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Abstract
We compare 12 new encodings for representing of FPGA
detailed routing problems as equivalent Boolean Satisfiability
(SAT) problems against the only 2 previously used encodings.
We also consider two symmetry-breaking heuristics. Com-
pared to other methods for FPGA detailed routing, SAT-based
approaches have the advantage that they can prove the
unroutability of a global routing for a particular number of
tracks per channel, and that they consider all nets simultane-
ously. The experiments were run on the standard MCNC
benchmarks. The combination of one new encoding with a
new symmetry-breaking heuristic resulted in speedup of 3
orders of magnitude or 1,139× of the total execution time on
the collection of benchmarks, when proving the unroutability
of FPGA global routings. The maximum obtained speedup
was 9,499× on an individual benchmark. On the other hand,
most of the encodings had comparable and very efficient per-
formance when finding solutions for configurations that were
routable. The availability of many SAT encodings, that can
each be combined with various symmetry-breaking heuristics,
opens the possibility to design portfolios of parallel strate-
gies—each a combination of a SAT encoding and a symmetry-
breaking heuristic—that can be run in parallel on different
cores of a multicore CPU in order to reduce the solution time,
with the rest of the runs terminated as soon as one of them
returns an answer. We found that a portfolio of three particu-
lar parallel strategies produced additional speedup of more
than 2×.

1. Introduction
In the last seven years, dramatic improvements were achieved
in both the speed and capacity of SAT solvers [10, 12, 15, 24,
32], which are now up to 5 orders of magnitude faster and can
handle problems that are up to 4 – 5 orders of magnitude big-
ger. The new efficient SAT solvers open new possibilities for
applying this technology. By translating hard Computer Sci-
ence problems to equivalent SAT problems, we can directly
benefit from the recent tremendous advances in SAT, and the
constant stream of innovations in this extremely active
research field. This paper studies techniques to efficiently
solve FPGA detailed routing problems by translation to SAT.

Previous methods for FPGA detailed routing by transla-
tion to SAT [17, 18, 25, 26, 46] have implicitly exploited the
observation that FPGA detailed routing problems can be rep-
resented as equivalent graph coloring problems [45], and that
graph coloring problems can be reformulated as equivalent
SAT problems [19, 21, 33]. They have done so by developing
tools that directly translate FPGA global routing problems into
equivalent Boolean formulas that are satisfiable if and only if
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a detailed routing exists for a particular number of tracks per
channel W. In contrast, in this paper we first translate the
FPGA detailed routing problem to an equivalent graph color-
ing problem in the DIMACS format [8, 20, 35] that can then
be translated to SAT by any tool for representing of graph col-
oring problems as SAT problems, allowing us to also benefit
from the progress in this field [1, 3, 4, 6, 9, 11, 14, 16, 19, 22,
27, 28, 29, 30, 31, 35, 36, 42, 43, 41].

Graph coloring is a class of Constraint Satisfaction Prob-
lems (CSPs) [5]. A CSP is a triple (V, D, C), where V is a set of
variables, D the set of their domains, and C a set of constraints
that the variables must satisfy. CSPs are usually solved by spe-
cialized search algorithms [5]. Alternatively, CSPs can be cast
as SAT problems, as pioneered in the early 1990s by Kasif
[21], Selman et al. [33], and Iwama and Miyazaki [19]. 

Given an undirected graph, G(V, E), where V is the set of
vertices and E the set of edges, graph coloring is the problem
of assigning colors to the vertices, such that no two adjacent
vertices have the same color and the number of used colors is
minimum. This problem is known to be NP-complete [13].
The minimum coloring uses the smallest possible number of
colors, called the chromatic number of a graph. The task of
finding a k-coloring for a given graph can be modeled as a
CSP, where each variable represents a vertex, all vertices have
the same domain, such that each value in that domain repre-
sents a possible color, and variables for adjacent vertices are
constrained by disequality constraints.

The advantages of SAT-based FPGA detailed routing are
that it can prove that a particular global routing does not have
a detailed routing for a given number of tracks per channel,
and so can guarantee optimality when a detailed routing is
found for a particular number of tracks per channel W, such
that the configuration with W – 1 tracks is proven unroutable.
Furthermore, because in SAT-based FPGA detailed routing all
constraints for the existence of a detailed routing are
expressed in a monolithic Boolean formula, SAT solvers that
are used to solve such formulas end up considering simultane-
ously the routability constraints for all nets, thus allowing the
SAT solvers to potentially converge faster to a solution. This is
in contrast to the one-net-at-a-time approach used in most
non-SAT-based FPGA detailed routers.

Devadas was the first to reformulate a routing problem—
conventional 2-layer channel routing—as an equivalent SAT
problem [7]. Wood and Rutenbar [44] used Binary Decision
Diagrams (BDDs) [2] for channel routing in FPGAs, but
because of the limited scalability of BDDs could apply their
tool to only one vertical channel at a time by introducing addi-
tional constraints on entrance and exit points for each net in
the channel. Later methods for SAT-based FPGA detailed
routing [17, 18, 25, 26, 46] used recent efficient SAT solvers,
but did the translation to SAT with only two encodings—the
log and muldirect encoding (see Sect. 2)—that are much less
efficient than the encodings considered in our experiments.



Table 1. The log and muldirect encodings for representing CSPs as SAT that have been previously used to solve
FPGA detailed routing problems, as well as encoding direct from which the muldirect encoding has been
derived. They are illustrated on an example graph-coloring problem with two vertices, v and w, each having a
domain of 3 values {0, 1, 2}. A dash indicates the absence of clauses of the corresponding type.

Encoding
Clauses

at-least-one at-most-one conflict excluded-illegal-values

log ——— ——— lv1 ∨ lv2 ∨ lw1 ∨ lw2      
¬lv1 ∨ lv2 ∨ ¬lw1 ∨ lw2      
lv1 ∨ ¬lv2 ∨ lw1 ∨ ¬lw2

¬lv1 ∨ ¬lv2
¬lw1 ∨ ¬lw2

direct xv0 ∨ xv1 ∨ xv2
xw0 ∨ xw1 ∨ xw2

¬xv0 ∨ ¬xv1    
¬xv0 ∨ ¬xv2    
¬xv1 ∨ ¬xv2
¬xw0 ∨ ¬xw1    
¬xw0 ∨ ¬xw2    
¬xw1 ∨ ¬xw2

¬xv0 ∨ ¬xw0      
¬xv1 ∨ ¬xw1      
¬xv2 ∨ ¬xw2

———

muldirect xv0 ∨ xv1 ∨ xv2
xw0 ∨ xw1 ∨ xw2

——— ¬xv0 ∨ ¬xw0      
¬xv1 ∨ ¬xw1      
¬xv2 ∨ ¬xw2

———
The contributions of this paper are: 1) the use of a tool flow
that first translates an FPGA detailed routing problem to an
equivalent graph-coloring problem in the DIMACS format,
and then applies a second tool for translating of graph coloring
problems to SAT, thus allowing us to benefit from the progress
in that field; 2) the first application of 12 new SAT encodings
for CSP [41] to FPGA detailed routing; 3) the use of symme-
try-breaking heuristics when solving of graph coloring prob-
lems derived from FPGA detailed routing problems; 4) the
comparison of the 12 new SAT encodings with 2 SAT encod-
ings that have been previously used for FPGA detailed rout-
ing; and 5) the identification of the combination of one of the
new encodings with a new symmetry-breaking heuristic as the
most efficient single strategy.

2. Background
The regular structure of island-style FPGA arrays allows us to
reformulate their detailed routing as an equivalent graph col-
oring problem [45]. Namely, each multi-pin net is decom-
posed into a collection of 2-pin nets. For each connection
block that a 2-pin net passes through, we impose exclusivity
constraints with respect to all other 2-pin nets that pass
through the same connection block and that belong to other
multi-pin nets, i.e., the exclusivity constraints require that 2-
pin nets that belong to different multi-pin nets should not get
routed on the same track in a connection block. Thus, we can
represent the 2-pin nets as vertices in a CSP graph, with an
edge between two vertices that correspond to 2-pin nets that
should be routed on different tracks in the same connection
block. Since each switching block preserves the track assign-
ment from the connection block where a 2-pin net comes from
before it gets routed to another connection block, then we only
need to impose exclusivity constraints once for each pair of 2-
pin nets that belong to different multi-pin nets and that pass
together through several connection blocks.

To the best of our knowledge, previous work on FPGA
detailed routing by translation to SAT has used only two
encodings for representing CSPs as SAT—the log encoding in
[17, 18, 25], and the muldirect encoding in [26, 46]. We will
illustrate these encodings with the clauses that they generate
for the coloring of a graph with two adjacent vertices, v and w,
each having a domain of 3 values, {0, 1, 2}, representing 3
possible colors (see Table 1)—i.e., the constraints for detailed
routing of two electrically distinct 2-pin nets that pass through
the same connection block with 3 tracks:
Log. Uses log number of Boolean variables in the size of the
domain of each CSP variable, by employing all of the Boolean
variables in order to select a value from the domain of that
CSP variable. Then, for each pair of CSP variables for adja-
cent vertices in the CSP graph, and for each common domain
value of those variables, a conflict clause is introduced to pre-
vent both variables from having the same value. Also intro-
duced are clauses that exclude illegal values that are not in the
domain of each CSP variable. This encoding was proposed by
Iwama and Miyazaki [19].
Direct. A new Boolean variable xvi is introduced for each CSP
variable v and each domain value i of v, in order to encode
whether v is assigned the value i. For each CSP variable, the
introduced Boolean variables are constrained with an at-least-
one clause that ensures that the CSP variable is assigned at
least one value, and at-most-one clauses that guarantee that
only one value is assigned. Conflict clauses are introduced
accordingly to prevent equal values of CSP variables for adja-
cent vertices in the CSP graph. This encoding was proposed
by de Kleer [6]. It has been used for board-level multiterminal
net routing in [34].
Muldirect. The multivalued direct encoding is a variant of the
direct encoding, where the at-most-one clauses are omitted.
Therefore, a SAT solution could assign several domain values
to a CSP variable, so that there is no longer a 1-to-1 corre-
spondence between SAT and CSP solutions. From a multival-
ued SAT solution we extract a CSP solution by taking any one
of the allowed values for each CSP variable. This encoding
was first used by Selman et al. [33].
Given a CSP variable, its set of domain values, and the Bool-
ean variables introduced for a SAT encoding of that CSP vari-
able, we will refer to an assignment to those Boolean variables
that selects a particular domain value as an indexing Boolean
pattern for that domain value for the given CSP variable.



3. Structural SAT Encodings for CSP
We can represent each CSP variable with a tree of ITE (for “if-
then-else”) operators that selects a value from this CSP vari-
able’s set of domain values, which appear as leaves of the tree
[41]. In this representation, an ITE operator ITE(i, t, e) takes
three arguments: a Boolean variable i, such that if i is true then
the ITE selects the then-argument t and otherwise the else-
argument e, where the then- and else-arguments are either ITE
subtrees or domain values that appear as leaves of the tree. We
will refer to a Boolean variable that controls an ITE in the tree
for a CSP variable as an indexing Boolean variable, since it
helps to select one of the domain values for that CSP variable.

The ITE tree for each CSP variable depends on a unique set
of indexing Boolean variables that is disjoint from the sets of
indexing Boolean variables used in ITE trees for other CSP
variables. We also impose the restriction that every indexing
Boolean variable appear at most once on every path that starts
from the root of an ITE tree for a CSP variable and ends with a
leaf, i.e., a domain value of that CSP variable. Note that an
ITE tree functions like a multi-input multiplexor, and will
select a leaf (domain value) for every assignment to the index-
ing Boolean variables in that ITE tree. Furthermore, depend-
ing on the structure of the ITE tree, a domain value can be
selected by a partial assignment to the indexing Boolean vari-
ables for that CSP variable, namely an assignment specifying
values for only those indexing Boolean variables that appear
on the only path from the given domain value to the root of the
ITE tree for that CSP variable. Therefore, this representation
does not require at-least-one or at-most-one constraints for
the Boolean variables introduced for each CSP variable, since
the structure of the ITE trees guarantees that each CSP vari-
able will evaluate to exactly one domain value for each assign-
ment to its indexing Boolean variables. Required are only
conflict clauses to ensure that two adjacent CSP variables do
not evaluate to the same common domain value.

Depending on the structure of the ITE tree introduced for a
CSP variable, we can obtain various representations for CSP
variables. One extreme case is a chain of ITE operators, where
the second argument of every ITE is a domain value, while the
third argument is either a nested chain of such ITEs, or an ITE
selecting between two domain values. This structure is illus-
trated in Fig. 1.a for a CSP variable that has 13 domain values,
{v0, v1, ..., v12}, which get selected by means of 12 indexing
Boolean variables, iv0, iv1, ..., iv11. In the general case, given a
CSP variable that has a domain of k values, the chain will have
k – 1 ITE operators, each controlled by a different indexing
Boolean variable. In this example, the first domain value, v0,
is selected when the first indexing Boolean variable iv0 is true;
the second domain value, v1, is selected when ¬iv0 ∧ iv1 is
true, and so on. We will refer to the resulting SAT encoding as
ITE-linear, due to the linear structure of the ITE tree.

Another extreme case is when the ITE tree is balanced,
such that every path in the tree goes through either ⎡log2(k)⎤ or
⎡log2(k)⎤ – 1 ITE operators, as shown in Fig. 1.b. We call the
resulting SAT encoding ITE-log. It can be viewed as a variant
of the log encoding (see Table 1), where some of the indexing
Boolean patterns do not contain the last indexing Boolean
variable, so that no constraints are needed to exclude illegal
indexing Boolean patterns, as in the log encoding. In general,
the ITE tree for a CSP variable can have any structure.

Since there can be many structurally different ITE trees that
have the same number of leaves, we can construct a different
encoding from each such ITE tree with number of leaves that
equals the number of domain values for a CSP variable. The
different structure will result in different probabilities of
selecting a particular domain value, assuming that all the
indexing Boolean variables in the trees have equal probabili-
ties of being assigned the value true.

Treating ITE trees as logic blocks in translation to Con-
junctive Normal Form (CNF), and generating Boolean formu-
las with many big ITE trees resulted in up to 2 orders of
magnitude speedup in solving of CNF representations of
Boolean formulas from formal verification of complex pipe-
lined, superscalar, and VLIW microprocessors [37 – 40].

4. Using a Hierarchy of SAT Encodings
We can use a hierarchy of different SAT encodings [41] in
order to select the domain values of a CSP variable. Namely,
we can first use one SAT encoding to partition the domain of
that CSP variable into subdomains, and then a different SAT
encoding to either select the values in each subdomain, or to
further partition it into smaller subdomains, and so on. For a
given domain or a subdomain, we restrict its subdomains to
not overlap. Then, we can use the same SAT encoding (with
the same set of Boolean variables) to select the values in each
subdomain at the same new level in the hierarchy, or to further
divide the subdomains at that level into smaller subdomains.
A domain value is selected if it gets selected in its correspond-
ing subdomain at the lowest level in the hierarchy, and for
each of the higher levels in the hierarchy, the corresponding
larger subdomain that contains this value also gets selected by
the SAT encoding for that level of the hierarchy.

For example, we can combine the ITE-log and ITE-linear
encodings and thus obtain hybrid encodings, e.g., by first
using several levels of the ITE-log encoding in order to parti-
tion each CSP variable’s domain into subdomains, and then
use the ITE-linear encoding to select the values from each
subdomain. We will call this encoding ITE-log-i+ITE-linear,
where i is the number of indexing Boolean variables used in
the ITE-log part of the encoding, i.e., the number of ITE-log
levels. The encodings ITE-log-1+ITE-linear and ITE-log-
2+ITE-linear are illustrated in Fig. 1.c and Fig. 1.d, respec-
tively, for the example CSP variable with 13 domain values. In
the ITE-log-2+ITE-linear encoding shown in Fig. 1.d, the
domain value v4 is selected as the value of the ITE tree, i.e., as
the value of the encoded CSP variable, when iv0 ∧ ¬iv1 ∧ iv2 is
true; the domain value v5 is selected when iv0 ∧ ¬iv1 ∧ ¬iv2 ∧
iv3 is true; and v6 is selected when iv0 ∧ ¬iv1 ∧ ¬iv2 ∧ ¬iv3 is
true. Then, if jv0, jv1, jv2, and jv3 are the corresponding index-
ing Boolean variables from the ITE tree for a CSP variable
that is adjacent in the CSP graph to the CSP variable repre-
sented in Fig. 1.d, symmetric indexing Boolean patterns will
be used to select that variable’s domain values, so that the
domain value v4 will be selected as that CSP variable’s value
when jv0 ∧ ¬jv1 ∧ jv2 is true, etc. Hence, the conflict clause
that will prevent the two adjacent CSP variables from simulta-
neously evaluating to v4 will be (¬(iv0 ∧ ¬iv1 ∧ iv2) ∨ ¬(jv0 ∧
¬jv1 ∧ jv2)), i.e., (¬iv0 ∨ iv1 ∨ ¬iv2 ∨ ¬jv0 ∨ jv1 ∨ ¬jv2).

We can similarly construct new encodings by using any of
the previous simple encodings (see Sect. 2) or any variation of
the ITE-tree encodings (see Sect. 3) for each level of the hier-
archy in the resulting hybrid encoding. If the encoding used
for a particular level allows the simultaneous selection of sev-
eral domain values or several subdomains, respectively, then
we extract a CSP solution by taking any one of the allowed
values for each CSP variable. If at a given level in the hierar-
chy, some of the subdomains have fewer domain values than
the rest of the subdomains at that level, we impose constraints



Figure 1. Four ITE trees for a CSP variable v that has a domain of 13 values, {v0, v1, ..., v12}, resulting in the four
new SAT encodings for CSP: (a) ITE-linear; (b) ITE-log; (c) ITE-log-1+ITE-linear; and (d) ITE-log-2+ITE-linear.
ITEs are shown as multiplexors. In general, the ITE tree for a CSP variable can have any structure.
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to restrict the Boolean variables that index the smaller subdo-
mains in order to prevent the selection of non-existent values.
Such constraints are necessary for the previous 3 encodings
(see Sect. 2), while in the case of ITE-tree encodings we can
use smaller versions of the ITE-trees for the smaller domains.

Note that it is not required that all the subdomains at a par-
ticular level of a hierarchical encoding be further divided into
smaller subdomains (or their domain values be indexed) by
using the same simple encoding. That is, we can have different
simple encodings that are used to further partition the subdo-
mains from the same level. However, in the experiments, we
will use only one simple encoding for each level in a hierar-
chical encoding. For example, under such a construction, if we
use a hierarchy of two levels of the muldirect encoding for a
total number of colors K, such that the number of Boolean
variables used for the first-level muldirect encoding is n, then
the number of Boolean variables used for the second-level
muldirect encoding will be ⎡K/n⎤.

More recently, Kwon and Klieber [22] have proposed a
SAT encoding for CSPs that, based on our terminology, can be
classified as direct-i+direct for a 2-level version, where i is the
number of Boolean variables used in the top encoding, and
could include more than two levels, but with the direct encod-
ing used at each level. However, our method for hierarchical
composition of encodings is completely general, and allows
for any simple encoding to be used at any level of a hierarchi-
cal encoding.

5. Symmetry-Breaking Heuristics
As noted by Van Gelder [36], if a graph-coloring problem is
being solved for K colors, we can select any K – 1 vertices,
and constrain the ith of them to have a color of less than i, if
the colors are numbered 0 through K – 1.

One of the heuristics that Van Gelder proposed, b1, starts
by restricting the node of maximum degree in the graph to be
the first node in the sequence of K – 1 vertices with restricted
colors. Then, the neighbors of that node are sorted in descend-
ing order of their degrees and added to the sequence in that
order up to the (K – 2)nd of them, such that ties are broken by
the sum of the neighbors’ degrees.
We also implemented a second symmetry-breaking heuris-

tic, which we call s1, where the K – 1 vertices in the restricted
sequence are picked as the K – 1 vertices of highest degrees in
the CSP graph, sorted in descending order of their degrees
with ties broken based on the sum of the neighbors’ degrees.

6. Results
The experiments were run on the MCNC FPGA detailed rout-
ing benchmarks [23], based on their global routings provided
with the source code of the SEGA-1.1 FPGA detailed router
[23]. We used a Dell Precision 380 workstation with a dual-
core 3.73-GHz Intel Pentium Extreme Edition processor, 2×2-
MB on-chip L2-cache, and 8 GB of memory, under Red Hat
Linux Enterprise v.4. (Only one core was used, and all experi-
ments consumed less than 0.8 GB of memory.)

We compared the two SAT encodings for CSP that have
been previously applied to FPGA detailed routing—the log
encoding in [17, 18, 25], and the muldirect encoding in [26,
46]—with 12 new encodings—the ITE-linear, ITE-log, ITE-
log-1+ITE-linear, ITE-log-2+ITE-linear, ITE-log-2+direct,
ITE-log-2+muldirect, ITE-linear-2+direct, ITE-linear-2+mul-
direct, direct-3+direct, direct-3+muldirect, muldirect-3+direct,
and muldirect-3+muldirect. The comparison was done on both
routable and unroutable FPGA configurations—resulting in,
respectively, satisfiable and unsatisfiable Boolean formulas.

We used the SAT solvers siege_v4 [32] and MiniSat [10],
where MiniSat is the winner in the recent annual SAT-solver
competitions, while siege_v4 was a winner before that. We
found that siege_v4 was faster by at least a factor of 2 when
proving the unsatisfiability of formulas from unroutable con-
figurations—those Boolean formulas took much longer to
solve, while the satisfiable formulas from routable configura-
tions were solved by either SAT solver in usually a fraction of
a second, such that MiniSat had a small advantage.

Table 2 shows the results for some of the challenging
unroutable FPGA configurations, using the SAT solver
siege_v4. From the 2 previously used encodings, the mul-
direct encoding outperformed the log encoding, and so the



Table 2. Comparison of the best performing encodings on some of the challenging unroutable FPGA configurations.
Reported is the total CPU time [sec]—the sum of the times to generate the graph-coloring problem + its translation to
Conjunctive Normal Form (CNF) + the time to SAT-solve it with siege_v4. Symmetry-breaking heuristics b1 and s1
are described in Sect. 5, and a dash indicates that no symmetry-breaking was used. Bold font designates the min.
time for each benchmark and for the total time, as well as the max. speedup of the total time.

Benchmark

Total CPU time [sec] for: translation to graph coloring + translation to CNF + SAT solving

muldirect ITE-linear ITE-log ITE-linear-2
+direct

ITE-linear-2 
+muldirect

muldirect-3
+muldirect

direct-3
+muldirect

––– b1 s1 b1 s1 b1 s1 b1 s1 b1 s1 b1 s1 b1 s1

alu2 12.83 9.33 5.13 1.53 1.80 0.10 0.11 22.45 25.99 6.69 34.77 10.81 5.58 14.00 32.58

too_large 18.60 16.39 18.45 0.17 0.50 0.12 0.12 1.67 0.83 0.55 0.33 0.12 0.70 0.13 1.13

alu4 1,018.10 275.36 317.01 22.20 146.32 928.10 248.34 29.74 62.56 61.82 620.80 72.27 34.92 24.1 36.72

C880 1,147.36 1,202.57 14.82 19.95 1.79 93.80 38.17 16.32 3.21 11.65 3.05 34.80 12.15 29.68 28.86

apex7 1,443.80 245.82 20.71 140.11 3.62 76.30 8.81 22.23 2.17 30.53 1.78 49.50 6.89 91.12 4.51

C1355 3,231.10 0.12 75.78 0.15 7.67 0.15 17.85 0.30 2.83 0.20 2.47 0.14 8.29 0.14 5.10

vda 1,054,417 49,243 83,391 32,562 3,983 508 162 203 111 224 255 1,321 764 1,736 1,351

k2 470,235 10,497 10,967 21,767 11,798 15,541 21,882 11,675 10,862 10,218 426 33,178 1,060 11,569 13,734

Total 1,531,524 61,490 94,810 54,513 15,943 17,148 22,357 11,971 11,071 10,553 1,344 34,667 1,893 13,464 15,194

Speedup wrt.
muldirect w/o 
symmetry

1.00× 24.91× 16.15× 28.09× 96.06× 89.31× 68.50× 127.94× 138.34× 145.12× 1,139× 44.18× 809.25× 113.75× 100.80×
results for the muldirect encoding are included in the table. (The
muldirect encoding also performed better than the direct encod-
ing.) The results from the best 6 of the 12 new encodings are also
shown in the table.

Overall, the 12 new encodings produced up to 3 orders of
magnitude speedup of the total execution time, relative to the 2
previously used encodings for FPGA detailed routing as SAT.
The use of symmetry-breaking heuristics increased the speedup,
such that each of the symmetry-breaking heuristics had an advan-
tage on some of the benchmarks with some of the encodings.
However, symmetry-breaking heuristic s1 helped produce the
greatest speedups.

The combination of encoding ITE-linear-2+muldirect with
symmetry-breaking heuristic s1 resulted in the greatest reduction
of the total execution time for the most challenging unroutable
configurations of the eight benchmarks, shown in Table 2, pro-
ducing 3 orders of magnitude or 1,139× speedup relative to
encoding muldirect (the better one of the previously used encod-
ings log and muldirect) without symmetry-breaking. The maxi-
mum obtained speedup was almost 4 orders of magnitude or
9,499× for benchmark vda with encoding ITE-linear-2+direct
and symmetry-breaking heuristic s1, relative to encoding mul-
direct without symmetry breaking. On the other hand, most of the
encodings had comparable and very efficient performance when
finding solutions for configurations that were routable—i.e., for
which the equivalent Boolean formulas were satisfiable—with
either siege_v4 or MiniSat.

The advent of multicore CPUs allows us to execute parallel
programs. Then, the availability of many SAT encodings, that
can each be combined with various symmetry-breaking heuris-
tics, opens the possibility to design portfolios of parallel strate-
gies—each a combination of a SAT encoding and a symmetry-
breaking heuristic—that can be run in parallel on different cores
of a multicore CPU in order to reduce the solution time, with the
rest of the runs terminated as soon as one of them returns an
answer. A portfolio of two parallel strategies—encoding ITE-lin-
ear-2+muldirect with symmetry-breaking heuristic s1, and
encoding muldirect-3+muldirect with symmetry-breaking heuris-
tic s1—produced an additional speedup of 1.84× relative to
encoding ITE-linear-2+muldirect with symmetry-breaking heu-
ristic s1, based on the total execution time for the eight bench-
marks. A portfolio of three parallel strategies—the above two,
together with encoding ITE-linear-2+direct with symmetry-
breaking heuristic s1—produced a speedup of 2.30× relative to
encoding ITE-linear-2+muldirect with symmetry-breaking heu-
ristic s1.

7. Conclusion
We compared 12 new encodings for representing of FPGA
detailed routing problems as equivalent SAT problems—the ITE-
linear, ITE-log, ITE-log-1+ITE-linear, ITE-log-2+ITE-linear,
ITE-log-2+direct, ITE-log-2+muldirect, ITE-linear-2+direct,
ITE-linear-2+muldirect, direct-3+direct, direct-3+muldirect,
muldirect-3+direct, and muldirect-3+muldirect—against 2 previ-
ously used encodings—the log and muldirect encodings. We also
considered two symmetry-breaking heuristics—Van Gelder’s
heuristic b1 [36], and a newly proposed heuristic s1. Encoding
ITE-linear-2+muldirect with symmetry-breaking heuristic s1
resulted in 3 orders of magnitude speedup of the total execution
time for the most challenging unroutable configurations of the
considered benchmarks. The maximum obtained speedup was
almost 4 orders of magnitude or 9,499× for benchmark vda with
encoding ITE-linear-2+direct and symmetry-breaking heuristic
s1. A portfolio of three parallel strategies produced additional
speedup of more than 2× on unroutable benchmarks. Most of the
encodings had comparable and very efficient performance when
finding solutions for configurations that were routable.
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