ()
s	I	ia^^ {EIS a^: EIS -J} = -,o (?t B) (36)

Eqs. (3) show clearly the coupling which

exists between the three displacement

variables Li, N and e. For a general section

possessing no symmetry (such as in Fig. 1),

coupling is complete among the two bending

displacements and the torsional displacement.

Another significant contribution of

Carnegie's second paper [3] was the recog-

nition of additional torsional stiffness in

a cantilevered blade beyond that represented

by C .	In the case of a straight blade the

constant C depends upon the cross-sectional

shape and the shear modulus ( G ), and is

determined by solving the St. Venant torsion

problem of classical elasticity for the

given shape (cf. [15], Chapter 10).	But the

St. Venant torsion problem assumes that both

ends of the blade are free to warp out of

their ,-planes.	Clearly, the clamped end

of a cantilevered blade is restrained from

warping, and this constraint yields addi-

tional torsional stiffness to the blade.

Carnegie [3] viewed the additional stiffness

as being due to "torsion bending" - that is,

the additional stiffness due to the longi-

tudinal fibers each being bent as cantilever

beams during the torsional rotations of

the cross-sections.	For a straight blade of

rectangular cross-section having width ,6 and

depth `j, he showed that the total twisting

x

Figure 1	Typical blade cross-section,

showing coordinates for beam

analysis.
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moment at a typical location (,.) is given
by

as	ae	
<)M9 = C a^ - c 

where C = G61,%s = E6l,/6(1, ') is the St.
Venant torsional stiffness constant, and

Of course, the second term of Eq. (4) causes

additional stiffening in spite of the nega-

tive sign because, at a point having ae^^

positive , a'e/	"	is typically negative.
The correction factor C, was shown to have

little effect upon the fundamental torsional

frequency of a typical, large aspect ratio

blade, but to have pronounced effect upon

the higher torsional frequencies ([3], Figs.

11 and 15).

The additional torsional stiffening was

expounded upon further in a subsequent

publication [5].	Therein Carnegie demon-

strated that the torsional strain energy

term (last term in Eq. (1)) is generalized to

C	 ^z 	 (.i.)

and that the third equation of motion (3c)

has its left-hand-side replaced by

	al Cai-C,©/	 I-')

and the order of the system of differential

equations (3) is thereby raised from ten

to twelve.	The latter set requires the

statement of six boundary conditions at each

end of the blade; in particular, for the

cantilever blade of length i,

U = a^ _ ^/ _	= e = a^ = Q^ of =p (74)

M=M^=qx = 4y = ==MB =o, Qty=.f (76)
where M,,r and Mn^ are the bending moments
about the/xand,faxes, Q,Y and 4)y. are the
transverse shearing forces in the , and.

directions and MB is the twisting moment,
given by Eq. (4).

In an interesting discussion of the

Carnegie paper, Barr pointed out (see [5],

p. 319) that the additional torsional

stiffness constant C, could be obtained from

the classical St. Venant torsion theory by

solving for the warping function 9', where
the longitudinal (.-direction) displacement

.r determines the warping, and is given by

and the constant C is then obtained from

c, = Eff^d^a'^	 (9)
A

As part of his reply to Barr's discussion,

Carnegie also showed that the torsional

strain energy term (5) can be equivalently

written as

c().) s . C, (± )	 (io)

Carnegie [6] also added the effects of

shear deformation and rotary inertia to the

problem, following the now well-known

approach first suggested by Timoshenko [16].

In considering shear deformation the changes

in slope of a beam due to bending and shear

must be entered into the problem independ-

ently, and the strain energy functional (1)

is generalized to

V=zf{EI (f'jt z-Z 26 f • (y
o	y^` 2	a^ a2  
[(L€'

 -^^^;'lad
where, for example, the shearing slope in

the 4 -plane, a4f,4 - 4, is the difference
between the total slope (a6'/a..) and the

slope due to bending alone (	).	The

shear rigidity also involves the blade

cross-sectional area (f4), and a shear stre
distribution factor (,4 ) depending upon

cross-sectional shape. The kinetic energy

functional is given by Eq. (2) with the ter

reflecting the rotary inertia [7] added to

the integrand:

(a)

During the foregoing theoretical devel-

opment, the dynamic effects due to blade

rotation while mounted on a disk were added

to the problem [4], including both the

stabilizing (frequency increasing) primary

and the destabilizing (frequency decreasing)

secondary centrifugal force effects. The

final, most general potential and kinetic

energy functions, along with corresponding

equations of motion, were summarized in a

short note [7] in 1966.	Experimental

studies [2, 3, 17, 18] were also made, which

verified most of the theoretical conclusions.

Where numerical solutions were given in

the papers by Carnegie described above, they

were obtained in a few cases by exact

integration of the equations of motion, but

more often by a somewhat crude Rayleigh

method using static deflection functions to

represent the mode shapes.	Subsequent

papers with colleagues (for example, [19-23])

served to obtain more accurate solutions by

other approximate methods such as finite

differences, Runge-Kutta numerical integra-

tion, Ritz-Galerkin, and an extended Holzer

technique. Most of these publications are

summarized in survey papers by one of the

present authors [1] and Rao [24-26].	By

and large, the following general comments

can be made about the references containing

numerical results:
1. Blades are of large aspect ratio

2. Airfoil cross-sectional data is not

given, thereby preventing comparison

by other methods.

3. The torsional warping constant C1

is not considered.
Houbolt and Brooks [9] and Montoya [10]

also derived sets of differential equations

of motion for twisted blades of arbitrary

cross-section. However, in both derivations

neither shear deformation nor rotary inertia

were included. Nor were the effects of

cross-sectional warping during bending or

cross-sectional warping constraint during

torsion explicitly considered in either

analysis.

In the present work beam theory

representations of blades will be made by
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4

means of Carnegie's equations which, as the

foregoing paragraphs have indicated, appear

to be the most comprehensive set thus far

appearing in the published literature of

blade vibrations. Although an exact solution

of the twelfth order set of differential

equations of motion is possible for the

cantilevered blade, the procedure is

algebraically cumbersome, and a straight-

forward Ritz procedure will be used instead.

For the free vibration problem, classical

beam theory displacements U , N', and 6

are taken as

G/(^^ t) = U^^ JrnW

where aJ is the radial frequency.	The
functions (,/ , 1/, and (y must be chosen
such that:

1. the geometric boundary conditions

(7a) are exactly satisfied along

the clamped edge,

2. the functions form complete sets

(i.e., capable of representing

any set of kinematically possible

displacements along the blade axis)

For the present problem a set of

displacements for straightforward appli-

cation is given by the algebraic polynomials

'	 T	 K

[-	M

when shear deformation and torsional warp-

ing constraint are now included.	For the
classical Euler-Bernoulli theory, the

functions 43 and fi are not used, and the

index. begins atone, instead of two. To

apply the Ritz method the functional

-	is formed, where T,,,,, x and ✓ ,,, r are
the maximum values of kinetic energy (i.e.,

at maximum velocity) and potential energy

(i.e., at maximum displacement).	The
functional is then minimized by equations
of the type

with derivatives taken with respect to each

of the Via, 8f ,	, Dom, .,,, in turn, and where
V is given by Eq. (11) and 7' by Eq. (2)

with the terms (12) added, yielding a set
of If 7* K/ 	simultaneous linear
algebraic equations in the same number of

unknowns .4;, ',t,..	For a nontrivial solu-
tion the determinant of the coefficient

matrix of the equations is set equal to zero
and the roots of the determinant are the

eigenvalues (i.e., nondimensional frequen-

cies).	The eigenfunctions (mode shapes)

are determined by back-substitution of the

eigenvalues in the usual way. The result-

ing frequencies are upper bounds on the

exact frequencies and, if a complete set of

functions such as Eqs. (14) is used, the

exact beam frequencies can be determined as

accurately as desired.

SHELL THEORY DESCRIPTION

The shell analysis used in this work is

based upon shallow shell theory. This theory

contains the essential features needed,

namely, bending and stretching effects coupled

together, and is applicable provided the

curvature and twist are relatively small.

It is capable of representing variable

curvature and twist and variable thickness

and, for blades which are relatively thick,

can be generalized to include shear deform-

ation and rotary inertia effects. However,

the present study will be limited to blades

which are sufficiently thin so that the

latter effects can be neglected.	For shells

of arbitrary curvature and twist, deep shell

theory will typically involve non-principal,

nonorthogonal coordinates with considerable

complication in the resulting equations (cf.

[27], p. 54), and is therefore desirable to

avoid in blade analysis.

Consider the simplified model of a

rotating blade shown in Figure 2.	It has a

length Q , a planform width 6 (i.e., the

projected width in the	reference plane)

and a thickness 17 .	The present study

assumes a rectangular planform for the blade,

although other shapes can also be treated.

The blade is represented as a shallow shell

having curvature //R in they-direction.

Twist (//,Q
) is not shown, but can be

readily accdmodated in the analysis. The

shell is assumed rigidly clamped at one end

(x O ), whereas the other three edges are
completely free. Angular velocity JL is
assumed about an axis located at a hub radius

d from the blade root. The blade is

inclined with a stagger angle e with respect

to the rotation axis. Displacements are

measured as in conventional shell theory by

taken normal to the shell midsurface,

and G/ and N' tangent to the midsurface,

with U being parallel to the/,G-direction.

The present analysis utilizes the

well-known Ritz method and is therefore

based upon the potential and kinetic energy

functionals. The total potential energy of

the rotating shell can be written as

	f/= V,+ r/f 1/+ Vf	(/e)

where V is the strain energy of stretching

(cf., [27-29])

b/z a
i

Z/11 u
II)-6/ 1 

I {(E,^ 	̂ ) - z (/- v) [ Ex E'^.
p	 L

-	) ]} d^G	 (/7)

and V1 is the strain energy of bending

Eli'
b/z 	Z Z	 ate, a^iv

V1.= 	 . f f ( (v w) - z (i-v) Cans a,.
( ; )L1 dx d	(/B)

In the above expressions 6, sand	are
the membrane strains given by

`c 	G^	 `,ir	,pr-
6— 	t ,q4•	E = a t R2F

a.,r air	ur	 (/.9)

yy	2ô a,^^ t z R"^
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E is Young's modulus and V is Poisson's

ratio.

The functionals V and Ve•are due to

the centrifugal forces of rotation, with

being due to the steady, radially directed

components of body forces; that is,

C 0(i N(
zAl o a	1 U^d	 (2)

where 4 , Nit , and N ° are the membrane

stress resultants (i.7, force per unit

length) caused by the body forces.	Finally,

V, represents the potential of the displace-

ment dependent body forces (i.e., components

which exist because of vibratory displace-

ments 4', 4t and 4P) , which is formulated in

detail in Reference 12.	The functional t/3

is caused predominantly by tensile stresses,

and increases the vibration frequencies,

whereas Vf is caused mainly by normal body

forces in the direction of positive ,4 , and

typically reduces the frequencies [12].

The kinetic energy of vibratory motion

is	6/: .

	T= III <u z{ ^ t .s^ ' '	(2/)
-/z

wherewhere the dots denote time derivatives of

the displacements and /O is the mass per

unit volume.	Coriolis effects are neglected.

To solve the free vibration problem for

the blade, a Ritz procedure is followed

similar to that described in the previous

section on beam theory.	That is, one takes

the vibratory displacements to be sinusoidal

functions of time; i.e.,

N (/^^ t^^ f	V 6Z,	S/Ii Ii i	 ^.2.2 )

where LV is the vibration frequency, and ./,

(/ and Ware chosen to be the algebraic

polynomials I T
	

,.
	,( 

U(,^ X)37 A;; X` °, V(x, )=ZZB1 ^^^
Lr, /=0	M	 ,(_,!c

(.z3)
m-a p'o

The functional 7.,
,

- VOWis again formed and
it is minimized by setting

BA; ;

(T,,,,^r - V^.r^ = a, (.A /)

m
yielding a set of z(Tt/) t f(^Lj/)^ (/vJ-/j^/'/!/^

linear algebraic equations in the same

number of unknowns, and a matrix eigenvalue

problem of the same type as in the previously

described beam analysis.

COMPARISONS FOR CAMBERED BLADES

Convergence studies were made for the

beam theories, both including and neglect-

ing shear deformation and rotary inertia, to

establish the upper limits of the summations

in Eqs. (14) required to obtain desired

convergence. Cambered blade configurations

as shown in Fig. 2 having a thickness ratio

(6/4) of 20 were investigated, having various
combinations of aspect ratio (a/6) and shallow-
ness parameter (b/R). It was found that
between six and ten terms of the polynomials

were needed to yield convergence of the

frequencies to four significant figures for

the first four modes of each symmetry class,

the number required depending upon the part-

icular mode in question. For the cambered

blade of Fig. 2, symmetry uncouples4rand $,,

from U, ^, and B.

The accuracy of the beam equations and

the computer programming, as well as the

rate of convergence of the Ritz method with

the algebraic polynomials, was also estab-

lished by comparison with the numerical

results obtained by Subrahmanyam, Kulkarni

and Rao [30] for a particular blade (see

Ref. 30, p. 20).	Their results were also

obtained by means of the Carnegie equations,

but using slightly different displacement

functions. Using seven terms for each of

the polynomials (14) excellent agreement

( 4 O./difference) was observed for each of

the frequencies (5) found in Ref. 30.

A direct comparison of numerical results

for the frequencies of cambered blades

obtained from beam theory and shell theory

is made in Table 1. The nondimensional

frequency parameter used in Table 1 is

W a_ Pb/D which is a traditional one used for
flat plates.	Because the blade curvatures

utilized in Table 1 are all quite shallow

(the deepest curvature,4,! =OJ, corresponds

to a circular arc measure of 28.9 ° ), the

plate frequency parameter is appropriate.

All shear deformation theory results in

Table 1 are for a thickness ratio 6/h=2O and

Poisson's ratio (Y) of 0.3.	A shear

correction factor A/..2 was used (note that

this is the reciprocal of the factor often

used in the published literature) which is

Iz

Fig. 2.	Simplified model of a rotating

blade.
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Table 1. Comparison of Wa O^J!-S Between Shell and

Beam Theories for Cambered Blades (6/,'2O)

SymmetricSymmetric Modes Antisymmetric Modes

Beam theory Beam theory
Beam theory no	C 1 ) (with	C 1 )

a	b
Shell

Shear
Shell

Shear Shear
b	RR

No. theory
def. Class-

theory
def. Class- def. Class-

and	R.I. ical &	R.I. ical &	R.I. ical

1 3.516 3.463 3.463 33.98 32.12 32.21 33.86 33.86

0	1
2 21.95 21.69 21.70 65.35* 65.08* 67.11* 65.09* 67.11*
3 61.62 60.68 60.76 103.9 96.38 96.64 103.5 103.5
4 127.9 118.8 119.1 179.6 160.6 161.1 178.7 178.7

1 4.271 4.242 4.242 34.00 31.90 31.99 33.63 33.63

5	0.3
2 26.43 26.56 26.58 65.36* 65.33* 67.36* 65.35* 67.38*
3 73.83 74.28 74.44 104.1 95.79 96.05 102.9 102.9
4 148.3 145.3 145,9 180.2 159.6 160.0 177.6 177.7

1 5.454 5.513 5.514 34.02 31.46 31.55 33.17 33.17

0.5
2 33.51 34.50 34.55 65.37* 65.81* 67.87* 65.86* 67.91*
3 92.48 96.41 96.75 104.3 94.61 94.88 101.7 101.7
4 181.3 188.4 189.6 181.1 157.5 158.0 175.5 175.5

1 3.545 3.461 3.463 14.81 12.85 12.85 14.74 14.74

0	1
2 21.92 21.62 21.70 48.23 38.55 38.65 48.04 48.04
3 61.00 60.24 60.76 57.52* 57.08* 67.11* 57.11* 67.11*
4 93.281- 92.67 64.25 64.42 91.91 91.91

1 4.264 4.239 4.242 14.84 12.77 12.80 14.65 14.65

2	0.3
2 25.25 26.44 26.58 48.39 38.30 38.41 47.76 47.78
3 66.81 73.47 74.44 57.52* 57.28* 67.36* 57.33* 67.36*
4 93.38 93.25 63.85 64.02 91.45 91.47

1 5.398 5.506 5.514 14.89 12.60 12.64 14.47 14.48
0.5 2 30.64 34.23 34.55 48.70 37.79 37.91 47.20 47.24

3 76.51 94.67 96.75 57.54* 57.68* 67.86* 57.75* 67.86*
4 93.541- 94.39 63.03 63.20 90.52 90.57

1 3.561 3.456 3.463 8.516 6.425 6.442 8.485 8.485
0.1 2 21.48 21.39 21.70 31.00 19.28 19.33 30.94 30.94

3 27.221 43.56* 42.93* 67.11* 42.99* 67.11*
4 54.281-1- 64.28**

1 4.181 4.229 4.242 8.543 6.385 6.402 8.438 8.439

1	0.3
2 22.76 26.01 26.58 31.17 19.15 19.21 30.77 30.79
3 27.421- 43.56* 43.01* 67.35* 43.14* 67.35*
4 54.52tt 64.29**

1 5.168 5.484 5.514 8.595 6.303 6.320 8.344 8.346

0.5
2 24.66 33.33 34.55 31.50 18.90 18.96 30.45 30.50
3 28.11± 43.57* 43.08* 67.83* 43.45* 67.82*
4 55.03tt 64.31**

t	Chordwise bending mode
	

* Sideways bending mode

1-t Combined mode
	

** Antisymmetric chordwise

bending mode

representative of the cross-sections dealt

with in this analysis.	For comparison,
setting.k=co yields the classical theory

results presented in Table 1, and setting

=/ (which is the theoretical lower limit)

was found to yield values of less than 0.1

percent different than those given in Table 1
for

Numerical results according to shallow

shell analysis are obtained using 54 degrees

of freedom. This is arrived at from the

algebraic polynomials (23) by choosing 6 terms

in the a-direction (Fig. 2) and 3 terms of

even degree in 4( and .!t/', and odd degree in 41-

in the,i-direction for each of the displace-
ments G(, .v' , and u/. These results are

taken from a previous paper [13], and their

convergence was demonstrated there.
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Considering first the symmetric modes of

the large aspect ratio (a/6= S) blades in
Table 1, one sees that the frequencies of the

first three spanwise bending modes are in

reasonably close agreement, although a

significant difference between shell and beam

theory results of as much as 7 percent occurs

for the fourth spanwise bending mode. Of

course, for higher modes, the differences

would become greater. It is interesting to

note that for 6/R= O./, the frequencies pre-
dicted by shell theory are greater than

those of beam theory, whereas for deeper

blades the opposite is true.	This may be

explained as follows: For a flat (or nearly

flat) plate, chordwise bending moments exist,

which give the plate additional stiffness

unrecognized by beam theory, whereas for

deeper blades, warping effects begin to

become more important.

Strong warping effects are seen to

enter the results for the shorter aspect

ratio blades, especially as the curvature

increases.	For /fl 0.5, for example, and
a/6= 2 and 1, the beam theories give
results for the second bending mode fre-

quencies which are 12 and 35 percent too

high, respectively.	This reflects the in-

ability of the beam theories to permit

cross-sectional warping.	That is, the beam

theory hypothesis that "plane cross-sections

remain plane during beam deflection" can

become significantly violated for small

aspect ratio, cambered blades. Or in other

words, shear lag effects yield a more flex-

ible system than either beam theory

recognizes.

Table 1 also shows that for moderate

to low aspect ratios, certain important mode

shapes are missed altogether by beam theory.

For example, a mode with predominantly normal
(jr) displacement, and with the greatest
curvature changes occuring in the chordwise

direction (which we will term "chordwise

bending"), is the fourth and third symmetric

mode for a/6= Z and 1, respectively, for all
the curvatures given. For a/6 =/ and signifi-
cant camber ( 6/R = 0.3 and O.S	) the
fourth symmetric mode is a more complex one,

also not found by the beam theories.

As an example, Fig. 3 depicts the

symmetric mode shapes for the cambered blade

having //`I = .2O, a/6 = / , 6/R = o. S
corresponding to the last four shell

frequency parameters given in Table 1.

Three sketches aligned in a horizontal

row are given for each mode shape. The

sketches show contour lines of equal dis-

placement, normalized with respect to the

maximum normal displacement; that is

V/W,,,.	and U/W.Rx , in this

sequence. Although the W displacements are

usually largest during vibration, at least

for the lowest frequency modes, the magnitude

of the tangential coupling due to / and V
displacements can also be seen from the

drawings. The contour lines correspond to

normalized displacement increments of 0.1,
with the lines of zero displacement (node

lines) being drawn heavier.

For the short, highly cambered blade of

Fig. 3 the first symmetric mode is clearly

identifiable as spanwise bending. The second

and third modes are mainly second spanwise

bending and chordwise bending, respectively,

although considerable coupling exists between

them. This coupling causes the large differ-

ences between the second spanwise frequencies

given in Table 1. The fourth mode is seen

in Fig. 3 to be a combined one consisting of

both chordwise and spanwise bending.

Table 1 also presents the nondimensional

frequency parameters aOa[ ;oi9 /7	for the
antisymmetric modes of the cambered blade.

The antisymmetric modes involve coupling

between sideways (,-direction) and torsion-

al motions. The two last columns of the

antisymmetric mode did not appear for the

symmetric modes. They show the effect on

the beam frequencies if a torsional warping

constant C, (see Eq. 4) is added to the

analysis. For the blade configurations in

Table 1 having a/c - ,' and 2, the first
four antisymmetric modes contain three modes

which are predominantly torsional, whereas

the remaining one is predominantly sideways

bending, as indicated by asterisks. One

notes that the torsional frequencies pre-

dicted by the classical beam theory are

essentially the same as when shear deform-

ation and rotary inertia are included, and

would be exactly the same if it were not

for a small amount of coupling. However,

the beam theories give considerably differ-

ent frequencies for the sideways bending

modes, especially for small .2/6, as one

would expect to find when considering or

neglecting shear deformation and rotary

inertia effects. For a /6°1 the fourth mode
is antisymmetric chordwise bending, which

the beam theory misses completely. In

interpreting Table 1 one must bear in mind

that changing Q/6 corresponds to changing 6
and keeping ct fixed, if the changes in

frequencies are to be observed, because the

frequency parameter used contains Q .

But the most important comparison of

antisymmetric frequencies in Table 1 is

between the torsional frequencies of shell

theory and those of beam theory. If C, is

not included, one sees large differences,

again particularly for smalls/band for the

higher modes. The shell theory torsional

frequencies are essentially those of flat

plates, only slightly affected by the

changing cross-sectional arc length caused

by changing b/R (6 is kept fixed and R
changed). These torsional frequencies

agree with those readily available for flat

plates in the literature (cf., [31,32]).

Even for a large aspect ratio blade (a/b ),
considerable differences (-/0??) are seen to

occur between shell and beam frequencies for

the third (and higher) torsional modes, as

was also found by Carnegie ([3], Figs. 11

and 15) when comparing beam theory frequen-

cies with experimentally measured ones. For

at/6 -/ the third torsional beam frequency
in Table 1 is seen to differ from the more

accurate shell frequency by about 50 percent.

However, when C is included, the warp-

ing constraint is substantially accounted

for, and the results of beam theory are seen

to agree reasonably well with those of shell

theory. In the present analysis the value

of C, for a thin rectangle (( 'h 4//14 ) was
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W/WM,x

-1000	'00 --1000

0 249

(2)

0271	_I0	̂ Col

009]
0065	 0.025	 -0065

0097

used because no proper value for the annular

sector is currently known. For small camber

however, the approximation as a rectangle

should be very good.

The first four antisymmetric modes of

the blade having 6/h= 2O, r/6 = / and 6/,C= O. S
(i.e., the same as for Fig. 3) are depicted

by Fig. 4. For the first two modes, which are

torsional, the contour lines for the h/-

displacement agree closely with those of the

beam theories. The predominant sidewise

bending of the third mode shape and the anti-

symmetric chordwise bending of the fourth are

both clearly seen in Fig. 4.

COMPARISON FOR TWISTED BLADES

Table 2 makes comparisons among the nu-

merical results obtained from the present

shell theory, Carnegie's beam theory (inclu-

ding shear deformation and rotary inertia)

and those of Petricone and Sisto [33] for a

blade having twist only; that is, the curva-

tures //gy and /1R^ in Eqs. (19) are zero,
but the twist //R	is present. The result-

ing configuration can be regarded as a flat

plate subjected to uniform pretwist, having a

twist angle 0 at its free end. Results in

Table 2 are for low aspect ratio (a/6-/) blades
having pretwist angles varying between 0 and

45 0 , with a width/thickness(6/h) ratio of 20

and Poisson's ratio(v) of 0.3.

The analysis of Petricone and Sisto [33]

was based upon helicoidal shell theory, and

their numerical results were obtained by

means of the Ritz method, using orthogonal

polynomials as admissible functions.

Numerical results for the shell theory

were typically obtained by taking i, k= /, 7,	f;
!n= 2, • ,6 and ", L,n^ 0, d,4 (for symmetric
modes) or /,31 .f' (for antisymmetric modes) in

Eqs. (23) yielding frequency determinants of

54th order in size. The convergence accuracy

of the polynomials for twisted blades has

been demonstrated previously [14].	Results

for the beam theory were obtained by taking

V/WMn%	 U/WMnx

oosl	-0025	- oos
0	0 249

W/ WMAX
	

V/ W,,

I '^/,	-I	 -A
io	0^	-.0	I -	1	1	0

	

0103	 -0031	 0103

U/WM4%

'iL
(3)1\

0035	 -0008	 0035	 0 25

00

- t-1
-_	v^'	III

0 26	 -0414	 0	 0414
-i0	 0981	 -CIO

(3)	

/
005

(4)

	(

I0 
	-0.03	-oooa

000e	o	-000s

Figure 3	Symmetric mode shapes for a

cambered blade (6/%= ?G, i/6=/,
6/R=0.0

_________________________	\_
\\\\\\\ \\ 

\ C\\ \\\	 C	 N'

(4)	1	 ^'l 11	I I /	^I^

IiI Iii	III, 

I	 I	 I 000e	-	 -o ooe
011	 -0061	 OOii	

o

Figure 4	Antisymmetric mode shapes for a

cambered blade (6/4. .Tp q/,Js/^

6/R= 0.1')
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the first ten terms of the algebraic polyno-

mials (14). No significant difference(( fl.)
was found between the classical beam frequen-

cies and those in Table 2, which include

shear deformation and rotary inertia, except

for sideways bending modes.

Nondimensional frequency parameters

cWR` loll/p for the symmetric modes are listed

in one half of Table 2.	For a twisted plate

the symmetric modes consist of coupled bend-

ing involving both 47 and .w' displacements

(Fig. 2), uncoupled from the torsional modes,

which are purely antisymmetric. For all

twist angles given, the first two symmetric

modes consist predominantly of,ar-displace-

ments, and are similar to the first two span-

wise bending modes of a beam. Table 2 indi-

cates reasonable agreement among the results

of shell and beam theories for these two

modes. The third symmetric mode is chordwise

bending (two mode lines nearly parallel to

the length coordinate), which is missed by

beam analysis. The fourth mode consists of

sideways bending (i.e., predominantly N -

displacements), not determined by Petricone

and Sisto [33]. Detailed contour plots for

the modes in the format of Fig. 3 are availa-

ble [14] for the case

Considerable disagreement for the anti-

symmetric mode frequencies is observed in

Table 2.	For each twist angle, the first

four antisymmetric modes consist of three

torsional and one antisymmetric chordwise

bending (i.e., three node lines essentially

parallel to the length direction) modes.

Beam theory results for the torsional modes

are shown in the cases of neglecting warping

constraint (without C ) and including it

(with C,). When warping constraint is neg-

lected the beam theory is observed to yield

torsional frequencies which are typically low

for small twist angles and too large for the

higher modes at large twist angles. When

warping constraint is included, the frequen-

cies are all raised, giving good agreement

with shell theory results for zero twist, but

serious disagreements for -0_ 20, 30 ° and f$

These trends can also be somewhat observed in

the results of Carnegie comparing analysis

with experiment ([31, Fig. 11), although the

latter results were for large aspect ratio

6) blades.

Beglinger and Schlachter [34] proposed

a correction formula of the form

w^ = C / t z	s {, [i( , )J Z

J
	(as)

to account for torsional warping constraint,

where 17 is the torsional mode number (/7=/ • )

and

-

R	 (2'g)

Table 2.	Comparison of W Q prl/^	for Short,
Twisted Blades (a/'t, 4/4.Z 	0.3)

Twist

Symmetric Modes Antisymmetric Modes

Present Present	Beam Theory
angle, Mode shell [33] Beam shell [33] Without With
(degrees) number theory theory theory

C 1- C
1 3.474 3.347 8.513 6.430

1-

8.474
0 2 21.30 20.73 30.98 19.29 30.91

3 27.20* 64.271
4 43.56** 42.91** 71.47 32.15 68.86

1 3.453 3.48 3.344 9.509 9.58 7.949 9.943

10 2 21.10 21.4 20.38 31.66 32.8 23.85 34.76
3 27.19* 27.8 64.361
4 44.25** 43.39** 71.76 39.74 73.56

1 3.387 3.47 3.336 12.16 12.0 11.34 13.24

20 2 20.48 20.6 19.46 33.72 35.2 34.03 43.82 
li 3 27.32* 27.6 64.65t -

4 46.19** 44.58** 72.71 56.72 85.82

1 3.265 3.48 3.322 16.08 15.0 15.42 17.23

30 2 19.41 19.6 18.21 37.35 37.8 46.27 55.11
3 27.94* 27.9 65.211
4 49.04** 45.89** 74.58 77.11 102.4

1 2.939 3.51 3.294 24.35 19.3 21.99 23.71

45 2 17.18 18.0 16.19 46.45 42.6 65.96 73.77
3 30.56* 28.6 66.96t -
4 52.46** 45.56** 80.44 109.9 131.3

* Chordwise bending mode
	

tAntisymmetric chordwise

** Sideways bending mode
	 bending mode
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with I being the beam length, and C and C,

being the torsional rigidity and warping re-

straint factors, respectively, as used pre-

viously in Eq. (4).	For the twisted plate

having a rectangular cross-section

_	itv	(27)

and letting 6/Ia/and Y=0.3the right hand side
of Eq. 25 becomes /..ZB4, /.650 and.7..&IXfor
. and 3 respectively. Applying these correc-

tion factors to the torsional frequencies

listed in Table 2 for ,Ø=a yields 8..U3,  J/.83

and 70,89, which are seen to compare reasona-
bly with the frequencies both of shell theory

and of beam theory (with C,). However, a

cursory inspection of Table 2 also shows that
the same factors applied to the beam frequen-

cies for non-zero angles of twist result in

large over-corrections to the beam

frequencies.

It should be noted that a twist angle of

zero degrees in Table 2 yields a flat plate
which would be identical to the cambered

blade of Table 1 having 6/A' O. Sideways
bending modes are symmetric for twisted

blades and antisymmetric for cambered blades.

Another set of twisted blades for which

both theoretical and experimental results are

available is that studied by MacBain [35].

This set consisted of thin (6/4a 39.4) plates
of moderate aspect ratio (a/6= 2.33) pretwisted
through various tip angles (Øa 0 /.2 /7,23.$30
and 38 degrees). MacBain obtained numerical
results using the NASTRAN finite element pro-

gram with 1265 degrees of freedom [36] and

compared them with data resulting from tests

using holography. Frequency parameters

WaZ doh/D	for the plate (6/4, a D) having a
moderate pretwist angle (Øo) are presented
in Table 3, and compared there with the cor-

responding results [14] from the present

shallow shell theory and with beam theory

(including shear deformation and rotary

inertia).

As found previously for blades having

little or no camber (cf. Table 2), the span-
wise bending mode frequencies given in Table

3 for beam theory are seen to be typically

somewhat low, because the beam model does not

recognize the additional stiffening capabili-

ty of sideways bending moments 	induced by

Poisson effects. Again the antirymmetric,

torsional mode frequencies are predicted
somwhat low by beam theory for the fundamen-

tal (/,q) mode and become too high for higher

modes when warping restraint is not accounted

for. Including warping constraint (values

given in parentheses) results in appropriate

correction for the first torsional frequency,
but raises the third one to an unacceptable

level. But, on the whole, the beam theory

results for MacBain's twisted plate are seen

to be reasonably acceptable, at least for the

first seven modes.

The second part of the Table 3. shows

the effects of adding a small amount of cam-
ber //R., 6 0..?/.f, or /A': O. r to the MacBain
twisted blade. Generally, the frequencies

are increased slightly, but the beam theory

results are now seen to deviate considerably

from those of the shallow shell theory. In
this case the modes involve complete coupling

between the bending in two directions and

torsion, compared with the uncambered blade

which has torsion uncoupled. The magnitude

of the coupling can be seen from previously

presented mode shapes [14] (somewhat further

complicated by the addition of rotational

effects).

CONCLUSIONS

Beam theory is generally inadequate to

determine the the free vibration frequencies

and mode shapes of moderate to low aspect

ratio turbomachinery blades. It may also be

inadequate for large aspect ratio blades if a

careful dynamic response analysis is to be

made, requiring reasonably accurate knowledge

of the first ten or more frequencies and mode

shapes.

The inadequacy of beam theory is seen

in the following ways:

1. Modes which are predominantly

chordwise bending are completely

missed while others involving

significant amounts of chordwise

Table 3.	Comparison of)Rs	/D for Moderate Aspect
Ratio (Q/6x2.33) , Twisted ( s3O),
Thin ( 6/%a33.41) Blades.

Type of results WQ` ^p_j/10

Mode iS 2S 1A 3S 2A 4S* 5S 3A
Present	shell theory 3.237 19.46 30.96 57.81 86.60 109.2 124.7 135.2

0 Finite	element	[35] 3.473 19.56 28.99 57.38 82.08 88.74 116.1 129.3
Experiment	[35] 3.39 19.09 27.54 57.84 76.87 100.2 115.0 123.6
Beam theory 3.358 18.79 27.80 55.90 83.41 104.9 120.3 139.0

(with	C 1 ) (29.48) (90.63) (158.0)

Mode number 1 2 3 4 5 6 7 8
0.215 Present shell theory 3.660 20.99 31.95 60.61 90.74 109.4 122.6 135.0

Beam theory 4.574 25.48 27.73 75.48 83.11 111.8 138.5 155.1
(with	C 1 ) (4.574) (25.49) (29.40) (75.48) (90.32) (111.8) (155.2) (157.4)

*Sideways bending mode
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bending are poorly determined.

2. Frequencies of modes which are es-

sentially either spanwise bending or

torsion may be poorly estimated, es-

pecially for blades of low aspect

ratio, because of other limitations

in the analytical model.

3. Typical blades with no symmetry may

have strong coupling between all

types of spanwise and chordwise

bending and torsion, making suitable

corrections for above mentioned li-

mitations difficult.

Inaccuracies in the spanvise bending

frequencies may be due to any or all of the

following:

1. Additional stiffness due to chord-

wise bending moments induced by

Poisson effects.

2. Difficulty in determining a proper

shear correction factor to utilize

with the shear deformatin theory.

3. The constraint that "plane cross-

sections remain plane", required by

both classical and shear deformation

beam theories, which ignores addi-

tional flexibility due to cross-

sectional warping.

The last factor was seen to be particularly

important, especially for low aspect ratio

blades, and is not considered in any beam mo-

del of blade vibrations known to the

writers.

Large inaccuracies in the torsional fre-

quencies may arise because of:

1. The constraint on cross-sectional

warping due to a fixed root.

2. Inaccuracy in representing addition-

al beam stiffness due to pretwist.

Much of the above-mentioned inaccuracy

in representing the spanwise bending and tor-

sional modes could be eliminated by incorpor-

ation of proper correction factors determined

from solutions of the classical theory of

elasticity.

By contrast the shallow shell theory is

straightforwardly applied and is capable of

representing all the vibration modes accu-

rately. The theory is capable of considera-

ble generalization beyond that used in the

present work in order to represent actual

turbomachinery blades more accurately. The

generalizations include:

1. Elastic root constraint.

2. Attached shrouds.

3. Thick shell theory, for thicker

blades.

4. A deeper "shallow" shell theory (in-

cluding more terms in the strain-

displacement equations, but still

relating all equations to the pro-

jected base plane.), for more high-

ly cambered and/or twisted blades.

5. Accurate representation of rotation-

al effects, including Coriolis

forces.

6. Variable thickness and curvature.

7. Nonrectangular blade planforms.

8. Anisotropic and/or nonhomogeneous

materials such as composites.

9. Accurate determination of initial

stresses due to rotation, as well as

vibratory stresses.

10. Structural damping or layered damp-

ing treatments.

But the one-dimensional beam theory has

an important advantage over the two-dimen -

sional shell theory for blades and vibration

modes that it is capable of representing;

namely, it can do so with fewer degrees of

freedom, thus requiring less computer time.

Similarly, the shell theory approach has been

shown to require significantly less degrees

of freedom [12] than finite element models,

for the same degree of accuracy. Thus, both

approaches have their proper places in blade

vibration analysis, particularly in prelimi -

nary design where the effects of changing pa-

rameters need to be studied.
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