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Abstract— Monitoring of physiological signals of an individual via 

remote and contactless means is an important scientific challenge, 

whose resolution will enable the development of novel, non-

intrusive mHealth and wellness-management systems and 

services. In this paper, the performance of three blind source 

separation algorithms for the optical estimation of the heart rate 

have been studied. The objective is to perform a comparative 

evaluation of their accuracy and convergence capability, for the 

optical estimation of the heart rate. 

Keywords- blood volume pulse (BVP); heart rate (HR); 

photoplethysmography (PPG); independent component analysis 

(ICA); blind source separation (BSS); remote sensing. 

I.  INTRODUCTION 

The human face is a precious revealer of key information 
about the health status of individuals, in form of a combination 
of physical signs and expressive features. The quantification of 
facial signs into meaningful measures and computational 
descriptors can be exploited for the automatic assessment of 
cardiovascular disease risk and the evaluation of a wellness 
index [1]. In this context, a patient’s physiological signal 
monitoring via remote and noncontact means is an important 
objective. Currently, proposed solutions for contactless 
measurement of vital signs, such as heart rate (HR) and 
respiratory rate (RR), include laser Doppler [2], microwave 
Doppler radar [3], thermal imaging [4] or even the use of the 
camera of a mobile phone [5]. Noncontact assessment of heart 
rate variability (HRV) represents a greater challenge and few 
attempts have been made so far [6]. 

Photoplethysmography (PPG) is a noninvasive optical 
technique for measuring blood flow in tissue. This method has 
widespread clinical application [7], since it can be used to 
monitor vital body signs such as HR and to provide valuable 
information about the cardiovascular system. Traditionally, PPG 
uses dedicated light sources (e.g. red or infrared light) and a 
photodiode to measure the amount of light either transmitted or 
reflected. Imaging PPG (iPPG), which replaces the photodiode 
with a digital camera, is also capable of remotely monitoring 
blood perfusion based on transmission and reflection modes, 
respectively [8], [9]. Considering the light sources, Verkruysse 
et al. [10] reported that remote measurement of the cardiac pulse 
could be obtained with the use of ambient light as the only 
illumination source. Furthermore, Sun et al. [11] investigated the 

camera-based technique for remote acquisition of PPG signals 
and the influence of the ambient light intensity on the 
physiological information. They revealed that, under variable 
external weather conditions, information contained in the PPG 
signal, such as HR, is not corrupted by changes in ambient light 
intensity. However, PPG systems using ambient light and a 
digital camera are susceptible to motion artifacts [12]. Motion 
can affect the accuracy of measurements and Blind Source 
Separation (BSS) techniques have been considered as a solution 
to overcome this limitation [12], [13]. Nevertheless, the 
reliability of these methods has not been systematically explored 
yet, with respect to optical estimation of HR. 

In this paper, the performances of three BSS algorithms, 
based on Independent Component Analysis (ICA), have been 
studied. The selected algorithms are the Joint Approximate 
Diagonalization of Eigenmatrices (JADE) [14], the FastICA 
[15] and the RobustICA [16]. The objective is to perform a 
comparative evaluation of their accuracy and convergence 
capability, for the optical estimation of HR. 

II. RELATED WORK 

Typically, physiological signals are recorded from a set of 
sensors, where each sensor collects information of both the 
signal we wish to analyze and an unwanted noise component. 
BSS is one of several methods used for noise or artifact removal 
from physiological signals [17]. 

A. Blind source separation for artifact or noise reduction 

The BSS refers to the recovery of source signals from a set 
of observed mixtures, with superimposed noise and with no prior 
information about the mixing process. Based on the assumptions 
on the source signals and the mixture matrices, different 
approaches of BSS can be identified such as Independent 
Component Analysis (ICA), Principal Component Analysis 
(PCA), Sparse Component Analysis (SCA) and Non-negative 
Matrix Factorization (NMF). The BSS techniques are used to 
generate an un-mixing matrix for the estimation of the original 
sources and consequently the removal of the sources 
representing the artifacts. 

The most commonly employed methods are ICA and PCA. 
ICA decomposes mixtures of source signals into statistically 
independent, or as independent as possible, components. On the 
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other hand, PCA uses an orthogonal matrix composed by the 
eigenvectors of the covariance matrix of the original variables in 
order to identify the principal components, a small subset of 
which, when some of the original variables are correlated, is able 
to describe a very large variation of the original data. Both of 
these methods have been successfully applied for noise or 
artifact removal to electroencephalographic (EEG) [18], [19] 
electrocardiographic (ECG) [20], [21] and functional magnetic 
resonance imaging (fMRI) data [22]. 

B. Blind source separation in noncontact methods for heart 

rate measurement 

In recent years, simple and low cost methods have been 
employed for noncontact and remote measurement of 
physiological parameters. Researchers have begun to explore the 
use of video imaging and PPG for HR estimation. While the 
initial results appear encouraging, there are drawbacks including 
susceptibility to motion. The reflected plethysmographic signal 
acquired from the camera is a mixture of the physiological pulse 
along with other sources of fluctuation in light due to motion. 
The main reported attempts to reduce the motion artifacts from 
iPPG signals include different BSS techniques. 

Poh et al. [13] developed a method for HR measurement 
from color video recordings of the human face. This study 
reported primary attempts to remove/attenuate motion artifacts 
from the PPG signal. Their method was based on BSS applied to 
the three color channels (RGB), in order to produce independent 
components with the use of the JADE algorithm. They also 
extended this methodology and obtained additional 
physiological parameters [23]. Specifically, they extracted the 
blood volume pulse (BVP) waveform and determined apart from 
HR, the HRV and the RR. The JADE implementation of ICA 
has also been used in [24], [25] and [26] to successfully recover 
source signals from the observations. In addition, Lewandowska 
et al. [27] managed to extract the pulse component and obtain 
the HR from PCA and FastICA with similar accuracy. 

III. METHODS 

 The algorithms compared in this study are JADE, FastICA 
and RobustICA. These algorithms are variations of ICA 
regarding the criteria employed to identify the unique character 
of the individual unmixed components. The JADE algorithm 
uses fourth order moments of cumulant matrices in order to 
diagonalize eigenmatrices, FastICA uses a fixed-point iterative 
algorithm utilizing negentropy in order to maximize the non-
Gaussianity of the sources and RobustICA is a modification of 
FastICA, which optimizes the kurtosis contrast by using an 
optimal step size, leading to a higher convergence speed. 

A. Experimental setup 

The experimental setup consisted of a built-in laptop camera 
(iSight on an Apple Macbook Pro) and a basic webcam 
(Logitech 720p HD). All videos were recorded at 30 frames per 
second (fps), in 24-bit RGB color with a resolution of 640×480 
pixels, and saved in uncompressed Audio Video Interleave 
(AVI) format. In addition, the experimental setup included a 
commercially available fingertip pulse oximeter (Heal Force 
Prince-100A), which was used to obtain the participant’s 
reference cardiac pulse in parallel with video recordings. 

The experiments were conducted indoors, at different times 
of the day, with a varying amount of indirect sunlight and 
fluorescent lights as the only sources of illumination. The 
participants were seated at a distance of about 0.5m from the 
cameras. Seven subjects (3 males and 4 females) participated at 
the recording, out of which two wore glasses and had light beard. 
The participants were asked to sit naturally and stare at the 
cameras during video capturing. They were free to make facial 
expressions and to move their head or body slightly while 
remaining seated. Two facial videos, each lasting one minute, 
were simultaneously recorded for all participants from the 
cameras. One participant was also recorded after a running 
session. In total, 16 separate videos were stored for analysis (6 
subjects x 2 videos + 1 subject x 4 videos). 

B. Processing pipeline for heart rate estimation 

Heart rate estimation from the recorded videos was 
performed implementing the method described by Poh et al. [13] 
in MATLAB environment. The processing pipeline is 
graphically depicted in Figure 1. 

 

Figure 1. The processing pipeline leading to the estimation of the Independent 
Components by applying the JADE, FastICA and RobustICA algorithms 

(written consent has been obtained from the subject whose photo is in this 

figure). 

Initially, a region of interest (ROI) was detected for each 
frame on the right cheek of the participant. The video in this ROI 



was then divided into the three color channels (RGB). The pixel 
values for each color channel in each frame were spatially 
averaged and the resulting frame-to-frame time series of the 
RGB signals formed the three raw traces, which were 
subsequently de-trended and normalized (zero mean, unit 
variance). The resulting raw signals contained pulse and motion 
noise. Thus, subsequent processing was performed for motion 
artifact removal by applying the three different aforementioned 
BSS-ICA methods to decompose the normalized raw traces into 
independent components. Then, Fast Fourier Transform (FFT) 
was computed for each component to obtain their power 
spectrums. The component whose power spectrum contained the 
highest peak was exploited for the HR measurement. The 
frequency with the highest power in the band 0.75-4 Hz 
(corresponding to 45-240 beats per minute (bpm)), was finally 
used as the estimated HR. 

Figure 2 shows an example of the power spectrum obtained 
through the analysis of the recorded signal for one subject. The 
frequency related to the maximum power was 1.069 Hz, which 
corresponded to HR=64.14 bpm. The result was in very good 
agreement with the measured reference cardiac pulse. 

 

Figure 2. Result of applying FFT to one of the components produced by the BSS 

stage. 

IV. RESULTS 

An analysis was performed on the videos obtained from 
cameras. The HR was computed by following the procedure 
described in Section III and the results were compared with the 
fingertip pulse oximeter’s measurements. For our analysis, we 
have decided to adopt the percent error defined as: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =  |
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
| ∗ 100 

The results from the two cameras presented in Table I 
indicate that both JADE and FastICA performed well with the 
FastICA algorithm performing slightly better. 

However, FastICA, in one of our cases, failed to initialize 
properly and was not able to produce results. It is also important 
to mention that the worst results obtained with RobustICA are 
mainly due to the bad result yielded in just one case. This 
specific video presented the subject under investigation with 
heavy head motion, which constitutes a common problem for 
these algorithms. If we exclude this case, the outcomes are 
comparable with the previous ones. Finally, the discernible 

increment in the errors, observed in iSight compared to the 
Logitech, reveals that results are camera dependent. 

TABLE I. EXPERIMENTAL RESULTS OBTAINED FROM THE ANALYSIS OF 

VIDEOS RECORDED WITH THE ISIGHT AND THE LOGITECH CAMERAS 
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69.00 0.62 0.62 32.49 3.19 3.19 3.19 

102.00 53.47 53.47 53.47 0.82 0.82 50.88 

63.00 1.84 1.84 1.84 1.84 1.84 1.84 

77.00 1.83 1.83 1.83 1.84 0.45 1.84 

78.00 2.54 2.54 2.54 2.54 2.54 2.54 

69.00 4.45 4.45 4.45 4.45 - 4.45 

61.00 3.74 0.58 0.58 0.59 0.59 0.59 

76.00 0.54 0.54 0.54 0.54 0.54 0.54 

Average 

percent 

error 

8.63 8.24 12.22 1.98 1.42 8.23 

According to previous studies [10], [11], the green channel 
features the strongest plethysmographic signal. Thus, a further 
analysis was performed on the raw traces recorded with both 
cameras bypassing the BSS stage. The results, reported in Table 
II, are in agreement with these studies, as the outcomes show 
that the green channel was largely more selected. Only in very 
few cases, better results were obtained through the selection of 
another channel meaning that a reliable HR can be measured by 
exploiting only the green channel. Finally, it is worthy to note 
that in few cases there is a very light improvement when using 
separation techniques, while in some others the percent error 
remains unchanged. 

TABLE II. EXPERIMENTAL RESULTS OBTAINED WHEN USING THE RAW TRACES 

BYPASSING THE BSS STAGE ON THE VIDEOS RECORDED WITH BOTH CAMERAS 
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69.00 68.55 0.65 Green 66.80 1.90 Green 

102.00 100.19 1.77 Green 71.20 20.64 Red 

63.00 64.16 1.84 Green 64.16 1.84 Green 

77.00 76.46 0.70 Blue 77.34 0.44 Green 

78.00 79.98 2.54 Green 79.98 2.54 Green 

69.00 72.07 4.45 Green 72.07 4.45 Green 

61.00 60.64 0.59 Green 60.64 0.59 Green 

76.00 75.59 1.70 Green 75.59 0.54 Green 

Average percent error 1.78   4.12  

V. CONCLUSIONS 

Based on the results obtained from the present study, we 
have demonstrated the feasibility of using a simple webcam to 
estimate HR. It is evident from the experimental data that the 
type of camera used does have an effect on the observed 
accuracy of estimation, although the changes are not relevant in 
the large majority of cases. 



The fact that the choice of algorithm does not significantly 
influence the estimates is interesting. Percentage errors range 
between 5 and 0.5 % when excluding the outlier value of 102 
bpm from analysis. It is remarkable that all algorithms, at least 
in one case, present inadequate response in videos of high HR 
with notable head motion (related to the recording after physical 
exercise). This needs to be studied more extensively and its 
physical origins required explanation. An assumption may be 
that the algorithm for the channel selection has to be improved 
specially in cases with low signal to noise ratio (SNR), which in 
our experiment seems to be the case with the high HR (high head 
motion), and techniques for enhancing SNR must be applied in 
the process pipeline before the application of BSS. 

These results must be considered in the light of several 
limitations. Such limitations include: a) the inaccuracy of the 
fingertip pulse oximeter, b) the limited amount of subjects and 
measures on the available subjects, c) the uncontrolled head 
motion which may contaminate with high noise the methods 
(investigations using controlled movements at different 
velocities should be performed in order to evaluate the 
capabilities of the various algorithms of filtering the motion 
artifacts and to understand the amount of movements that are 
permitted in order not to skew results) and finally d) the distance 
from camera and camera resolutions may be further studied 
since they are parameters that potentially could alter the results. 
Our findings should motivate extensive validation and continued 
systematic exploration of these variables. 
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