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Comparison of bias and resolvability in single-cell
and single-transcript methods
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Single-cell and single-transcript measurement methods have elevated our ability to under-

stand and engineer biological systems. However, defining and comparing performance

between methods remains a challenge, in part due to the confounding effects of experimental

variability. Here, we propose a generalizable framework for performing multiple methods in

parallel using split samples, so that experimental variability is shared between methods. We

demonstrate the utility of this framework by performing 12 different methods in parallel to

measure the same underlying reference system for cellular response. We compare method

performance using quantitative evaluations of bias and resolvability. We attribute differences

in method performance to steps along the measurement process such as sample preparation,

signal detection, and choice of measurand. Finally, we demonstrate how this framework can

be used to benchmark different methods for single-transcript detection. The framework we

present here provides a practical way to compare performance of any methods.
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S
ingle-cell1–3 and single-transcript4–8 methods for mea-
surements of gene expression are revolutionizing our ability
to understand and engineer biological systems9–11, but

evaluation of method performance remains a challenge12,13. Bias
and resolvability are two important, practical aspects of single-cell
and single-transcript method performance. Relative bias, i.e.,
systematic measurement differences between methods, can
influence the conclusions made about cellular response3,14.
Resolvability, i.e., the ability to resolve different levels of gene
expression, can impact cell-sorting15–17, sensor engineering18,
and analysis of differential gene expression2. Comparison of bias
and resolvability between methods is challenging because
experimental variability can be introduced at any step in the
measurement process, including cell culture, sample preparation,
signal detection, and choice of measurand. Therefore, a rigorous
comparison of method performance would benefit from an
experiment design framework that mitigates experimental varia-
bility introduced from each of these steps.

Here, we present Bias and Resolvability Attribution using Split
Samples (BRASS), a framework for quantitative evaluation and
comparison of methods. In this framework, multiple single-cell
and single-transcript methods are performed in parallel on cells
harvested from the same original culture. Harvested cells are then
divided (split) at each step along the measurement process: first
for different sample preparations, next for different signal
detections, and finally for different measurands. Consequently,
the impact of experimental variability is mitigated, because
sources of experimental variability are shared by different
methods whenever possible. We demonstrate the utility of BRASS
by performing a total of 12 different methods in parallel, all
measuring the same underlying reference system for cellular
response19. To gauge the impact of relative bias between methods,
we fit measurements from different methods with the same model
of cellular response, and compare the resulting parameters esti-
mated from each method. To evaluate the resolvability of gene
expression for each method, we use a quantitative metric to
calculate the extent and direction of overlap between distributions
measured at different levels of gene expression. Furthermore,
using pairwise comparisons between measurements, we system-
atically attribute differences in measurement performance to steps
of the measurement process including sample preparation, signal
detection, and choice of measurand. Finally, we show how this
split-sample approach can be used to benchmark a versatile
method for single-transcript detection in bacteria (hybridization
chain reaction, HCR)20 against a traditional technique (fluores-
cence in situ hybridization, FISH)5,21.

Results
Method comparison using split-sample measurements in par-
allel. To compare the performance of different methods, we
designed a readily adoptable framework in which multiple
methods are applied to sequentially split samples (Fig. 1a and
Supplementary Note 1). At each step in the measurement process,
the original sample is split: first for sample preparation, next for
signal detection, and finally for choice of measurand (Fig. 1a).
This design is ideal for comparing methods: with split samples,
differences in method performance can be distinguished from
replicate-to-replicate variability at each step in the measurement
process. Furthermore, because this framework can be used to
attribute differences between methods to particular steps in the
measurement process, it is ideal for understanding how mea-
surement steps contribute to overall method performance.

To demonstrate the utility of BRASS, we compared different
methods for measuring the same underlying model system for
cellular sense and response, previously used as a reference in

automated genetic circuit design19: regulation of gene expression
in Escherichia coli (E. coli) by the lac repressor, and induction
with isopropyl-β-D-thiogalactopyranoside (IPTG) (Fig. 1a and
Supplementary Fig. 1). We grew ten different cultures represent-
ing different levels of the expected response. Eight cultures
contained E. coli with an expression of enhanced yellow
fluorescent protein (eYFP) controlled by an IPTG-inducible
plasmid. One culture contained E. coli with a positive-control
plasmid expressing eYFP at a fixed level from the J23101
promoter, which has previously been used as a living reference for
normalization to Relative Promoter Units (RPU)22,23. The last
culture contained E. coli with a negative-control plasmid lacking
eYFP. We harvested cells from each culture at mid-log phase and
sequentially split the cell samples for sample preparation (P in
Figs. 1–6), signal detection (D in Figs. 1–5), and measurand (M in
Figs. 1–5). This resulted in a total of 12 different methods used to
measure the same underlying biological response (Fig. 1a). We
repeated the entire process in biological triplicate (Supplementary
Fig. 6).

Each of the 12 methods can be described by a unique sequence
of measurement steps for sample preparation, signal detection,
and measurand. We used several different sample preparations,
including two different antibiotic treatments to halt translation
prior to flow cytometry detection of fluorescent protein
(kanamycin, Kn, and chloramphenicol, Cm), and two different
techniques for labeling RNA via in situ hybridization (FISH and
HCR) (Supplementary Fig. 2). After sample preparation, we split
samples between two different signal detection methods: flow
cytometry (abbreviated “flow” in Figs. 1–5), and microscopy.
Finally, we chose three different measurands for the level of gene
expression per cell: whole-cell fluorescence from protein, whole-
cell fluorescence from labeled RNA, and estimated RNA count
per cell (“RNA #” in Fig. 1a, Supplementary Fig. 5). We refer to
methods according to their unique combination of sample
preparation, signal detection, and measurand. For example,
“HCR flow protein” refers to a method consisting of HCR
(sample preparation), flow cytometry (signal detection), and
protein (measurand).

For single-cell distributions measured by all 12 methods
(Supplementary Fig. 6), we evaluated performance with regard to
resolvability (Fig. 1b) and relative bias (Fig. 2). Furthermore, to
attribute performance to differences in measurement steps, we
made pairwise comparisons between methods that differ by one
step only (Figs. 3–6). In this manner, we were able to identify
performance differences between methods and attribute those
differences to steps in the measurement process.

Evaluation of resolvability. A useful metric for resolvability will
provide quantitative information about the degree and direction
of overlap between distributions that are measured at different
levels of gene expression. To quantitatively evaluate the resolva-
bility for a given method, we calculate the Area Under the
receiver operating characteristic Curve (AUC) between single-cell
distributions measured at different levels of IPTG (Fig. 1b). AUC
values are unitless and range from zero to one, with 0.50 indi-
cating no resolvability (cells grown with different amounts of
IPTG have completely overlapping distributions), 1.00 indicating
complete resolvability in the expected direction (cells grown with
more IPTG have a greater signal, with no overlap between dis-
tributions), and zero indicating complete resolvability in the
unexpected direction (cells grown with more IPTG have a lower
signal, with no overlap). To evaluate resolvability over the entire
range of induction, we use the seven AUC values calculated from
pairs of adjacent IPTG concentrations to create AUC profiles
(Fig. 1a, b). We also calculate an average AUC as a summary
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statistic to compare overall resolvability between methods (Sup-
plementary Fig. 7).

The different measurement methods exhibit a wide range of
performance with regard to resolvability (Fig. 1b and

Supplementary Fig. 9). Average AUC’s range from ≈0.55 (HCR
Flow RNA) to ≈0.75 (Cm Flow Protein) (ranked from lowest to
highest in Supplementary Fig. 7). AUC profiles for all methods
typically have a maximum near the middle of the applied range of
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Fig. 1 Experiment design and evaluation of resolvability. a In this study, each cell culture is divided (split) to perform multiple methods in parallel for

measuring the same underlying system of cellular sense and response. Eight cultures were measured over a range of induction with IPTG. Methods include

various combinations of sample preparation, signal detection, and choice of measurand. Resolvability is quantitatively assessed using Area Under the

receiver operator characteristic Curve (AUC) calculated across a range of IPTG concentrations. Relative bias is assessed by modeling cellular response

using measurements from each method and comparing the resulting parameters. b Evaluation of resolvability with AUC profiles for all 12 methods. In each

panel, the plotted symbols show the AUC for pairs of adjacent IPTG concentrations as indicated on the x-axis.
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IPTG concentrations where the biological response changes most
rapidly, and for some methods, these maxima approach near-
perfect resolvability (Fig. 1b). Superior resolvability can be
achieved using entirely different combinations of measurement
steps. For example, “FISH Microscopy RNA count” has an AUC
profile maximum of ≈0.87 (Fig. 1b). Flow cytometry measure-
ment of fluorescent protein expression levels following RNA-
labeling by HCR (“HCR Flow Protein” in Fig. 1) has a similar
AUC profile maximum of ≈0.90 (Fig. 1b). These methods differ
in all three measurement steps, and yet both methods exhibit
excellent resolvability, illustrating that there is no single step
evaluated in this study that is required for high resolvability.
Subsequent sections contain a more detailed examination of how
resolvability differences between methods can be attributed to
various measurement steps.

Evaluation of relative bias. To evaluate whether relative bias
between methods influences conclusions about cellular function, we
fit the dose-response curves measured with the inducible plasmid to
the Hill equation:

Signal ¼ offset þ A ´

xn

Kn
1=2 þ xn

where Signal is gene expression level, x is the concentration of sti-
mulus (in this case, the inducer IPTG), A is the amplitude of the

response, K1/2 is the concentration corresponding to the half-
maximal response, n is the effective cooperativity, and offset is the
gene expression level in the absence of stimulus. These Hill para-
meters are increasingly used as design constraints for tuning the
response of engineered biological systems24,25. So, to evaluate the
impact of bias, we compared the parameter values obtained for each
of the 12 different measurement methods (Fig. 2, Supplementary
Figs. 14–17). Normalization of gene expression to a living reference
using RPU has previously been shown to enable comparability of
promoter-strength measurements22 and composability of genetic
circuits19. We fit both the raw data and RPU-normalized data to the
Hill equation (Supplementary Fig. 8–11), and compared the
resulting parameters estimated from each method.

To determine whether bias between methods affects the Hill
parameter estimates (Fig. 2, Supplementary Figs. 12–15), we
applied a Friedman test to calculate p-values for the null
hypothesis of no method-to-method bias for each parameter.
The resulting p-values (Supplementary Fig. 16) indicate little or
no relative bias between methods for K1/2, RPU-normalized
amplitudes, or RPU-normalized offsets. Interestingly, however,
the analysis indicates a potential method-to-method bias for the
effective cooperativity, n (p-values 0.011 and 0.082 for fits to raw
and RPU-normalized data, respectively) (Supplementary Fig. 16).
The primary source of this bias is attributed to measurand (RNA
or protein), as described in the next section.
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To determine whether there was a significant replicate-to-
replicate bias, we applied the Friedman test a second time, to
calculate p-values for the null hypothesis of no replicate-to-
replicate bias (Supplementary Figs. 12–15). The results indicated
a significant replicate-to-replicate variability for K1/2 (p-values
1.9 × 10−4 and 2.6 × 10−4 for fits to raw and RPU-normalized
data, respectively). There was also a potential replicate-to-
replicate bias for raw amplitude (p-value: 0.017), however this
effect was mitigated by normalization to RPU (p-value: 0.23).
Taken together, these results suggest that the source of replicate-
to-replicate variability shifted the dose-response curve along its x-
axis without affecting offset, cooperativity, or normalized
amplitude. One possible explanation is the variability of the
concentration of active IPTG used in different replicates, for
example, from variations in stock aliquots.

Attribution of performance to measurand. To assess how choice
of measurand can influence measurement performance, we
compared pairs of methods that differed only in their measurands
for gene expression: fluorescent protein (M1) or labeled RNA
(M2) (Fig. 3a). Because these pairwise comparisons between
methods share the same sample preparation and signal detection
method, any observed differences in measurement performance
can be attributed to measurand choice (RNA or protein). For
each method, we measured both protein and RNA in the same set
of cells. Consequently, these comparisons of measurement per-
formance are not subject to bias that might arise from differential
sampling of cells from the original culture.

We found that resolvability depends on measurand, and the
nature of this dependence can be directly coupled to sample
preparation. For samples prepared using FISH, RNA measure-
ments offer superior resolvability than fluorescent protein
measurements; this holds true across detection methods (micro-
scopy and flow cytometry) (Fig. 3b). Conversely, for samples
prepared using HCR, measurements of fluorescent protein
measurements have better resolvability than RNA measurements;
this also holds true across detection methods (Fig. 3b). Con-
sidering that resolvability of labeled RNA was generally compar-
able between both FISH and HCR, these results suggest that HCR
performs better than FISH for studies that require concurrent
resolvability of both RNA and protein26–28.

We found two potential examples of systematic bias in Hill
parameters between RNA-based and protein-based measure-
ments. Estimates for n (raw and RPU-normalized) are consis-
tently higher when protein is the measurand as opposed to RNA,
suggesting a potential systematic difference between the dose-
response curves measured with the two different measurands
(Fig. 2 and Supplementary Fig. 14). Most estimates for RPU-
normalized A were higher for protein than RNA (Fig. 2 and
Supplementary Fig. 12). Replicate-to-replicate reproducibility of
Hill parameter estimates for K1/2 and n is generally worse for
most RNA measurements compared to their corresponding
protein measurements, and did not improve after normalizing to
RPU (Fig. 2 and Supplementary Figs. 13–14). One possible
explanation is that the process of labeling RNA introduces
variability, whereas labeling is not required to detect fluorescent
proteins.

Attribution of performance to signal detection. To assess how
single-cell measurement performance can be influenced by the
signal-detection method, we compared pairs of methods that
differed only in their signal detection: flow cytometry (D1) or
microscopy (D2) (Fig. 4a). Because these pairwise comparisons
between methods share the same sample preparation and choice

of measurand, differences in performance can be attributed to
signal detection.

Compared to flow cytometry, microscopy generally exhibits
superior resolvability. This holds true across IPTG concentra-
tions, sample preparations, and measurands (Fig. 4b). This could
potentially be due to several advantages of microscopy over flow
cytometry, such as the ability to unambiguously exclude non-
cellular signals, optimized excitation and emission settings, and
increased signal integration time. Replicate-to-replicate variability
of resolvability was higher for microscopy than flow cytometry.
One possible explanation for microscopy’s higher variability is
lower throughput (microscopy typically measures 102 cells–103

cells, whereas flow cytometry typically measures 105–106 cells), so
quantitative differences between microscopy distributions may be
less reproducible.

Signal detection methods generally do not exhibit a relative
bias for parameterization of dose-response (Fig. 2 and Supple-
mentary Figs. 12–15). One potential exception is RPU-
normalized amplitude: nine out of eleven estimates are higher
for flow cytometry methods compared to their corresponding
microscopy methods, indicating a potential relative bias between
detection methods (Fig. 2 and Supplementary Fig. 12). Consider-
ing that no other Hill parameters show evidence of bias between
detection methods, a difference in RPU-normalized amplitude
between flow cytometry and microscopy could be due to biases in
the measurements of the samples required for RPU-
normalization. The process of RPU-normalization itself may
not be a reliable way to reduce uncertainty23, and as such, Hill
parameters that are not affected by RPU-normalization (K1/2 and
n) are more robust descriptors of dose-response.

Attribution of performance to sample preparation. To assess
how single-cell measurement performance can be influenced by
sample preparation, we compared pairs of methods that differ
only in sample preparation (Fig. 5a). Because these methods share
signal detection methods and choice of measurand, differences in
performance can be attributed to sample preparation. We
examined several sample preparations including RNA labeling
strategy [FISH (P1) versus HCR (P2)], antibiotic treatment for
cytometric detection of protein [kanamycin (P3) versus chlor-
amphenicol (P4)], and fluorescent protein detection before versus
after in situ hybridization (P3 versus P1, P3 versus P2, P4 versus P1,
P4 versus P2, in Fig. 1a).

We found that resolvability depends on RNA labeling strategy,
and the nature of this dependence is coupled to measurand.
Because all cells shared the same buffers for fixation and
permeabilization (Supplementary Note 2), any differences
between FISH and HCR are likely due to the hybridization step.
For protein, HCR-treated cells show superior resolvability to
FISH-treated cells, across both detection methods (Fig. 5b). One
possible explanation is that the respective hybridization buffers
for FISH and HCR have different effects on preserving signal
from fluorescent protein29. For labeled RNA, FISH shows slightly
higher resolvability than HCR when detected using flow
cytometry, however FISH shows comparable resolvability to
HCR when detected using microscopy (Fig. 5b). Performance
differences between FISH and HCR for resolving labeled RNA
could depend on hybridization efficiency, as described below.
Importantly, for this work, we chose a short amplification time to
optimize HCR sample preparation for single-transcript detection.
Although it is beyond the scope of this work, longer amplification
time can improve detection of HCR-labeled RNA by flow
cytometry26, and might also improve its resolvability.

Hill parameters estimated from RNA labeled by FISH or HCR
indicate potential bias between methods (Fig. 2, Supplementary
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Fig. 4 Method performance can be attributed to signal detection. a Pairwise comparisons of methods that share the same steps for sample preparation

and measurand, but differ in signal detection (indicated by “D” in the matrix), are used to attribute measurement performance to signal detection. The four

boxes containing “D” under the matrix represent these same pairwise comparisons. b Pairwise AUC plots of measurements in (a) to compare resolvability

between flow cytometry and microscopy. Diagonal line indicates equivalent resolvability between the two methods. Pairs of adjacent IPTG concentrations

are shown as numbers within the plots, as indicated in the figure legend. Color indicates biological replicates one (orange), two (green), and three (purple),

as indicated in the figure legend. Large gray numbers in the top-left and bottom right-corners indicate how many AUC’s were higher for the method plotted

on the y-axis or x-axis, respectively. The two-sided p-values for a sign test are shown within each plot.
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Fig. 5 Method performance can be attributed to sample preparation. a Pairwise comparisons of methods that share the same steps for signal detection

and measurand, but differ in sample preparation (indicated by “P” in the matrix), are used to attribute measurement performance to sample preparation.

The four boxes containing “P” under the matrix represent these same pairwise comparisons. b Pairwise AUC plots of measurements in (a) are used to
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Figs. 12–15). For example, 12 out of 14 estimates of K1/2 are
higher for HCR than FISH, suggesting potential relative bias
between the two RNA labeling methods. In addition, parameters
estimated from HCR-labeled RNA tended to have higher
uncertainties, and, for some replicates, deviated substantially
from all other methods. Parameters estimated from FISH-labeled
RNA had lower uncertainties and tended to agree more with
other methods, suggesting that FISH performed better than HCR
for modeling dose-response from labeled RNA.

We also compared two different antibiotic treatments on live
cells for flow cytometry measurements of fluorescent protein. We
found that kanamycin (Kn, P3) and chloramphenicol (Cm, P4)
generally exhibit good agreement in performance. Resolvability
and Hill parameters were approximately the same, with slight
differences possibly due to the timing of the measurements
(Figs. 1b and 2, Supplementary Note 3, Supplementary Fig. 17).

To evaluate whether the hybridization process affects method
performance, we compared cytometry measurements of fluor-
escent protein before versus after hybridization. Resolvability is
lower following in situ hybridization by FISH or HCR, with a
greater loss for FISH than HCR (Supplementary Fig. 18). Hill
parameter estimates from cytometry measurements of protein
were approximately the same before and after hybridization
(Fig. 2, Supplementary Figs. 12–15). These results show that
measurements of fluorescent protein following FISH or HCR are
potentially useful for estimating Hill parameters, albeit at a lower
resolvability of cellular response.

Benchmarking a new method for single-transcript detection.
FISH is an established approach for fluorescently labeling and
counting individual RNA transcripts in cells4,5,21. New methods
for fluorescently labeling individual RNA transcripts in cells
continue to emerge7,20,30, however, these methods are rarely
benchmarked against FISH. To demonstrate how single-
transcript measurement performance can be benchmarked
against FISH, we compared resolvability and bias between FISH
and HCR for estimates of transcript counts per cell (Fig. 6a–g).
HCR offers several potential advantages over FISH such as
background suppression, amplifiable signal, and the ability to
discern single-nucleotide variants20,31. Because HCR had not
previously been used for transcript-counting in bacteria, we first
optimized several aspects of the HCR sample preparation pro-
tocol, including starting cell culture volume, permeabilization
agent, permeabilization temperature, permeabilization time, and
amplification time (Supplementary Note 2). However, we note
that we have not performed a comprehensive exploration of
variables that could influence the performance of in situ hybri-
dization for single-transcript detection29. Interestingly, convert-
ing from total RNA fluorescence per cell (M2) to estimates of
RNA counts per cell (M3) subtly influences measurement per-
formance. For example, for both FISH and HCR, converting from
whole-cell fluorescence to estimated RNA counts per cell
increases resolvability, and slightly changes Hill parameter esti-
mates (Figs. 1 and 2, Supplementary Figs. 12–15 and 19).

Estimates of RNA count per cell directly indicate a bias
between RNA-labeling methods, with FISH giving a twofold to
threefold higher RNA count per cell than HCR (Supplementary
Fig. 6). This bias in RNA count directly carries over to relative
bias in the Hill equation amplitude and offset (Supplementary
Figs. 8, 12, and 15). Furthermore, the relationship between
expression level and noise in RNA counts is consistent with a
relative difference in hybridization efficiency of 35.9% (HCR/
FISH, Supplementary Fig. 20). In spite of this difference, FISH
and HCR exhibit comparable resolvability (Fig. 6b), leading to the

somewhat paradoxical observation that more efficient hybridiza-
tion of target RNA transcripts with labeled probes does not
necessarily equate to a superior ability to resolve changes in gene
expression across the range of induction.

To further evaluate the effects of bias between FISH and HCR
with regard to conclusions about cellular function, we compared
estimates of transcriptional burst kinetics for FISH and HCR.
Assuming a two-state model of transcription, we fit each
distribution of RNA count per cell to a negative binomial, and
estimated burst size and frequency as previously described21. The
relationship between IPTG concentration and transcriptional
burst parameters showed similar trends for FISH and HCR
(Fig. 6e–g). However, burst frequency was generally lower for
FISH than HCR (p-value: 6.6 × 10−3, Fig. 6e), and burst size was
generally higher for FISH than HCR (p-value: 3.0 × 10−6, Fig. 6f).
Because differences between FISH and HCR are mostly consistent
with a difference in hybridization efficiency (Supplementary
Fig. 20), we considered whether including an additional
parameter for hybridization efficiency would improve agreement
between the two methods. Hybridization efficiency impacts
estimates of burst size but not burst frequency. Assuming 95.0
and 34.1% hybridization efficiencies for FISH4 and HCR (see
“Methods”), respectively, including hybridization efficiency
greatly improved agreement between FISH and HCR for
estimating burst size (p-value: 0.15, Fig. 6g).

Our estimates of burst size and frequency are comparable to
previous studies that use the same two-state promoter model to
interpret single-molecule RNA FISH measurements of IPTG-
induced transcription in E. coli21,32 (Supplementary Figs. 21 and
22). Differences between burst parameter estimates can possibly
be attributed to differences between experimental conditions used
in each study, which underscores the challenge of comparing
estimates of biological function between different studies. This
challenge of comparability highlights the tradeoffs and advan-
tages of split-sample benchmarking as we have demonstrated
here: although performing experiments with HCR and FISH in
parallel came at a cost, in a single study we are able to directly
compare transcriptional burst parameters between two different
RNA labeling strategies performed under the same experimental
conditions.

Discussion
Using BRASS, we have shown how the performance of single-cell
and single-transcript measurements can be compared while
maximizing the extent to which experimental variability is shared
between methods, and how performance differences can be sys-
tematically attributed to general steps throughout the measure-
ment process. Furthermore, we have shown the utility of this
approach for demonstrating new methods in parallel with tradi-
tional methods in order to benchmark method performance. We
anticipate that the methods demonstrated here will directly
enable measurements of fundamental importance to many bio-
logical systems. For example, cytometry-based detection of RNA
remains an under-utilized tool for high-throughput, single-cell
estimates of transcription dose-response, and we have demon-
strated this capability for both FISH and HCR. Furthermore, the
resolvability of cytometry-based detection of RNA suggests the
feasibility of high-throughput measurements of RNA degradation
rates in single cells without the need for RNA extraction, which
remains a measurement need in a range of cell types33. Finally,
our comparison of FISH to HCR highlights the importance of
including hybridization efficiency in analysis of single-transcript
measurements, which is a simple but critical step that is not
always included in the analysis process.
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As an alternative approach to split samples for comparing
RNA labeling strategies in a single study, the same cells could be
labeled by both FISH and HCR. This could potentially be done
using sequential labeling of the same sample, utilizing DNAse
treatment to strip one label before another label is used for
analysis34. Or, direct comparison of FISH to HCR could be
achieved using simultaneous labeling by designing probes that
hybridize to different regions of the target mRNA35–37. However,
these kinds of method comparisons assume that DNAse

treatment or mRNA target sequence do not affect method per-
formance, whereas a split-sample comparison does not require
such assumptions.

While the focus of this work was to demonstrate a way to
compare methods using a model system of bacterial sense and
response, BRASS can potentially be used to compare methods for
studying more complex systems. For example, single-cell micro-
scopy has been used to analyze how well cells resolve stimulus
and transmit information in eukaryotic signaling cascades38,
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Fig. 6 Performance of single-transcript methods can be attributed to RNA labeling strategy. a Performance of single-transcript methods was compared

using cells that shared the same steps of the measurement process except for the RNA labeling step. b Resolvability of FISH and HCR was assessed by

plotting AUC calculated from adjacent stimulus levels. Pairs of adjacent IPTG concentrations are shown as numbers within the plots, as indicated in figure

legend. c A two-state promoter model was used to evaluate transcription kinetics. d Negative binomials were used to fit single-transcript distributions for

FISH (blue) and HCR (dark orange). e Estimates of burst frequency are plotted for FISH versus HCR. The RNA lifetime was assumed to be a constant (2.8

min). f Estimates of burst size, and g estimates of burst size after correcting for hybridization efficiency, are plotted for FISH versus HCR. For parts (f) and

(g), burst size is the number of transcripts per burst. For parts (e), (f), and (g), the scatter plot numbers 2, 3, 4, 5, 6, 7, and 8 represent 5, 10, 20, 40, 100,

400, and 1000 μmol/L IPTG, respectively. The 0 μmol/L IPTG case is not shown, in order to more easily see the trend for the remaining induction

conditions. For (b), (e), (f), and (g): Diagonal line indicates equivalent performance between the two methods. Color indicates biological replicates one

(orange), two (green), and three (purple), as indicated in the figure legend. Large gray numbers in the top-left and bottom right-corners indicate how many

values were higher for the method plotted on the y-axis or x-axis, respectively. The two-sided p-values for a sign test are shown within each plot.
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however the influence of measurement methods on bias and
resolvability is typically not addressed in such studies. BRASS
could be used to compare experimental methods for analyzing
such systems. In the most general sense, we anticipate that a
better understanding of bias and resolvability in single-cell
methods will directly improve our understanding of complex
biological function.

Although this work was focused on evaluating fluorescence-
based methods, BRASS is a generalizable framework to evaluate
and compare any measurement methods in which a change in
input stimulus changes a measured distribution of response. For
example, single-cell RNA sequencing can be used to estimate
transcription burst size and frequency39, however these mea-
surements would benefit from a within-sample comparison to
FISH to separate biological from measurement noise1,40. Other
sequencing measurements, such as sort-seq41, rely heavily on
resolvability, and BRASS could be used to understand the influ-
ence of resolvability on downstream applications. In another
example, advances in single-molecule instrumentation have
enabled simultaneous measurement of force and fluorescence
distributions on the same sample42, and BRASS could be applied
to compare resolvability and bias between these different mea-
surands. Finally, this approach to attributing performance to
measurement steps is compatible with the fractional-factorial
design of experiments, which could be used to develop and
evaluate methods in virtually any field.

Methods
Strains and plasmids. All experiments were performed with Escherichia coli strain
NEB 10-beta (New England Biolabs, MA, C3019) containing one of three plasmids.
Plasmid pAN1201 does not encode eYFP, and served as a negative control. Plasmid
pAN1717 encodes and constitutively expresses eYFP, which served as a positive
control as well as the benchmark for RPU. Plasmid pAN1818 encodes an inducible
expression system that expresses eYFP from the Ptac promoter in the presence of
isopropyl β-D-1-thiogalactopyranoside (IPTG, Supplementary Fig. 1).

Probe design. FISH and HCR detection systems both used the same fluorophore:
single-isomer 6-TAMRA. TAMRA-labeled FISH probes were designed using the
Stellaris probe designer and are listed in Supplementary Table 3. HCR v3.0 probes
and TAMRA-labeled hairpin amplifiers were designed with assistance from
Molecular Technologies and are listed in Supplementary Table 3.

Growth protocol. Glycerol stocks containing each of the 3 constructs (pAN1201,
pAN1717, and pAN1818) were each streaked onto LB agar plates containing
kanamycin (50 μg/mL) and grown overnight in a 37 °C incubator. Single colonies
were used to inoculate 3 mL of M9 minimal media supplemented with 5% glucose,
casamino acids (0.2%), Vitamin B1 (Thiamine, 0.34 g/L), and kanamycin (50 μg/
mL) (referred to as “growth medium”) in a 14 mL culture tube and grown over-
night for 16 h shaking and incubating at 37 °C. These overnight cultures were then
diluted 1:300 into a final volume of 20 mL growth medium in a 50 mL Falcon tube.
The overnight culture of pAN1818 was used to inoculate eight different cultures for
each IPTG concentration (0, 5, 10, 20, 40, 100, 400, 1000 μmol/L). These ten total
cultures (pAN1201, pAN1717, and pAN1818 at eight concentrations of IPTG)
were grown for ~3.5 more hours, shaking and incubating at 37 °C until they
reached an optical density at 600 nm (OD600) of ≈0.2 (actual values 0.22 ± 0.01
OD600, mean and standard deviation of all 10 samples across all three biological
replicates), at which point they were placed on ice for subsequent sample pre-
paration for flow cytometry or microscopy.

Optimization of HCR protocol for single-transcript detection in bacteria. To
develop a reproducible protocol for single-transcript detection in bacteria by HCR,
we started with a recommended protocol for E. coli cells in suspension20. Many
factors are known to affect in situ hybridization, and we tested several of these
including fluorophore choice, starting culture volume, buffer composition, per-
meabilization conditions, hairpin preparation, and more. We used the following
qualitative criteria for HCR protocol optimization: (1) a typical field of view should
contain a sufficient number of cells for analysis (on the order of 101 cells–103 cells),
(2) there should be minimal non-specific fluorescence and debris, and (3) the
fluorophore should exhibit minimal bleaching over exposure times needed for
signal detection. We found that at least one mL of culture is needed for enough
cells to be analyzed at the end of the preparation. We found that permeabilization
at 4 °C was preferable to 20 °C. We noticed no difference between snap cooling the
hairpins on ice versus room temperature. Pipetting into new tubes after incubation

steps minimized debris and non-specific fluorescence. Finally, with increased
exposure time, AlexaFluor 546 and AlexaFluor 594 photobleached more than the
single isoform 6-TAMRA. Collectively, these optimizations led to a protocol that
yielded a sufficient number of cells to be analyzed on a clean background, with
minimal photobleaching.

Protocol development for fixation and permeabilization was chosen to be
compatible with split-sample labeling by either HCR or FISH to facilitate a direct
comparison of the two techniques at the labeling step. Cells influenced by
nonspecific extracellular fluorescence were systematically excluded in the analysis
phase. Further optimization of these protocols might influence the results
presented here29, and comprehensive exploration of protocol variables is the
subject of ongoing work.

Fixation and permeabilization of bacteria for labeling transcripts by in situ

hybridization. From each culture, 6 mL was used for FISH and 6mL was used for
HCR. Samples were centrifuged for 10min at room temperature at 4000 × g. After
removing the supernatant, the cell pellet was resuspended in 750 μL of 1× PBS
and transferred to a 1.5mL microcentrifuge tube. To each tube, 250 μL of 4 % for-
maldehyde was added, and the samples were incubated for 16 hours overnight at 4 °C.
Following incubation, the samples were centrifuged for 10min at 4 °C. After
removing supernatant, cell pellets were resuspended in 150 μl of 1× PBS and 850 μl
methanol, and incubated at 4 °C for 3.5 h. Following this step, the cells were ready for
transcript-labeling by either FISH or HCR.

Transcript-labeling by FISH. After permeabilization, FISH labeling was per-
formed as previously described19,21 with minimal exceptions as noted below.
Briefly, cells were washed by centrifugation, removal of supernatant, and resus-
pension in Wash Buffer A (Biosearch Technologies, SMF-WA1-60) with 50%
formamide. Cells were then washed and resuspended in 50 μL Hybridization Buffer
(Biosearch Technologies, SMF-HB1-10) with 50% formamide containing probes at
62.5 μM, and left to incubate overnight at 30 °C. The next day, cells were washed
three times with Wash Buffer A with incubations at 30 °C for 30 min in between
each centrifugation. To label DNA, the third resuspension in Wash Buffer A
contained diamidino-2-phenylindole (DAPI) at 10 μg/mL. Following incubation
with DAPI at 30 °C for 30 min, cells were washed and resuspended in Wash Buffer
B (Biosearch Technologies, SMF-WB1-20). Finally, cells were washed and resus-
pended in 50 μL 2× sodium chloride sodium citrate (SSC) and stored in the dark at
4 °C before imaging.

Transcript-labeling by HCR. Following fixation and permeabilization as described
above, 1 mL of cells were transferred into a new 1.5 mL Eppendorf tube and
centrifuged for 5 min at 4 °C at 4000 × g. After removing the supernatant, cell
pellets were washed by resuspension with 0.5 mL of 1× PBST buffer, following by
centrifugation and removal of the supernatant. Probe hybridization buffer was pre-
heated to 37 °C before use. Cells were re-suspended with 400 μL of probe hybri-
dization buffer and incubated for 30 min at 37 °C. During this time, probe solution
was prepared by adding 2 pmol of each probe mixture (“odd” and “even”, corre-
sponding to the 5′ and 3′ halves of each target region on the RNA, 1 µL of 2 µmol/L
stock per probe mixture) to 100 µL of probe hybridization buffer at 37 °C. Probe
solution was added directly to each sample to reach a final probe concentration of
4 nmol/L. Samples were incubated overnight at 37 °C. The next day, probe wash
buffer was pre-heated to 37 °C before use. 1 mL of probe wash buffer was added to
each sample, and then centrifuged at room temperature at 4000 × g for 5 min. After
removing supernatant, the cell pellet was resuspended with 500 µL wash buffer,
incubated for 5 min at 37 °C, and centrifuged at room temperature at 4000 × g for
5 min. This step was repeated two more times, but with 10 min incubations in
between centrifugation. The cells were then ready for amplification.

Amplification buffer was equilibrated to room temperature before use. Cells
were resuspended with 150 µL amplification buffer and incubated for 30 min at
room temperature. TAMRA-labeled hairpins were prepared by heating 5 µL of 3
µmol/L stock to 95 °C for 90 s, and allowing them to cool to room temperature in
the dark for 30 min. Hairpin mixture was prepared by adding all of the cooled
hairpins to 100 µL of amplification buffer at room temperature. The hairpin
mixture was added directly to each sample to reach a final hairpin concentration of
60 nmol/L. Samples were incubated for 45 min in the dark at room temperature,
before adding 1 mL of 5× sodium chloride sodium citrate with 0.1% Tween 20
(SSCT) buffer. Samples were centrifuged at room temperature at 4000 × g for 5
min, and then the supernatant containing the hairpin solution was removed. Cells
were resuspended with 500 µL of 5× SSCT with DAPI (1 µL of 5 µg/mL stock) and
incubated for 5 min at room temperature. Samples were then centrifuged at room
temperature at 4000 × g for 5 min, and the DAPI solution was removed. The cell
pellet was resuspended in 5× SSCT buffer, incubated for 5 min at room
temperature, and then the supernatant was removed. This wash step was repeated
two more times except with 10 min incubations in between centrifugation. Finally,
the cell pellets were resuspended in 50 µL of 5× SSC buffer, and the samples were
stored in the dark at 4 °C before imaging.

Flow cytometry before and after transcript-labeling. Flow cytometry mea-
surements were made with E. coli samples both before and after fixation and

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02138-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:659 | https://doi.org/10.1038/s42003-021-02138-6 | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


labeling. For samples measured before fixation, cells grown to mid-log phase
(OD600 of 0.2, see Methods) were diluted 1000-fold into 1× PBS buffer containing
either kanamycin (2 mg/mL) or chloramphenicol (170 μg/mL) to halt translation.
For samples measured after fixation and labeling, samples were diluted after the
final step of the FISH or HCR labeling protocol 5000-fold into 5× SSC buffer for
initial flow cytometry. For all samples an initial flow cytometry measurement was
made to determine sample cell concentration and samples were diluted in accor-
dance with this measurement to achieve ~105 cell counts (events) per 150 μL
sample draw volume for analysis. Measurements were made between 60 and 120
min after treatment with antibiotics for samples before fixation. FISH and HCR
samples were measured the same day the labeling process was completed.

Flow cytometry measurements were made using an Attune NxT cytometer
equipped with a 96-well plate autosampler. The detector gains for forward
scattering and side scattering were both set at 350 V. The detection threshold was
set to 200 for the forward scattering channel and 300 for the side scattering
channel; these threshold levels were chosen to minimize the number of background
(non-cell) events while ensuring that nearly all of the cells were detected.
Cytometry data were collected for a sample volume of 150 μL for each sample, with
a flow rate of 100 μL/min. The resulting number of singlet cell events for each
sample ranged from 127,242 to 245,090 for cells measured before fixation, and
from 34,238 to 140,014 for cells measured after fixation and labeling. For each
sample, both the eYFP and TAMRA signals were measured. The eYFP signal was
measured with 488 nm excitation laser and a 530 nm ± 15 nm bandpass emission
filter. TAMRA signal was measured with 561 nm excitation laser and a 585 nm ± 8
nm bandpass emission filter. Blank samples were measured with each set of E. coli
samples, and the results of the blank measurements were used with an automated
gating algorithm to discriminate cell events from non-cell events (Supplementary
Fig. 3). A second automated gating algorithm was used to select singlet cell events
and exclude doublet, triplet, and higher-order multiplet cell events (Supplementary
Fig. 3). All subsequent analysis was performed using the singlet cell event data.

For HCR Flow RNA, replicate 3, two samples (pAN1818 with 40 μmol/L IPTG,
and pAN1717) were excluded due to a flow cytometer malfunction.

Microscopy. Following FISH or HCR labeling, samples were imaged as described
previously19,21 with minimal exceptions as noted below. Briefly, 2 µL of the sample
was pipetted onto a #1 borosilicate glass coverslip (45 mm × 50 mm, Fisher Sci-
entific, #12-544 F). A 1.5% agarose gel pad was placed on top of the sample droplet
to keep the cells close to the imaging surface, and another #1 borosilicate glass
coverslip (22 mm × 22 mm, Fisher Scientific, #12-545B) was placed on top of the
agarose pad. Samples were imaged with an inverted epifluorescence microscope
(Zeiss Axio Observer.Z1) using a 100 × 1.46 N.A. oil immersion phase contrast
objective lens (Zeiss, alpha Plan-Apochromat Ph3 M27) and a sCMOS camera
(Hamamatsu Orca Flash 4.0). Hardware control and image acquisition used Zen
Pro Software (Zeiss). For each image, channels were imaged from longest to
shortest excitation wavelength to minimize photobleaching from cross-talk
between imaging channels. TAMRA-labeled RNA was imaged using an HXP 120
W mercury arc lamp at 100% intensity for excitation, with a 550 ± 12 nm excitation
filter, a 570 nm beamsplitter, a 605 ± 35 nm emission filter, and 1 s integration time
for each of 9 z-slices separated vertically by 200 nm (total z-range 1.6 μm). eYFP
was imaged using a 470 nm LED light source set to 100% (Zeiss, Colibri), a 470 ±
20 nm excitation filter, a 495 nm beamsplitter, a 525 ± 25 nm emission filter, and an
integration time of 1000 ms for 1 z-slice. DAPI-stained DNA was imaged using
385 nm LED excitation at 25% intensity (Zeiss, Colibri), a 359 ± 24 nm excitation
filter, a 395 beamsplitter, and a 445 ± 25 nm emission filter with an integration time
of 50 ms. Lastly, the bacterial cell bodies were imaged by phase contrast using a
transmitted light halogen lamp set to 4 V, with an integration time of 100 ms for
each of 9 z-slices separated by 200 nm, for a total z-range 1.6 μm. Each slide
preparation was imaged at multiple locations across the agarose pad. If needed,
multiple slide preparations were used to collect a total of at least 300 cells per
sample.

Microscopy image analysis. Image processing was performed as previously
described19,21 with minimal exceptions except as noted. Using ZEN Pro software
(Zeiss), microscopy image files were exported as TIFFs without compression.
Images shown in the manuscript all using the following settings for each channel:
Phase contrast, Black 2500 – White 7500; DAPI, Black 100 – White 200; TAMRA:
Black 750 – White 3000; eYFP: Black 300 – White 4000. To minimize effects that
could arise from uneven illumination of the sample at the edges of a field of view,
cells were only analyzed within a rectangular region of interest in the center of each
image. Phase-contrast images were used for cell segmentation, as previously
described using Schnitzcells43. Spot detection was performed as previously
described using Spatzcells21. This program quantifies the location and fluorescence
intensity of diffraction-limited spots in the following manner. Gaussian smoothing
is applied to reduce the contribution of pixel-to-pixel noise. 2D local maxima are
detected in each z-slice, and then maxima are matched between z-slices. The
locations of these maxima are fit to 2D Gaussian functions.

Due to subtle variations and occasional drift in z-focus during image collection,
not all images were collected at the same focal plane, resulting in a small subset of
frames that were not focused on the middle plane of the bacteria. To eliminate this
source of variability from downstream analysis, distributions of TAMRA signal/cell

as a function of z-slice were used to manually identify and exclude out-of-focus
images that did not have a peak intensity in the middle third of the z-stack (slices
4–6). Due to cell-to-cell variability in fixation and permeabilization efficiencies,
some cells are better prepared for in situ hybridization than others. To measure and
account for this source of variability, DAPI was used to non-specifically stain DNA
within each cell. Cells with a DAPI signal less than half the mean for that sample
were excluded. In this manner, only those cells whose DNA was readily available
for staining were included in subsequent analysis of RNA and protein fluorescence.
Artifact exclusion for microscopy was necessary because non-specific fluorescence
outside of cell bodies were occasionally in close enough proximity to the cells to
affect the fluorescence within the segmented cell. Cells were visually inspected to
exclude the influence of non-specific fluorescence on image analysis. Some cells
were located near non-specific fluorescence that originated outside of the cell body.
These cells were excluded from the analysis. Cells for which fluorescence originated
from spots inside of the cell body were included in the analysis.

Because the RNA transcript was relatively short (720 nt), there was overlap in
spot brightness distributions for non-specific and specific signal. A mixture of 2
lognormal distributions constrained to be centered on either side of a threshold
intensity was used to fit the spot intensity histograms, to estimate the total spot
intensity due to specific signal. Because spots cannot always be spatially separated
from one another in diffraction-limited microscopy, we use a calibration method to
estimate the number of spots per cell area based on the integrated brightness of
spots per cell area, after correcting for background subtraction. This method is
described in detail in ref. 19. In this manner, we are able to use integrated spot
brightness to account for spots that cannot be spatially separated in diffraction-
limited microscopy.

Normalization to RPU. Converting expression levels to RPU by normalization to
constitutive expression from the J23101 promoter enables comparability of Hill
amplitudes in the same units, and has been shown to reduce variability in promoter
strength measurements across different growth conditions19,22,44.

Normalization to RPU was performed in the following manner, where “Signal”
indicates the median of a measured distribution of the indicated sample:

RPU ¼
SignalpAN1818 � SignalpAN1201

SignalpAN1717 � SignalpAN1201

Here, pAN1818 is a sample used to measure inducible gene expression,
pAN1717 is a sample used to measure constitutive gene expression from the J23101
promoter, and pAN1201 is a sample lacking the expression system (used as a
negative control to measure non-specific signal).

Hill equation parameterization. Response to extracellular concentrations of IPTG
(x) for a given measurement output (Signal) were fit to a Hill equation. For every
measurement method from each of the three replicates, we calculated mean,
median, and geometric mean as estimates of distribution location parameters, and
we estimated uncertainty using bootstrapping of the raw distributions. We found
little difference between mean, geometric mean, and median; median was chosen to
reduce effects from outliers or distribution tails. Fits were performed using the
medians of the distributions with bootstrapped uncertainty using 1000 iterations.
Residuals from the Hill fits did not show systematic error, indicated that the Hill
equation sufficiently captured the dose-response trends for all methods, but
bootstrapping generally underestimates variability around the Hill fit. The inverse
variance was constrained to lie within a factor of 10 below or above the geometric
mean of the available inverse bootstrapped variances within a replicate of the
pAN1818 samples, and was used to weight a nonlinear least-squares fit. In all cases,
the stated uncertainty on Hill parameters represents 95% confidence intervals of
this fit.

Friedman test for assessing method-to-method and replicate-to-replicate

effects. The Friedman test is a non-parametric test to assess whether the ordering
of parameter values across a primary factor (e.g., methods) is more consistent
across multiple instances of a blocking factor (e.g., biological replicates) than would
be expected to occur under random permutations within each instance of the
blocking factor. For each of the Hill parameters, we assessed potential biases among
methods by applying the Friedman test with the measurement method as the
primary factor and biological replicate as the blocking factor. For each of the Hill
parameters, we also assessed potential biases among biological replicates by
applying the Friedman test with replicate as the primary factor and measurement
method as the blocking factor.

Effect of different hybridization efficiencies on mean and Fano. Let nirsm denote
how many RNA molecules are in cell i in replicate r of sample s to be measured by
method m, and let Yirsm denote the corresponding measurement. Suppose that the
distribution of the number of RNA molecules per cell is fixed within sample type
(i.e., IPTG concentration), such that EðnirsmÞ ¼ μs and VarðnirsmÞ ¼ σ2s . Suppose
further that for method m each RNA molecule in any cell has an equal chance, pm,
of being detected by hybridization, and that detections are independent of one
another, such that Y irsmjnirsm � Binomialðnirsm; pmÞ. Then the following
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relationships hold:

EðY irsmÞ ¼ μspm

VarðY irsmÞ ¼ μspmð1� pmÞ þ p2mσ
2
s

FanoðY irsmÞ ¼ 1þ pm
σ
2
s

μs

� 1

� �

Interestingly, these results imply that if two methods, say A and B, differ only by
hybridization efficiencies, then

EðY irsAÞ

EðY i0rsBÞ
¼

FanoðY irsAÞ � 1

FanoðY i0rsBÞ � 1
¼

pA
pB

In Supplementary Fig. 20, we plot the log ratio of mean RNA counts per cell
between HCR and FISH, and the log ratio of (Fano factor−1) between HCR and
FISH, for each IPTG concentration, in each replicate. The 95% confidence intervals
for each ratio were evaluated using 1000 bootstrapping iterations. The estimated
ratios appear generally stable across biological replicate, IPTG concentration, and
sample statistic type (i.e., Fano−1 or mean RNA count), supporting the hypothesis
that differences in RNA counts from HCR and FISH can be primarily attributed to
differences in hybridization efficiency. We then took the overall median ratio,
across both Fano factor and mean, using all samples and all replicates, which
produced an estimated hybridization efficiency ratio of 0.359:1 for HCR:FISH
(Supplementary Fig. 20). For samples with no IPTG, replicates 1 (HCR) and 3
(FISH) had Fano factors <1, so they could not be included in this calculation which
requires (Fano− 1) > 0 for both FISH and HCR. However, for those samples with
no IPTG, ratios of their means were included in this analysis. In Fig. 6f, we assume
100 % hybridization efficiency for both FISH and HCR. In Fig. 6g, we assume a
95% hybridization efficiency for FISH as previously reported4, and we use the
analysis above to calculate a hybridization efficiency for HCR relative to FISH
(calculated HCR hybridization efficiency= 95% × 0.359 ≈ 34.1%).

Parameterization of transcriptional bursting using negative binomial dis-

tributions. Previous studies have fit mRNA distributions with a variety of dis-
tribution models including negative binomials32, Poisson with a zero-burst mode
for cells with no RNA45, or Poisson following exclusion of low-count cells46. We
cannot justifiably exclude the contribution of cells with no RNA, since these cells
pass our quality control check for “stainability” with DAPI (Supplementary
Note 2), and they may result from a real biological contribution which must be
accounted for in the analysis. For this reason, we chose an unmodified negative
binomial to estimate transcription burst size and frequency as follows:

PðnÞ ¼
xnþ r � 1

n

� �

prð1� pÞn

where r and p are fitting parameters that can be used to estimate burst frequency
(f= r/τRNA, where τRNA is RNA lifetime) and burst size (b= (1−p)/p). In Fig. 6, the
RNA lifetime is taken to be a constant equal to 2.8 min47. This treatment assumes
the two-state model of transcription48 in which the promoter switches between an
on state and an off state, and it produces multiple transcripts during the on state.

To assess the role of non-specific signals in our modeling of transcriptional
bursting, we applied our model of transcriptional bursting to our negative-control
samples. For both FISH and HCR, estimates of burst size and frequency from
negative controls were similar to those from the lowest expression samples (0
IPTG) (Supplementary Figs. 21 and 22).

Statistics and reproducibility. The names of all statistical tests and p-values are
noted in the text. In general, we provide two-sided p-values for sign tests, except for p-
values for Friedman tests, which are inherently one-sided. We do not rely on alpha
values for drawing conclusions. The number of cells in every measurement is pro-
vided in Supplementary Table 4. The median was used for analyses that required
estimating the central tendency of single-cell distributions. Uncertainty on the median
was estimated using bootstrapping with 1000 iterations. Uncertainty on Hill para-
meters was estimated using 95% confidence intervals of nonlinear least-squares fit.

A total of three biological replicates were performed on different days. To
clearly present replicate-to-replicate variability, results from each replicate are
plotted separately in every figure.

As a general approach to processing, the inferences in this work treat the
observations that remain after processing as a random sample of the population for
characterization, which in this case is the entire population of E. coli cells growing
in culture. We assume the filtering that has been done eliminates experimental
artifacts and does not suppress or accentuate subsets of the general E. coli
population. We do not incorporate any uncertainty due to potential biases, which if
present, could dramatically increase uncertainty characterizations.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Source data for figures are available through the NIST Data Science Portal (https://doi.

org/10.18434/mds2-2300)49 and Supplementary Data 1.
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