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Abstract

Background: High-throughput profiling of DNA methylation status of CpG islands is crucial to understand the

epigenetic regulation of genes. The microarray-based Infinium methylation assay by Illumina is one platform for

low-cost high-throughput methylation profiling. Both Beta-value and M-value statistics have been used as metrics

to measure methylation levels. However, there are no detailed studies of their relations and their strengths and

limitations.

Results: We demonstrate that the relationship between the Beta-value and M-value methods is a Logit

transformation, and show that the Beta-value method has severe heteroscedasticity for highly methylated or

unmethylated CpG sites. In order to evaluate the performance of the Beta-value and M-value methods for

identifying differentially methylated CpG sites, we designed a methylation titration experiment. The evaluation

results show that the M-value method provides much better performance in terms of Detection Rate (DR) and

True Positive Rate (TPR) for both highly methylated and unmethylated CpG sites. Imposing a minimum threshold

of difference can improve the performance of the M-value method but not the Beta-value method. We also

provide guidance for how to select the threshold of methylation differences.

Conclusions: The Beta-value has a more intuitive biological interpretation, but the M-value is more statistically

valid for the differential analysis of methylation levels. Therefore, we recommend using the M-value method for

conducting differential methylation analysis and including the Beta-value statistics when reporting the results to

investigators.

Background
Methylation of cytosine bases in DNA CpG islands is an

important epigenetic regulation mechanism in the organ

development, aging and different disease statuses [1].

Hypermethylation of CpG islands located in the promo-

ter regions of tumor suppressor genes has been firmly

established as one of the most common mechanisms for

gene regulation in cancer [2,3]. Therefore, high-through-

put profiling of DNA methylation status of CpG islands

is crucial for forwarding our understanding of the influ-

ence of epigenomics [4-6]. Microarray-based Illumina

Infinium methylation assay has been recently used in

epigenomic studies [7-9] due to its high throughput,

good accuracy, small sample requirement and relatively

low cost [1].

To estimate the methylation status, the Illumina Infi-

nium assay utilizes a pair of probes (a methylated probe

and an unmethylated probe) to measure the intensities

of the methylated and unmethylated alleles at the inter-

rogated CpG site [10]. The methylation level is then

estimated based on the measured intensities of this pair

of probes. To date, two methods have been proposed to

measure the methylation level. The first one is called

Beta-value, ranging from 0 to 1, which has been widely

used to measure the percentage of methylation. This is

the method currently recommended by Illumina [11,12].

The second method is the log2 ratio of the intensities of

methylated probe versus unmethylated probe [13]. We

have referred to it as the M-value method because it has
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been widely used in the mRNA expression microarray

analysis. Since both methods have their own strengths

and limitations, understanding the performance charac-

teristics of both measures is very important in providing

the best methylation analysis. We found some studies

that optimized clustering methylation data using the

Beta-value [14] method; but a rigorous comparison of

the two methods has not been done. For this reason, we

designed a titration experiment to compare and evaluate

these two methods. In the following sections, we will

first define these two methods and derive the relation-

ship between them. Then we will evaluate the perfor-

mance of these two methods in detecting differentially

methylated CpG sites.

Results
Definition of Beta-value and M-value

The Beta-value is the ratio of the methylated probe

intensity and the overall intensity (sum of methylated

and unmethylated probe intensities). Following the nota-

tion used by Illumina methylation assay [12], Beta-value

for an ith interrogated CpG site is defined as:
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where yi,menty and yi,unmenty are the intensities mea-

sured by the ith methylated and unmethylated probes,

respectively. To avoid negative values after background

adjustment, any negative values will be reset to 0. Illu-

mina recommends adding a constant offset a (by

default, a = 100) to the denominator to regularize Beta

value when both methylated and unmethylated probe

intensities are low. The Beta-value statistic results in a

number between 0 and 1, or 0 and 100%. Under ideal

conditions, a value of zero indicates that all copies of

the CpG site in the sample were completely unmethy-

lated (no methylated molecules were measured) and a

value of one indicates that every copy of the site was

methylated. If we assume the probe intensities are

Gamma distributed, then the Beta-value follows a Beta

distribution. For this reason, it has been named the

Beta-value.

The M-value is calculated as the log2 ratio of the

intensities of methylated probe versus unmethylated

probe as shown in Equation 2:
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Here we slightly modified the definition given in [13]

by adding an offset a (by default, a = 1) to the intensity

values to prevent unexpected big changes due to small

intensity estimation errors, since for very small intensity

values (especially between 0 and 1), small changes of the

methylated and unmethylated probe intensities can

result in large changes in the M-value. A M-value close

to 0 indicates a similar intensity between the methylated

and unmethylated probes, which means the CpG site is

about half-methylated, assuming that the intensity data

has been properly normalized by Illumina GenomeStu-

dio or some other external normalization algorithm.

Positive M-values mean that more molecules are methy-

lated than unmethylated, while negative M-values mean

the opposite. The M-value has been widely used in

expression microarray analysis, especially two-color

microarray analysis. Therefore, many existing microarray

statistical frameworks using an M-value method can also

be applied to methylation data analysis.

Relationship between Beta-value and M-value

For Illumina methylation data, typically more than 95% of

interrogated CpG sites have intensities (yi,unmethy+yi,methy)

larger than 1000 (our evaluation dataset had 99.8% inter-

rogated CpG sites with intensities higher than 1000.).

Therefore, the relatively small offset value (i.e., 100) in the

denominator of Equation 1 has negligible effect on the

Beta-value for most interrogated CpG sites. Similarly,

the offset a in Equation 2 is also ignorable for most inter-

rogated CpG sites. Based on this observation, the relation-

ship between Beta-value and M-value can be derived by

substitution using Equation 1 and 2 (with the offset

ignored):
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Equation 3 indicates that the relationship is a logistic

function (shown as a base 2 logarithm instead of natural

logarithm). Figure 1 shows the relationship curve

between Beta and M-values. For example, Beta-values of

0.2, 0.5 and 0.8 correspond to M-values of -2, 0 and 2,

respectively. An approximately linear relationship can be

observed between Beta-value and M-value in the middle

range (from 0.2 to 0.8 for Beta-values and from -2 to 2

for M-values). As shown in Figure 1, Beta-values are

severely compressed at the extremes when compared

with M-values. As shown in the following sections, the

transformation of Beta-value into M-value provides a

straightforward method for using the Beta-value statistic

and obtaining the unique statistical properties of the

M-value.

Histograms of Beta-value and M-value

Figure 2 shows histograms of Beta-values and M-values

for a typical sample measured by the Illumina Infinium
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HumanMethylation27 BeadChip, which interrogates

27,578 CpG sites in total, spread across promoter

regions of 14,495 genes. The range of Beta-values is

between 0 and 1, which can be interpreted as the

approximation of the percentage of methylation for the

population of a given CpG site in the sample. For

M-values, it is difficult to directly infer the degree of

methylation based on a single M-value, especially con-

sidering the range of M-values may change across differ-

ent datasets. The histogram of M-values clearly shows a

bimodal distribution, with one positive mode (methy-

lated mode) and one negative mode (unmethylated

mode). Conversely, because Beta-values are severely

compressed in the low (between 0 and 0.2) and high

(between 0.8 and 1) ranges compared with the M-value

statistic, its bimodal distribution is less obvious. There-

fore, the Beta-value has a direct correspondence with an

intuitive mental model of methylation (% methylation

for a given site) whereas the M-value may provide some

insight into the distribution of methylation across the

genome that is difficult to visualize with the Beta-value.

See the Conclusions section for additional discussion of

this point.

The distribution of standard deviation across different

methylation levels

In high-throughput statistical data analyses, many of

them, like canonical linear models or ANOVA, assume

the data is homoscedastic, i.e., the variable variances are

approximately constant. The violation of this assump-

tion, which is described as heteroscedasticity in statistics,

imposes serious challenges when applying these analyses

to high-throughput data [15]. A common way to check

the homoscedasticity of the data is by visualizing the

relations between mean and standard deviation [15,16].

Figure 3 shows the mean and standard deviation rela-

tions of the Beta-value and M-value, which were calcu-

lated based on technical replicates. The red dots

represent the median standard deviation within a local

window. The data was first ranked by mean methylation

levels, and then binned into twenty non-overlapping

windows, with each bin containing 5% of the data. The

standard deviation of Beta-value is greatly compressed

in the low (between 0 and 0.2) and high (between 0.8

and 1) ranges. This means Beta-value has significant

heteroscedasticity in the low and high methylation

range. The problem of heteroscedasticity is effectively

resolved after transforming Beta-value to M-value using

Figure 1 The relationship curve between M-value and Beta-

value.

Figure 2 The histograms of Beta-value (left) and M-value (right) (27578 interrogated CpG sites in total).
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Equation 3. We can see M-value is approximately homo-

scedastic. Its standard deviation is approximately con-

stant across the entire methylation range for M-values.

The M-value statistic is therefore much more appropri-

ate for the homoscedastic assumptions of most statisti-

cal models used for microarray analysis. It should be

noted that other variance stabilization transformation

methods may also be used to transform the Beta-value

and stabilize the variance.

Performance comparison between Beta and M-values

Evaluation dataset

Titration data has been widely used to evaluate the

performance of new methods for analyzing mRNA

expression microarrays [16,17]. To apply this practice

to methylation analysis, we designed a methylation

titration experiment that enables the evaluation of the

performance of the Beta-value and M-value methyla-

tion analysis methods. Similar to the titration design

using Goldengate methylation chips by Bibikova and

et al. [12], we selected two samples known to contain

significant methylation differences. Sample A is a

B-lymphocyte sample from a male donor. Sample B is

a colon cancer sample from a female donor. The

sources of the methylation differences between sample

A and B include: (1) gender differences; (2) pathologi-

cal differences; (3) tissue differences. Samples A and B

were mixed at five different titration ratios: 100:0,

90:10, 75:25, 50:50 and 0:100. The mixed samples were

measured by Illumina Infinium HumanMethylation27

BeadChip with technical replicates. Please see the

Methods section for a more detailed description.

As shown in Figure 1, the middle range of logistic

transformation is approximately linear while the low

and high ranges have clear nonlinear relationships

between the Beta-value and M-value statistics. We have

grouped the results of the transformations into three

analysis groups, labeled as low, middle and high, with

the middle analysis group corresponding to the approxi-

mately linear range and the low and high groups in the

nonlinear range. This simplifies the analysis of the per-

formance of each statistic.

Beta-value: low (0, 0.2), middle [0.2, 0.8] and high

(0.8, 1).

M-value: low (-Inf, -2), middle [-2, 2] and high (2,

Inf).

Define differentially methylated CpG sites based on

correlation

If an examined CpG site has a significant methylation

difference between Sample A and B, its methylation pro-

file should be correlated with the titration profile shown

in Table 1. Therefore, we can use the correlation

between the methylation and titration profile to validate

whether the CpG site is differentially methylated

between Sample A and B. Following similar criteria used

in the expression titration microarray experiments

[16,17], we claim a CpG site is differentially methylated

between Sample A and B if its absolute correlation coef-

ficients between titration and methylation profiles are

larger than 0.8 (correlation p-value is about 0.05) both

for Beta and M-value. There are 9845 investigated CpG

sites satisfying this criterion. We treat them as True

Positives (TP) to evaluate the performance of differential

methylation analysis.

Table 1 Design of the methylation titration experiment

% mix of A and B for each sample Mix1 Mix2 Mix3 Mix4 Mix5

A 100 90 75 50 0

B 0 10 25 50 100

Ntech* 2 2 1 1 2

* Ntech represents the number of technical replicates

Figure 3 The mean and standard deviation relations of technical replicates. Beta-value (left) and M-value (right).
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Performance comparison based on differential

methylation analysis

One of the major statistical paradigms in expression

microarray analysis has been the “Fold change-ranking

with a non-stringent p-value cutoff” [18-20]. Under this

framework, the CpG islands will be first subject to a

low-stringency p-value threshold (p < 0.05 without the

correction of multiple comparisons); and then ranked by

fold changes. We hypothesized that M-value outper-

forms Beta-value under this statistical framework

because M-value is more homoscedastic and therefore

aligns better with the distribution assumptions of these

statistical methods.

Following a similar logical framework, we first used a

simple t-test to compare two technical replicates of

Sample A and two technical replicates of Sample B, and

require a differentially methylated CpG site to have

p-value < 0.05. We then separated these filtered CpG

sites into the three analysis groups listed in the “Evalua-

tion Dataset” subsection: low (2221 CpG sites for Beta-

value; 2794 CpG sites for M-value), middle (6855 CpG

sites for Beta-value; 6179 CpG sites for M-value) and

high (457 CpG sites for Beta-value; 625 CpG sites for

M-value) methylation analysis groups. In each analysis

group, we sorted the CpG sites in decreasing order

based on their absolute methylation difference between

Sample A and B, i.e.,   , ,Methylation MethylationA i B i− ,

where MethylationA i, represents the average methyla-

tion level of Sample A at ith CpG site. We then evaluate

the performance of each method by selecting the top N

CpG sites as an evaluation set, with N starting at 50 and

incremented in steps of 50 until all sites were included

in the evaluation set. For each evaluation set (top N

CpG-sites), we calculated the True Positive Rate (TPR),

where TPR was defined as the percentage of identified

differentially methylated CpG sites being included in

the True Positives (TP) set, i.e., TPR = |TP∩CpGdetected|/

|CpGdetected|, where CpGdetected represents the CpG sites

included in the evaluation set. We also calculated the

Detection Rate (DR) for each evaluation set, where DR

was defined as the percentage of detected TP CpG sites

among all TP CpG sites, i.e., DR = |TP∩CpGdetected|/

|TP|. Figure 4 shows the performance curves of Beta

and M-value based on the relationship of 1 - DR versus

TPR. The definition of these curves is similar with the

ROC (Receiver Operating Characteristic) curve. In an

ideal situation, the best performance point is located at

the left top corner in the figure, where both DR and

TPR are equal to 1. Comparing the performance curve

of Beta and M-value, we can see that the M-value statis-

tic performs much better than Beta-value in the low and

high methylation range. In the middle range, their per-

formance is similar although the Beta-value has slightly

higher DR while the M-value has better TPR.

Refinement of the basic differential methylation analysis

Similar to other hybridization techniques, there is an

inherent level of variability associated with sample pre-

paration, sample loading, the microarrays and the detec-

tors. To address this variability it is very common to

add a “minimum difference threshold” to select out

CpG sites with little difference between two biological

conditions. Next we want to evaluate the performance

of the Beta-value and M-value statistics if we include a

minimum difference threshold in addition to the p-value

requirement.

After imposing a difference threshold, the identified

differentially methylated CpG sites will have p-values

< 0.05 and have the mean methylation level difference

between A and B samples larger than the difference

threshold. Figure 5 plots TPR and DR against the

methylation difference threshold for the Beta-value and

M-value methods. In Figure 5, at the starting point

(with thresholds of difference equal 0), there are 9533

and 9535 identified CpG sites across the entire methyla-

tion range for Beta and M-value, respectively. At the

end point (with thresholds of difference equal 0.25 and

2.0 for Beta and M-value, respectively), there are 5231

and 5168 identified CpG sites for Beta and M-value,

respectively. This indicates that the threshold ranges for

Beta and M-value in Figure 5 are comparable. Figure 5

shows that TPR improves as the difference threshold

increases but the DR decreases. The performance of

Beta-value and M-value methods is very similar for the

middle analysis group (covering the approximate linear

range of logit transformation). However, the

Figure 4 Performance comparisons of Beta- and M-value in the

range of low, middle and high methylation levels based on the

relationship of 1 - Detection Rate versus True Positive Rate.
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performance of these methods differs substantially for

the nonlinear (high and low) analysis groups. For the

Beta-value statistic, the TPR increases as the difference

threshold increases but DR drops dramatically. For the

M-value statistic, the TPR increases more slowly, but

DR remains high for much larger difference thresholds.

Figure 5 also provides some guidance for selecting the

difference thresholds of Beta-value and M-value statis-

tics. An ideal difference threshold would have both high

TPR and high DR, but there is a tradeoff in selecting

the threshold. From Figure 5, we can see that the TPR

gradually increases with the difference threshold before

stabilizing. Based on this, the difference threshold at the

turning point of TPR can be set as the up-limit thresh-

old because further increase of threshold will not

improve TPR very much. On the other hand, the DR is

almost constant at low thresholds and then gradually

decreases with the increasing of difference threshold. So

the difference threshold at the turning point of DR can

be set as the down-limit threshold because it can

increase the TPR without deteriorate the DR when DR

is stabilized. Based on these guidelines, we suggest the

range of threshold of M-value method should be about

between 0.4 and 1.4 (or from 1.32 to 2.64 if we convert

M-value to the non-log scale). For the Beta-value

method, because of its severe heteroscedasticity in the

Figure 5 Performance comparisons of Beta and M-value based on the True Positive Rate (TPR) and Detection Rate (DR) at different

thresholds of methylation difference. (A) TPR versus threshold of difference of Beta-value; (B) TPR versus threshold of difference of M-value;

(C) DR versus threshold of difference of Beta-value; (D) DR versus threshold of difference of M-value.
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low and high analysis groups, it is infeasible to provide a

fixed threshold. We can only suggest the threshold of

Beta-value for the middle analysis group, which is about

between 0.05 and 0.15. It should be noted that these

threshold ranges are dependent on the distribution of

intensities in the dataset so ideally these thresholds

should be determined for each dataset.

Discussion
The Beta-value method has already been widely used to

calculate methylation levels, and it is the manufacturer

recommended method for analyzing Illumina Infinium

HumanMethylation27 BeadChip microarrays. The

M-value method has been widely used in the expression

microarray analysis, and has been used to calculate

methylation levels in some methylation microarray ana-

lyses [13]. However, to date there has been no systema-

tic evaluation of the relationship between the Beta-value

and M-value methods. In this study, we demonstrate

that the two methods are related by a Logit transforma-

tion. They have an approximately linear relationship in

the middle methylation range (defined as 0.2 to 0.8 for

the Beta-value method) with a significant compression

above and below this range for the Beta-value method.

The Beta-value range is from 0 and 1 and can be inter-

preted as an approximation of the percentage of meth-

lyation. However, because the Beta-value has a bounded

range, this statistic violates the Gaussian distribution

assumption used by many statistical methods, including

the very prevalent t-test. In comparison, M-value statis-

tic can be appropriately analyzed with these methods.

To compare the performance of Beta and M-value

methods in identifying the differentially methylated CpG

sites, we designed a methylation titration experiment. As

we do not know the ‘true’ methylated CpG sites, we

have defined a set of True Positives (TPs) based on high

levels of correlation between the methylation and titra-

tion profiles. It is important to note that some true dif-

ferentially methylated CpG sites may not be included in

this set of TPs; at the same time, some false positives

may also be included in the TPs. Fortunately, athough a

small number of false positives or false negatives will

affect the estimation of TPRs and DRs, but does not

affect the overall performance comparisons between two

methods (We did simulations by randomly adding or

removing 10% TPs, and found the performance differ-

ence between Beta and M-values are consistent with the

curves shown in Figure 4. The results were not included

in the paper.). Comparing the performance based on top

ranked CpG sites (ranked based on the absolute differ-

ence between two comparing groups), the M-value

method has better detection power and a higher True

Positive Rate (TPR) in the low and high methylation

ranges due to its reduced heteroscedasticity in these

ranges. In the middle methylation range, the Beta-value

method has slightly better detection power than the

M-value method but a decreased TPR.

In microarray differential analysis, adding a difference

(or fold-change) threshold is another common practice

and effective way to improve the TPR. However, due to

the severe heteroscedasticity of the Beta-value method

outside the middle methylation ranges, it is impossible

to impose a constant difference threshold across entire

methylation range for the Beta-value method. If a con-

stant difference threshold is used for the Beta-value

method, then the detection rate outside the middle

methylation range is severely deteriorated. To solve this

problem, Illumina proposed a customized model to

detect differentially methylated CpG sites [21]. Basically,

the model fits a parabola to the standard deviation as a

function of Beta-value. However, this is inconvenient to

implement, and the fitted parameters suggested by Illu-

mina may change across different experiments under

different conditions. Performing the same set of analyses

using the M-value method demonstrates that using a

constant difference threshold is appropriate and far

easier to implement. Based on the comparison graphed

in Figure 5 we suggest setting a threshold for the

M-value method between 0.4 and 1.4 (or from 1.32 to

2.64 in the non-log scale).

Conclusions
The Beta-value method has a direct biological interpre-

tation - it corresponds roughly to the percentage of a

site that is methylated. This makes the Beta-value very

attractive when modeling the underlying biological

effect. However, this interpretation is an approximation

[22], especially when the data has not been properly

preprocessed and normalized. From an analytical and

statistical standpoint, the Beta-value method has severe

heteroscedasticity outside the middle methylation range,

which imposes serious challenges in applying many sta-

tistic models. In comparison, the M-value method is

more statistically valid in differential and other statistic

analysis as it is approximately homoscedastic. Although

the M-value statistic does not have an intuitive biologi-

cal meaning, it is possible to provide an accurate estima-

tion of methylation status by modeling the distribution

of the M-value statistic. In differential methylation ana-

lysis, we recommend using M-value because we can

directly apply most statistical analysis methods designed

for expression microarrays and it is easy to implement a

difference threshold adjustment to improve the TPR.

And the difference of M-value can be interpreted as the

fold-change in the non-log scale. Although both Beta-

value and M-value methods have some limitations, the

two statistics are inter-convertible using Equation 3,

enabling the use of the most appropriate method. We
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recommend using the M-value method for differential

methylation analysis and also including the Beta-value

statistic in final reports due to its intuitive biological

interpretation.

Methods
Titration Samples

Similar to the titration design using Goldengate methyla-

tion chips by Bibikova and et al [12], we selected two sam-

ples with known methylation differences. Sample A is NA

10923 from Coriell Institute for Medical Research. It is a B-

Lymphocyte sample from a male donor. Sample B is HTB-

38 cell line from ATCC (http://www.atcc.org). It is a colon

cancer sample from a female donor. Sample A and B were

normalized into the same concentration, and then mixed in

five different titration ratios. Table 1 shows the detailed

information. The numbers in the row 2 and 3 in Table 1

are the percentage of sample A and B in the titration sam-

ple. Row 4 is the number of replicates of each sample.

DNA Methylation Profiling using Illumina Infinium

BeadChip Microarrays

The DNA samples were prepared following the guide-

lines suggested by the manufacturer (Illumina, Inc.), and

then measured by Illumina Infinium HumanMethyla-

tion27 BeadChip, which measures 27578 CpG sites. The

HumanMethylation27 BeadChip contains a pair of

methylated and unmethylated probes designed for each

CpG site. All experiments were conducted following the

manufacturer’s protocols by the Genomics Core at

Northwestern University. The Illumina BeadChips were

scanned with an Illumina BeadArray Reader and then

preprocessed by the Illumina GenomeStudio software.

Raw data have been deposited in the NCBI GEO data-

base under the accession number of GSE23789.

We used the Bioconductor methylumi package [23] to

input the methylation files outputted by Illumina Geno-

meStudio software and processed the methylation data

using Bioconductor lumi package [24]. The methylation

data was first passed QC and color balance check, and

then background corrected and scaled based on the

mean of all probes (using methylation simple scaling

normalization (SSN) implemented in the lumi package).

Beta-value and M-value statistics were calculated based

on Equation 1 and 2. The related preprocessing func-

tions are included in the Bioconductor lumi package

(version > 2.0) [24]. As a prefiltering step, 82 CpG sites

with more than 50% of samples having detection

p-values worse than 0.0001 were filtered before the ana-

lysis. The Pearson correlation method was used to

calculate the correlation between the titration and

methylation profiles. Welch’s t-test was used to identify

the differentially methylated CpG sites.
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