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Motor-activity-related mental tasks are widely adopted for brain-computer interfaces (BCls) as they are a natural extension of
movement intention, requiring no training to evoke brain activity. The ideal BCI aims to eliminate neuromuscular movement,
making motor imagery tasks, or imagined actions with no muscle movement, good candidates. This study explores cortical
activation differences between motor imagery and motor execution for both upper and lower limbs using functional near-infrared
spectroscopy (fNIRS). Four simple finger- or toe-tapping tasks (left hand, right hand, left foot, and right foot) were performed
with both motor imagery and motor execution and compared to resting state. Significant activation was found during all four
motor imagery tasks, indicating that they can be detected via fNIRS. Motor execution produced higher activation levels, a faster
response, and a different spatial distribution compared to motor imagery, which should be taken into account when designing an
imagery-based BCI. When comparing left versus right, upper limb tasks are the most clearly distinguishable, particularly during
motor execution. Left and right lower limb activation patterns were found to be highly similar during both imagery and execution,
indicating that higher resolution imaging, advanced signal processing, or improved subject training may be required to reliably

distinguish them.

1. Introduction

Motor imagery is the imagined movement of the body while
keeping the muscles still, sometimes considered to be a
conscious use of unconscious preparation for an actual move-
ment [1]. There have been numerous studies outlining the
similarities between motor execution (overt movement) and
motor imagery [2-8]. Of particular interest is whether motor
imagery follows the same cortical layout as motor execution
in the primary motor cortex (Ml). Located in Brodmann’s
area 4 [9], M1 is subdivided into multiple sections, each
responsible for control of a different area of the body, in a lay-
out often referred to as the cortical homunculus [10, 11]. This
one-to-one mapping between physical movement and activa-
tion in a particular area of the brain provides an opportunity
to detect a person’s actions (and, potentially, their intended

actions) solely through brain recordings, making this an
interesting area of brain research. It has also been partially
responsible for the popularity of both motor execution and
motor imagery as control methods for brain computer inter-
faces (BCIs), where the mental state is estimated via brain
activation patterns [12-26]. Other areas of interest for motor
imagery detection are the supplementary motor area and
premotor cortex, located anterior to M1 and also involved in
the motor network [27, 28].

Many functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET) studies have indi-
cated that there is no activation in M1 during motor imagery
[29-32] or only limited activation [33-35]. Berman et al.
found that training with feedback did not increase motor
cortex activity for motor imagery. Additionally, subjects who
saw an increase in M1 activation during motor execution
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feedback training also showed an increase in electromyo-
graphy (EMG), indicating that the increased fMRI blood-
oxygen-level dependent (BOLD) signal may be due to
increased muscle activity [29]. In a meta-analysis review,
Hétu et al. noted that while motor imagery seems to use
similar structures to motor execution, M1 is not consistently
activated during motor imagery [35]. Authors nonetheless
stress that their findings do not conclusively state that M1 is
not involved in motor imagery [35].

It has been proposed that the lack of Ml activation
in some motor imagery studies may be due to the lower
activation levels produced by motor imagery [36]. An fMRI
study by Porro et al. found that motor imagery activated
M1 without a significant increase in EMG recordings overall,
indicating that the increase in MI activation was not due to
muscle activity [8]. Ehrsson et al. determined using fMRI
that hand, foot, and tongue motor imagery follow the same
organization as motor execution in M1 [37]. Wriessnegger
et al. found significant activation compared to rest for both
motor execution and motor imagery in the motor areas, but
activation for motor imagery was slower (with an approxi-
mately 2-second delay) and smaller in magnitude [38]. While
motor execution showed significantly higher activation over
the sensorimotor area as compared to the anterior prefrontal
areas, motor imagery showed no significant difference in acti-
vation between these areas. There were also differences in the
activation over time for bilateral and contralateral activation
between motor imagery and motor execution. Sitaram et al.
also found that fNIRS recordings of motor imagery for left
and right hand tapping were similar to motor execution
recordings, but smaller in magnitude [23]. An fNIRS pilot
study by An et al. compared activation from motor execution,
imagery, passive movement, and movement observation for a
hand grasping task and found that motor imagery induces a
moderate activation in M1 [5].

The type of motor imagery can also affect the quality
of motor imagery recordings. Two primary types of motor
imagery are visual, where a person self-visualizes the move-
ment, and kinesthetic, where a person imagines the feelings
and sensations produced by the movement (i.e., what it “feels
like” to perform the motion). Lotze and Halsband suggest
that simple, highly kinesthetic tasks may increase M1 activa-
tion [27]. An fMRI study by Guillot et al. compared kines-
thetic and visual motor imagery in participants with good
to excellent motor imagery ability and found that kinesthetic
motor imagery shares more similar neural pathways to motor
execution, but both forms of motor imagery caused activation
in M1 [39].

It has also been reported that motor imagery recordings
in M1 are greatly affected by the motor imagery abilities of
individual subjects and not just recording and experimental
methods [40-42]. The use of objective questionnaires has
been proposed in order to determine whether a person will be
able to use motor imagery effectively [42]. Miller et al. found
that activation in M1 during motor imagery, measured using
electrocorticography (ECoG), can be increased via training
with feedback and that in some cases it can exceed the original
motor execution levels [28]. Similar improvements in motor
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imagery activation were found when controlling a robot with
an electroencephalography (EEG) BCI [43].

A variety of motor imagery techniques have been exam-
ined for use with fNIRS. Earlier, Coyle et al. were able to
distinguish imagination of squeezing a ball from rest with
an accuracy of 70-90% [21]. Other studies have shown up to
89% accuracy distinguishing motor imagery of the left hand
or wrist from the right hand or wrist [22, 23]. More recently,
fNIRS has been used to detect motor imagery activation for a
tennis arm-swinging motion [44] as well as a finger-tapping
sequence [45]. The ability to distinguish motor imagery of the
feet is also being explored for use in BCIs [12, 13, 24]. While
both feet are typically used together in motor imagery BCIs,
recently we and other researchers have begun to use left and
right feet or legs separately in fNIRS [12, 13] and EEG [46].

In the current study, we aim to explore the similarities
and differences between the motor cortex activation recorded
via fNIRS during simple motor imagery and motor execution
tasks for both upper and lower limb movements. The four
tasks under investigation are left hand, right hand, left foot,
and right foot tapping as compared to a resting state. To the
best of our knowledge, this is the first NIRS study to compare
motor imagery and motor execution for each foot individu-
ally. Additionally, we consider the ability of fNIRS to distin-
guish between left and right foot motor tasks, which could
benefit future BCIs through the addition of new control tasks.

2. Materials and Methods

2.1. Participants. Thirteen healthy participants volunteered
in the experiment. Subjects were aged 18-35, right-handed
(according to the Edinburgh Handedness Inventory), English
speaking, and with vision correctable to 20/20. No subjects
reported any physical or neurological disorders or were on
medication. The experiment was approved by the Drexel
University Institutional Review Board, and subjects were
informed of the experimental procedure and provided writ-
ten consent prior to participating.

2.2. Functional Near-Infrared Spectroscopy (fNIRS). tNIRS is
a noninvasive, relatively low-cost, portable, and potentially
wireless optical brain-imaging technique [47]. It uses near-
infrared light to measure changes in oxygenated (HbO) and
deoxygenated (HbR) hemoglobin levels due to the hemo-
dynamic response, the rapid delivery of oxygenated blood
to active cortical areas through neurovascular coupling [48].
Recordings from fNIRS are similar to fMRI [49-51], but the
measurement area is limited to the outer cortex and has lower
spatial resolution (mm versus cm) [49]. However, fNIRS can
measure at a higher temporal resolution to capture additional
frequency bands and does not require subjects to lay down
in a supine position with the loud noises generated by fMRI.
Due to their portability, fNIRS devices can be used in more
natural settings, such as sitting at a desk and even with mobile
participants walking outdoors [52], rather than solely in
restrictive and artificial lab environments. Despite the lower
temporal resolution and time delay of the hemodynamic
response compared to EEG measurements, fNIRS provides
a unique trade-off between temporal and spatial resolution
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FIGURE 1: Layout of the light sources, light detectors, and optodes (numbered 1-24). Adjacent sources and detectors are 3 cm apart.

and is free from most artifacts, such as muscle activity and
eye blinks. It can also easily be used in conjunction with other
measurement techniques such as physiological signals [53],
EEG [15, 54, 55], and neurostimulation [56, 57].

In the common configuration, light sources and detectors
are placed on the scalp and two wavelengths of light are
transmitted through the top layer of the cerebral cortex.
Light at wavelengths between approximately 700 and 900 nm
can pass through skin, bone, and water, but it is absorbed
primarily by HbO and HbR [58]. Because HbO and HbR have
different light absorption properties, the relative changes in
HbO and HDR, and therefore the change in oxygenation of
the tissue, can be calculated from changes in the reflected
dual-wavelenghth light using the modified Beer-Lambert law
[59].

2.3. Data Acquisition. Participants sat in a chair facing a
monitor that displayed the experiment cues. They were
instructed to sit with both feet flat on the floor and hands in
their lap or on chair arm rests with palms facing upwards.
Twenty-four optodes (measurement locations) over the
primary and supplementary motor cortices were recorded
using a Hitachi ETG-4000 optical topography system, as
shown in Figure 1. Sensors were arranged in two separate
arrays, one each for the left and right hemispheres. The
arrays were placed directly next to each other, and adjacent
sources and detectors within each array were 3 cm apart. The
center point between the two arrays was aligned with C, for
each participant according to the International 10-20 system.

Although not as high spatial resolution as fMRI, {NIRS can
provide spatial resolution to capture task differences and
distribution of activation over cortical areas comparable to
fMRI [49, 51]. HbO and HDbR levels were recorded at each
location at a sampling rate of 10 Hz.

2.4. Experimental Protocol. Motor imagery and motor exe-
cution data were recorded on two separate days in order
to collect more data while keeping the session length to
one hour. Both sessions included motor imagery and motor
execution tasks. The protocol included five tasks: rest and
tapping of the right hand, left hand, right foot, and left foot.
This protocol was developed based on a preliminary study we
reported previously [12, 13], and details are provided below.

2.4.1. Tasks. Participants performed five tasks under both
motor execution and motor imagery conditions. During
motor execution, they were instructed to tap the indicated
hand or foot once per second, self-paced. Hand tapping was
demonstrated as curling and uncurling the fingers towards
the palm, similar to clenching an imaginary ball. Foot tapping
kept the heel on the floor as the ankle bent to raise and lower
the toes, and subjects were instructed to also curl and uncurl
their toes during the movement. During the resting state,
participants were instructed to relax, refrain from moving,
and not think about anything in particular.

During motor imagery tasks, subjects were instructed
to imagine the same actions as performed during motor
execution but to refrain from any movement, including
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FIGURE 2: Trial timing diagram.

muscle twitches. They were also instructed to use kinesthetic
imagery, that is, imagine the feelings and sensations felt
during an actual movement. Subjects practiced both motor
imagery and motor execution tasks, guided by the experi-
mental program, before beginning the experiment in order
to familiarize themselves with the protocol and tasks.

The trials followed the timing protocol shown in Figure 2.
Each trial began with 9 seconds of rest followed by a cue
to indicate the upcoming task (e.g., left foot). Subjects then
performed the designated task for 15 seconds, followed by a 4-
second “Trial Finished” message indicating the task was over.
There were a total of 15 seconds between the end of one task
and the beginning of another to allow activation to return to
a baseline level. Intertrial periods as low as 10 seconds have
been used in prior fNIRS motor imagery studies [5, 60, 61].

2.4.2. Session Protocol. Each day was split into multiple
runs, as shown in Figure 3. The session consisted of three
repetitions of a run with 10 motor execution trials followed
by a run with 25 motor imagery trials. The trials in each
run (motor imagery or motor execution) contained an equal
number of all 5 tasks presented in a pseudorandomized order,
without allowing the same task to appear more than twice
in a row within each run. Motor execution was interspersed
between sections of motor imagery in order to improve the
subject’s ability to imagine performing the task, both as a
reminder of the kinesthetics involved in the actual movement
and to reduce fatigue caused by repeated motor imagery trials
[62]. A total of 150 motor imagery and 60 motor execution
trials were collected for each subject.

2.5. Data Analysis. An outline of the analysis procedure, run
separately for motor imagery and motor execution data, is
shown in Figure 4. All data followed the same preprocessing
methods prior to extracting individual task periods for each
trial. After preprocessing, there were separate procedures
for time series analysis and overall activation and statistical
analysis.

2.5.1. Preprocessing. The recorded data were filtered by a
100th order low-pass finite impulse response filter with a
0.1Hz cutoff frequency in order to remove high-frequency
physiological signals such as heart rate and respiration. Data
quality was evaluated manually by an expert and optodes
with poor quality were removed, as were sections of data that
contained artifacts or that were saturated. Subjects needed
at least 20 trials of usable data for each of the five tasks,
and no more than three optodes missing from both days.
Five subjects were excluded due to insufficient data quality.
Common average referencing (CAR) based spatial filtering
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FIGURE 3: Experiment protocol: each day had three repetitions of the
motor execution and motor imagery runs.
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FIGURE 4: Overview of the data analysis procedure, performed
separately for motor imagery and motor execution tasks.

was applied to enhance the signal quality. CAR is a method
commonly used in EEG in which the average value of all
optodes at each time point is used as a common reference (i.e.,
the average value across all channels is subtracted from each
optode at that time point). This enhances changes in small
sets of optodes while removing global spatial trends from the
data.

2.5.2. Time Series Visualization. The 15-second task period
for each trial was extracted from the data, along with a
period of nontask data immediately before and after the trial.
Correlation-based signal improvement (CBSI) was applied to
each trial period in order to reduce artifact noise and improve
signal quality [63]. Baseline correction was then performed
on each trial to ensure that the beginning of each task
period was approximately zero. This was accomplished by
subtracting the average value of the data 0.5 seconds through
0.5 seconds after the start of the task period from every point
in the task. The average motor imagery and motor execution
time series for a representative optode was calculated for each
task.
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2.5.3. Average Activation Plots. To create activation plots, the
15-second task period of each trial was extracted immediately
after preprocessing. The activation is the difference in HbO
levels for each optode between the beginning and end of the
trial. To calculate the activation, the average HbO level for the
first two seconds of the task was subtracted from the average
HDbO level from the last 6 seconds of the task (seconds 9-15)
for each optode, resulting in a total of 24 features for each trial.
The difference in activation level from the beginning of the
task was also calculated at multiple other time points during
the trial in order to visualize the change in activation over
time.

The average activation level for each optode during the
resting state was subtracted from all features from that
optode, in order to enhance the ways in which the task
condition differs from the rest condition. All trials for a
given task were averaged across all subjects to give an overall
average activation level. These data were arranged into a
spatial map according to the optodes’ locations and linearly
interpolated to show the activation locations.

An additional analysis was performed to show the dif-
ference between motor execution and motor imagery by
subtracting the average motor imagery values from the motor
execution values for the corresponding optode and task.

2.5.4. Statistical Analysis. Statistical analysis was performed
using linear mixed models on the average value of the last
6 seconds of each task. Each optode was evaluated for the
main effects of task (5 levels: left hand, right hand, left foot,
right foot, and rest), type (2 levels: motor imagery, motor
execution), and their interaction on the HbO activation level
of each optode. Multiple-testing correction (false discovery
rate: FDR) was applied to the resulting p values for each
effect using the R p.adjust() function and the “FDR” method.
Then, each optode was evaluated for the effect of task on HbO
activation levels individually for motor imagery and motor
execution (all p values adjusted using FDR). Optodes were
also evaluated for the effect of type (motor imagery or motor
execution) on HbO activation individually for each optode
and task (p values adjusted using FDR).

An additional post hoc analysis was conducted to deter-
mine, for each task, which optodes had a significant increase
in HbO levels from the beginning of the task. A linear mixed
model compared the average value from seconds 9-15 to the
average value from 0-1 seconds individually for each optode
and task. The resulting p values were also adjusted using FDR.

3. Results

Task (5 levels: left hand, right hand, left foot, right foot, and
rest) had a significant effect on HbO activation (p < 0.05,
FDR adjusted) in fifteen optodes (1, 5, 7, 9, 10, 12, 13, 14, 16, 17,
18,19, 21, 22, and 24). These optodes stretch across the sensory
arrays over C, (according to the International 10/20 system),
corresponding roughly to what we expect to find based on
the cortical homunculus layout of the motor cortex. Motor
type (2 levels: motor imagery, motor execution) showed a
significant effect on HbO activation (p < 0.05, FDR adjusted)
in six optodes (1, 9,13, 16, 22, and 24), all of which also showed

an effect for task. Task and type had a significant interaction
(p < 0.05, FDR adjusted) for ten optodes (1, 5, 7 9, 10, 13,
16,19, 22, and 24), including all six optodes showing an effect
for motor type. A table of all results is included in Online
Resource 1 (Table SI in Supplementary Material, available
online at https://doi.org/10.1155/2017/5491296).

A post hoc analysis evaluated the effect of task on each
optode individually for each motor type. Nine optodes (5, 7,
9,10, 12, 16, 19, 22, and 24) showed a significant effect of task
on motor execution, and three optodes (1, 7, and 22) showed
a significant effect of task on motor imagery (p < 0.05,
FDR corrected). The full table of results is available in Online
Resource 1 (Table S2).

An additional post hoc analysis examined the difference
in HbO activation between motor execution and motor
imagery individually for each task and optode. Eleven
optodes showed a significant effect of motor type on HbO
activation for at least one and up to three of the four different
motor tasks (p < 0.05, FDR adjusted). Motor execution
showed a larger increase in HbO activation than motor
imagery on the contralateral hemisphere, particularly for the
two hand tasks and right foot task. Additionally, the increased
activation for right foot was concentrated more closely in the
center, near C,, while the increased activation for hand tasks
was further from the center and closer to C3 and C4. Figure 5
shows the average difference in activation between motor
execution and motor imagery for each task, determined by
subtracting the average motor imagery activation level from
the average motor execution level for each optode. Optodes
that showed a significant effect of motor type (p < 0.05, FDR
adjusted) are circled. The corresponding p values are listed in
Table S3 of Online Resource 1.

Looking at the average activation levels for motor imagery
and motor execution, it can also be seen that motor execu-
tion showed a clearer contralateral activation, while motor
imagery showed more bilateral activation patterns. The right
hand task had the most similar activation pattern between
motor imagery and motor execution. Additionally, the right
hand motor imagery task has a significant effect on an
optode showing a decrease in HbO on the ipsilateral side, but
none of the optodes showing an increase in HbO (on either
hemisphere) during right hand motor imagery were rated as
having a significant effect. Left hand and right foot motor
imagery had more bilateral or ipsilateral activation patterns
than during motor execution. The right foot task has two
optodes that showed significant changes in activation during
both motor imagery and motor execution. Additionally, left
foot motor imagery shows a more expected activation pattern
than for motor execution, with an area of activation and an
optode with statistically significant activation in the optodes
near C, on the contralateral side.

Right hand and left hand motor execution tasks are the
most easily distinguished among the tasks. Left and right foot
motor execution have much more similar activation patterns,
although right foot has a more contralateral activation pattern
as opposed to that of left foot. Additionally, right hand and
right foot motor imagery are very similar, with right foot
having slightly lower activation levels and less activation in
the optodes further from C,.
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FIGURE 5: Average difference in activation between motor execution and motor imagery. Optodes with a significant difference (p < 0.05,
FDR adjusted) between motor execution and motor imagery for a given task are circled.

Figure 6 shows the average HbO activation (contrasted
against the resting state by subtracting the rest feature from
each of the other tasks for each optode) across all subjects
from 9-15 seconds after the start of the task. Optodes found
to have a significant (p < 0.05, FDR adjusted) difference
between the first second of the task and seconds 9-15 are
circled.

The timing of the spatial activation patterns also differs
between motor imagery and motor execution. While both
motor imagery and motor execution have relatively low,
diffuse activation at the start of the right hand task, motor
execution quickly shifts to highly contralateral activation (by
approximately 5 seconds) and remains mostly unchanged for
the duration of the task. Motor imagery shifts to contralateral
activation more slowly, by about 10-15 seconds into the task.
Additionally, the motor imagery activation levels never reach
the strength of motor execution. The timing of HbO activa-
tion for the right hand task is shown in Figure 7. Each row
shows the average activation over all subjects for a specific
time period. Full-size plots for all four motor tasks (left hand,
right hand, left foot, and right foot) are available in Online
Resource 1 (Figures S1-54).

Differences can also be seen in the average time series for
asingle optode for each of the four tasks. Activation in optode
16 during the right hand task shows a distinct tendency for
larger and faster HbO activation during motor execution
than imagery, but the latter increases towards the end of
the recording period. Left and right foot (in optodes 2 and
24, resp.) show significant activation during motor execution
with low or no corresponding activation during motor
imagery tasks. In contrast, the left hand shows a more similar
activation pattern in both time and strength between motor

imagery and motor execution in optode 1. Figure 8 shows
the average time series across all subjects for a single optode
during each task, along with the standard error of the mean.

4. Discussion

This study examined the differences in brain activity for
upper and lower limbs during motor imagery and motor
execution tasks recorded using fNIRS. Motor execution and
motor imagery showed differences in activation timing of
HbO, with motor imagery activation levels increasing more
slowly than the corresponding motor execution tasks, as has
been reported previously [38]. There were significant differ-
ences for spatial distribution of activation between execution
and imagery as shown in Figure 5. Moreover, motor execution
also showed higher activation levels than motor imagery
overall, reflected in the number of optodes with significant
HbO activation during the task as well as the number of
optodes showing a significant effect of task. These are also in
line with previously reported findings [23, 38]. Such differ-
ences between execution and imagery could be due in part
to the continuous somatosensory and visual feedback of the
movement and muscle stimulation that is only present during
motor execution [23, 35, 64].

Upper limb (ie., left and right hand) tasks were the
most easily distinguishable for left and right comparison
among the four task types based on the spatiotemporal acti-
vation patterns. Motor execution hand tasks showed a larger
increase in HbO levels, as well as more optodes where task
had a significant effect on HbO levels than motor imagery
hand tasks. They also showed a strong contralateral activation
pattern, while motor imagery hand tasks had more bilateral
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FIGURE 6: Average HbO activation across all subjects for motor execution (a) and motor imagery (b). Significant optodes (p < 0.05, FDR

adjusted) are circled.

activation patterns, which has also been observed previously
[33].

Right hand demonstrated mostly contralateral activation
patterns for both motor imagery and motor execution condi-
tions, as shown in Figure 6, while left hand showed a much

more bilateral activation during motor imagery. This could
be due to the fact that all participants were right-handed,
potentially making the right hand task easier to imagine.
Despite its primarily contralateral activation pattern, right
hand motor imagery also showed a significant decrease in
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FIGURE 7: Average in HbO activation over time for motor imagery and motor execution during the right hand task.

HbO levels in an optode on the ipsilateral side, without
a statistically significant increase for any optodes on the
contralateral side. This could indicate that subjects utilized an
alternative strategy rather than exactly simulating right hand
tapping during the imagery. Future studies may investigate
whether training of subjects and use of different mental
strategies may affect activity during motor imagery.

Foot tasks had much more bilateral or ipsilateral HbO
activation patterns than the hand tasks in both motor
execution and motor imagery conditions. Right foot motor
execution showed the most contralateral activation pattern,
while during motor imagery the activation was much more
ipsilateral. However, right foot was the only task to have
optodes that showed a statistically significant change from
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FIGURE 8: Average HbO and HbR activation for a single optode for each task. Standard error of the mean is shown as a faded area around the
average. White area from 0 to 15 seconds is the task period; the grey areas are the resting state before and after the task.

the beginning of the task during both motor imagery and
motor execution. The left foot task, on the other hand, showed
a more contralateral activation pattern and more optodes
with significant activation during motor imagery, while
during motor execution the activation was highly diffuse
and bilateral, with no significant activation levels at any of the
optodes.

The highly bilateral activation patterns during left and
right foot tasks indicate that distinguishing between left and
right foot using fNIRS may prove difficult. Higher resolution
may be required in order to reliably distinguish between
the two feet, or they may be best used together in a single
“feet” task (as done in some recent BCI studies [17, 65, 66]).
Alternatively, using whole leg motor imagery, instead of
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toe/foot, as in the EEG study by Hsu et al. [46], could cause
activation patterns more readily identifiable using fNIRS. Toe
and foot motor areas are near or within the longitudinal
fissure between brain hemispheres, which is more difficult to
measure, while leg motor areas are further apart and closer to
the surface of the scalp [10, 11]. In a recent study, we demon-
strated the enhanced functional connectivity between motor-
related brain regions (M1 and primary somatosensory cortex)
and high-level cognitive brain regions during the transition
period between rest and hand movements [67]. As dorsolat-
eral prefrontal cortex seems to play a role in the preparation
of the sensorimotor system for the task, level of motivation
and practice as well as mental workload and distractors in the
environment could affect motor imagery related activity lev-
els. One limitation of the current study was the lack of motor
imagery ability evaluation of the participants. Future experi-
ments should consider screening subjects for motor imagery
abilities as suggested by Marchesotti et al. [42]. Additionally,
feedback training could be used to improve motor imagery
abilities, as suggested by Miller et al. [28]. This could also
improve the distinguishability of the two foot tasks.

5. Conclusions

Prior studies have suggested that {NIRS can detect changes
in brain activity during motor imagery and motor movement
hand tasks similar to fMRI. This study confirms and extends
these findings to motor movement and imagery of the left and
right foot. Although the activation was relatively weaker, all
motor imagery tasks still showed significant levels of activa-
tion. The results further suggest that motor execution more
strongly evoked the expected contralateral activation patterns
compared to motor imagery, particularly in both hand tasks.
The differences in spatial distribution of activation between
execution and imagery highlights the need for attention when
selecting classifier features for BCI use. Moreover, left and
right foot activation patterns were more difficult to differen-
tiate than the hand tasks. Differences between left and right
foot activation may be made more distinct by using higher
resolution imaging, advanced signal processing, such as task-
related functional connectivity, or improved subject training
with a specific mental strategy.

Current fNIRS-based BCI systems have primarily
focused on left/right hand motor imagery tasks. This study
opens the door to the use of foot imagery to complement
hand imagery tasks in fNIRS-based BCI paradigms. Future
BCI systems could develop new approaches to use such
multiclass motor imagery to increase overall system per-
formance and BCI usability.
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