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ABSTRACT

By comparing the characteristics of cardiac-locomotor synchronization (CLS) in running and cycling

individuals, we tested whether the characteristics of CLS occurring during rhythmic exercise adhere to

the central origin hypothesis, which postulates a direct interaction between cardiovascular centers in the

brain and the pattern generator in the spinal cord. Ten healthy subjects performed both exercises at

the same intensity (150 beats·min−1) and cadence (150 steps·min−1 during running and 75 rpm during

cycling ), while electrocardiograms and electromyograms from the right vastus lateralis muscle were

monitored continuously. An examination of the occurrence of heart beats with respect to the locomotor

phase revealed that, in running subjects, CLS exists for relatively prolonged periods at specific phases,

whereas, in cycling subjects, it occurs intermittently and is not phase-specific (Max duration of CLS:

113.6±66.5 and 58.0±29.3(P<0.05), respectively). Determining the probability of CLS by chance as

a function of its duration, we also found that, during running, CLS likely results from entrainment,

whereas, during cycling, it results from chance, occurring when the cardiac rhythm approached the

locomotor rhythm. As our result, it was indicated that the duration of muscle contraction during

cycling (317.0±18.1 msec) was significantly longer than during running (205.6±20.2 msec). These

results indicated that the difference in the CLS characteristics between running and cycling might be

influenced by differences in peripheral inputs between exercise modes.

Keywords. entrainment; coupling; synchronization; running; cycling
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INTRODUCTION

The concept of “entrainment” or “synchronization” (Pavlidis 1973), wherein a nonlinear oscillator is

entrain to an external oscillator when the frequency of external oscillator approaches that of the system,

may be the basis of a general mechanism for heart rate regulation during the increase in heart rate

but the decrease in heart beat fluctuations to the contrary. Such synchronization has been reported

between the rhythms of biological oscillators that exhibit nonlinear behavior, in particular those that

have relatively short periods, e.g., cardiac and locomotor synchronization (CLS) (Kirby et al. 1989b, Ni-

izeki et al. 1993, Nomura et al. 2001), locomotor and respiratory synchronization (LRS) (Bechbache

and Duffin 1977, Bernasconi and Kohl 1993, Paterson et al. 1986) and cardiac and respiratory syn-

chronization (CRS) (Kenner et al. 1976, Seidel and Herzel 1998, Schäfer et al. 1998). During exercise,

the increase in heart rate, which is important for blood circulation, result from the increase in the

cardiac sympathetic nervous activity and the withdrawal of the cardiac vagal nervous activity. The

transmission of an efferent signal via the sympathetic nervous system is, however, too slow to regulate

cardiac rhythm on beat-by-beat basis (Berger et al. 1989).

Previous studies have shown that CLS occurs during walking, running and cycling (Kirby et al.

1989b, Niizeki et al. 1993, Udo et al. 1990). For example, Kirby et al. (1989b) found that the frequency

ratio of cardiac and locomotor rhythms, which were determined by means of brief (10-steps during

walking and running, 4 sec during cycling) samples, become integer within 1.0 % of each other with

a spontaneous cadence during all three activities. Furthermore, some investigators have analyzed the

dynamics of heart beats with respect to locomotor phase, namely the phase domain approach (Udo

et al. 1990, Niizeki et al. 1993, Nomura et al. 2001). Udo et al. (1990) showed that R waves repetitively

occur at a specific phase within each step cycle during running, and Niizeki et al. (1993) showed phase

locking between the cardiac and locomotor rhythms during both walking and running. These studies

did not, however, address the question of whether CLS occurred as a matter of coincidence or whether

there was a linkage between the two rhythms.

Kirby et al. (1991, 1992) tested whether the observed CLS during rhythmic exercise occurred sta-
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tistically significant using a cross-over test in which they compared cardiac rhythm of each subject to

locomotor rhythm of another age- and gender-matched subject. Since they did not analyze CLS with

beat-by-beat and/or step-by-step analysis, the accidental possibility of CLS during skipping, hopping

and finger tapping might not be rejected. Using beat-by-beat analysis of CLS and rejection of the

null hypothesis that CLS reflects a chance intersection between two independent rhythms, we recently

demonstrated that, during running, the phase relationship between cardiac and locomotor rhythms is

likely a consequence of entrainment of one rhythm by another (Nomura et al. 2001). To characterize the

relationship between cardiac and locomotor rhythms independently in that experiment, we generated

surrogate data by means of a random shuffle of the gait cycle time series. In that case, if CLS occurred

by chance, the surrogate data would have the same characteristics as the original in a phase domain.

After surrogation, however, the phase relationship between the two rhythms was not indicative of CLS;

in other words, the null hypothesis was rejected. Whether, during cycling, CLS occurring results from

entrainment or by chance is still unknown, however.

It has been proposed that the activity of neural circuits originating in the periphery (e.g., muscle

afferents) (Niizeki et al. 1993) or in the central nervous system (Kawahara et al. 1993, Kirby et al. 1990)

is the physiological process underlying CLS. Based on analysis of phase response curves, Niizeki et al.

(1999) proposed that CLS has a peripheral origin and described the phase dependence of heart rate

responses on the temporal relationship between muscle contraction with and cardiac phase. They

suggested, based on the concept of Pavlidis (1973), that because the relationship between the timing of

muscle contractions and normalized heart beat intervals had a positive slope for the first one-fourth of

the cardiac cycle and a negative slope for the latter, muscle contractions occurring during the middle

phase of the cardiac cycle might cause stable CLS. They further suggested that the physiological

mechanism would involve a phase dependent effect of afferent signaling from active muscle to the

cardiovascular centers (CVC) in the brain via group III fibers.

On the other hand, Kawahara et al. (1993, 1994) proposed that modulated heart beat rhythm

by locomotor rhythm is originated in the central nervous system and described the existence of a

distinct peak in coherence between heart rate variability and lateral gastrocnemius nerve discharge
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that corresponded to the mean stepping frequency in paralyzed, vagotomized, decerebrate cats during

mesencephalic locomotor region elicited fictive locomotion. The concept of a central origin is that there

are interactions between the CVC in the brain and the central pattern generator (CPG) in the spinal

cord, which generates locomotor patterns (Grillner 1975).

Because running and cycling generate the same locomotor rhythm, if centrally originating CLS exists

in humans, it should have the same characteristics, including rejection of the null hypothesis mentioned

above, during rhythmic exercises with the same work rate and locomotor rhythm, even though the

exercise mode may differ (e.g., running and cycling). The aim of the present study was to determine

whether or not the same characteristics of CLS observed during different mode of rhythmic exercise. To

that end, we compared the phase relationship between cardiac and locomotor rhythms during cycling

and running, which can be performed at the same heart rate level and locomotor rhythm, but represent

different modes of exercise. We used the surrogate data technique (Nomura et al. 2001) and the phase

domain approach to decide whether it resulted from entrainment or by chance, and used an index based

on conditional probability (Stefanovska et al. 2000) to assess the strength of the CLS.
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METHODS

Subjects.

Ten healthy men [mean age 22.9 (range 20–25)] with no history of cardiopulmonary disease participated

in the study. Each subject signed informed consent after being provided with a verbal explanation of

the intent and procedures of the experiments. This study was approved by Human Subjects Committee

of our department in Kobe University.

Protocols.

A 5-min warm-up period was followed by at least 15 min of rest during which subjects were instrumented

for data collection. Thereafter, each subject participated in a 20-min session in which he ran on

a treadmill (Treadmill NT-12, Nishikawa) at 150 steps·min−1 or cycled on a cycle ergometer (STB-

1400, Nihonkoden) at 75 rpm with controlled by metronome at 2.5 Hz throughout a session. Subjects

performed the two exercises randomly on non-consecutive days. Before the measurement period, a

variety treadmill speeds or work rates were used in an attempt to explore the exercise intensity that

produce the HR of 120 beats·min−1 while they practiced running or cycling in time to the metronome

at 2.5 Hz. For the first 5-min of the measurement periods, the subjects worked at a rate that produced

a heart rate (HR) of 120 beats·min−1. During the next 5–10 min, the treadmill speed or cycling work

rate was gradually increased until a target HR (THR) of 150 beats·min−1 was achieved, which was

then maintained for a minimum of 5 min. The level of HR on which a subject can continue exercising

for 20 minutes does not reach high level such as a maximum HR. Furthermore, a locomotor cadence

during running is obviously different with each subjects. When the pitch is controlled, the range of

controllable pitch for a long period of running can be restricted within a narrow range. Thus, we set the

level of HR at 150 beats·min−1 and the pitch at 2.5 Hz corresponding to 150 steps·min−1 in order to

solve both problems (i.e. pitch control and HR level). During that period, the treadmill speed ranged

from 100–200 m·min−1 (0 % grade), and the cycling work rate was ranged from 100–180 W.
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Data collection.

Beat-to-beat RR interval (RRI) was measured continuously from a surface electrocardiogram (ECG) by

using standard bipolar leads (CM5). To distinguish the R waves of the QRS complex, the ECG signal

was amplified, filtered (10–300 Hz) (AB-621G, Nihonkoden) and digitized using a 16-bit analog-to-

digital converter (DR-Ma2, TEAC) sampling at 1,000 Hz. To avoid movement artifact, we set filtering

frequency band as ten to 300 Hz. The data were stored on a MS-DOS-formatted magnetic optical disk

for the later analysis. A customized computer (PC9821Xc13, NEC) program detected the occurrence

of the QRS spikes in ECG at a sampling frequency of 1,000 Hz.

To estimate gait cycle (GC), we defined as the interval between the onsets of one muscle contraction

and next muscle contraction. GC was measured continuously from a surface electromyogram (EMG)

from right vastus lateralis muscle by using bipolar leads. Surface electrodes were placed along the

longitudinal axis of the muscle ; the electrodes place was a little to the knee, the electrodes were placed

at approximately 10 cm superior to the head of fibula to avoid EMG baseline agitation by motion of

a leg, the interelectrode distance was about 30 mm, and the earth electrode was placed on the upper

thigh. As with the ECG signal, the EMG signal was amplified, filtered (50–1,000 Hz), digitized using

the analog-to-digital converter and stored on a magnetic optical disk and processed off-line. To obtain

an integrated EMG, the signal was full-wave rectified and smoothed. Because EMG of vastus lateralis

muscle discharges mostly at initial contact of the foot with the treadmill surface, the onset of muscle

contraction was defined as the time at which the integrated EMG increased above a preset trigger level

using the customized computer program.

Data analyses.

The phase difference between cardiac and locomotor rhythms will need to be studied with beat-by-

beat and/or step-by-step analysis over prolonged periods (Kirby et al. 1989b). Consequently, after

removing a small number of abnormal RRIs and GCs, the occurrence of CLS was monitored using

a phase synchrogram (Rosenblum et al. 1998, Schäfer et al. 1999). Each successive QRS spike and

muscle contraction onset was marked as equivalent to one oscillatory cycle, corresponding to which a
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2π increment was added. Within this one oscillatory cycle, the instantaneous phase is

φ(t) = 2π
t − tk

tk+1 − tk
+ 2πk, tk ≤ t < tk+1,

where φ(t) is the instantaneous phase at t, and tk is time of the kth marker event. In this definition, the

phase is a monotonically increasing piecewise-linear function of time defined on a real line. The onset

of muscle contractions were taken for the marker events of the locomotor oscillator. The generalized

relative phase (ΨRR−GC) of the GC for the occurrence of an R wave with respect to one GC was

calculated as follows.

ΨRR−GC =
1

2π
(φGC(tk)mod2π),

where tk is the time of kth occurrence of an R wave, and φGC is the instantaneous phase of GC. The

time trace of ΨRR−GC was visualized by plotting generalized relative phase vs. time (Fig. 1).

[Insert Figure 1 here about]

As mentioned above, our THR was 150 beats·min−1, and the locomotor rhythms, which were controlled

at 2.5 Hz, were 150 steps·min−1 when running and 75 rpm when cycling. In addition, because we used

EMG from only the right vastus lateralis muscle to estimate locomotor rhythms, the estimated rhythm

was 1.25±ζ Hz (ζ is variability of locomotor rhythm). As a result, the 2 : 1 phase synchronization

observed in the phase synchrogram corresponds to 1 : 1 entrainment of cardiac rhythm to locomotor

rhythm as reported by Kirby et al. (1989b, 1992, 1989a, 1993).

We used an index based on conditional probability to characterize synchronization strength

(Stefanovska et al. 2000, Tass et al. 1998). To investigate the strength of the n : m phase synchroniza-

tion between two oscillators, we regarded cardiac rhythm as a faster oscillator, φRR(tk), and locomotor

rhythm as a slower one, φGC(tk). The interval of the faster oscillator φRR, [0, 2πn] was divided into N

bins. The values of φRR(tj) belong to lth bin, and in the case of tk − tp/2 ≤ tj < tk + tp/2, for each j

the distribution is quantified as rl(tk) = 1
Ml(tk)

∑Ml(tk)
i=1 eiφGC(tj). According to the Euler’s formula,

rl(tk)2 =

(

1

Ml(tk)

Ml(tk)
∑

i=1

cosφGC(tj)

)2

+

(

1

Ml(tk)

Ml(tk)
∑

i=1

sin φGC(tj)

)2



Ms # SA 1851/02 – R2: 8

where Ml(tk) is the number of points in the bin at the kth instant. tp is a sliding window period in

which tp = 30 s in this study. Where the phases were completely locked or completely unlocked we

obtain |rl(tk)| = 1 or |rl(tk)| = 0, respectively.

Although an actual R wave occurs only at φRR mod2π = 0, to improve reliability, we also calculated

|rl(tk)| over all bins and averaged them as follows:

λn,m(tk) =
1

N

N
∑

l=1

|rl(tk)|.

Since the purpose of our experiment was to measure the strength of the 2 : 1 phase synchronization

between cardiac and locomotor rhythms when HR approached 150 beats·min−1 while running at 150

steps·min−1 and cycling at 75 rpm, we calculated λ2,1(λ2:1(CLS)).

In this study, we defined CLS as being present when λ2:1(CLS) exceeds 0.8, because when λ2:1(CLS)

continuously exceed 0.8, the phase relationship between cardiac and locomotor rhythms seemed to be

a horizontal alignment. To quantify the characteristics of CLS, we first estimated the duration of CLS

and the strength of CLS. The duration was defined as a period of continuous λ2:1(CLS) > 0.8 throughout

the 10–20 min measurement period. The strength was defined as mean λ2:1(CLS) in the period when

λ2:1(CLS) exceeds 0.8 for the 10–20 min measurement period.

We used the surrogate data technique (Nomura et al. 2001) to determine whether the observed

CLS occurred by chance or whether the two rhythms were linked. If two oscillators are independent,

the phase relationship between them should be the same in surrogate data having the same statistical

characteristics as the original data (Palus and Hoyer 1998). In this case, because the GC time series was

stable throughout the measurement period, it was transformed to surrogate data, which was achieved

by random shuffle, yielding a surrogate in which the mean, variation and histogram were the same as

the original data.

Statistics.

To evaluate heart rate level, mean gait cycle and mean duration of muscle contraction, average of RRI,

GC and duration of muscle contractions during the 10–20 min measurement period were calculated

for all subjects. Also, to compare variation of the locomotor rhythm during cycling and running, the
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standard deviation (SD) of GC time series (SDGC) under both exercise modes was calculated. For the

CLS characteristics, CLS duration and mean λ2:1(CLS) under both exercise modes with the original

and surrogate data were calculated. Data obtained for the characteristics of CLS during running and

cycling tests and with the original and the surrogate data were compared using paired t tests. Values

of P< 0.05 were considered significant.
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RESULTS

There were no significant differences in the mean value of RRI and GC between running and cycling

subjects (Table 1), indicating that the intensity and locomotor rhythms were the same for both exercises.

[Insert Table 1 here about]

Moreover, there was no significant difference between SDGC for the two exercise modes, indicating no

significant effect of exercise mode on the variability of locomotor rhythms. The mean values of RRI of

both exercise modes during the 10–20 min measurement period correspond to about 151 beats·min−1.

There was no significant difference between exercise modes. Although THR was 150 beats·min−1, mean

HR during the 10–20 min measurement period was slightly above THR because there were subjects

whose HR gradually increase near the end of measurement period. However, the mean value of durations

of the contractions of the right vastus lateralis muscle were significantly longer when cycling than when

running (P<0.05).

Fig. 2 shows representative RRI (Fig. 2A and A’) and GC (Fig. 2B and B’) time series, and the

trace of ΨRR−GC (Fig. 2C and C’) recorded from one subject while he was running (Fig. 2A, B and

C) and cycling (Fig. 2 A’, B’ and C’).

[Insert Figure 2 here about]

While the subject was running, three horizontal plateaus in ΨRR−GC were observed after 9–15, 16–18,

and 19–20 min of exercise, indicating the occurrence of CLS, which was about 0.4 and 0.9 of GC (Fig.

2C). GC was not specifically changed during CLS, but remained stable throughout the experimental

period (Fig. 2B); likewise, heart rate variability remained steady during these periods (Fig. 2A).

On the other hand, as a consequence of differences in the phase relationship, ΨRR−GC, CLS occurred

only intermittently during cycling and was not specific for any particular phase (Fig. 2C’). As the GC

time series again remained steady throughout the experimental period (Fig. 2B’), we deduced that, in

this case, CLS occurred when the cardiac and locomotor rhythms intersected during transitions of RRI

(Fig. 2A’).
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We next used the surrogate data technique (Nomura et al. 2001) to determine whether the observed

CLS resulted from entrainment of the cardiac rhythm by the locomotor rhythm, or whether it occurred

when the cardiac and locomotor rhythms approached one another by chance. We found that, during

running, the trace of the original ΨRR−GC showed prolonged periods of CLS (Fig. 3A), whereas the

surrogate data showed no horizontal plateaus in ΨRR−GC together with repetitive phase drifts (Fig.

3B).

[Insert Figure 3 here about]

During cycling, by contrast, there was little difference between the original and surrogate data, and the

trace of the original and surrogate ΨRR−GC showed repetitive phase drifts (Fig. 4A and B).

[Insert Figure 4 here about]

In addition, as a result of changes in the strength of the CLS, λ2:1(CLS) was significantly smaller after

surrogation (Fig. 3C; solid line: original data; dashed line: surrogate data), particularly during the

period spanning min 12 to 14 of the exercise. For the 10–20 min measurement period, the maximum CLS

duration for the original and surrogate data were 294.5 sec and 127.7 sec in the subjects, respectively.

During cycling, by contrast, there were no specific differences in the maximum CLS duration for the

10–20 min of original and surrogate data were 28.6 sec and 28.2 sec, respectively.

For the distribution of ΨRR−GC in the 10–20 min measurement period during running, the histogram

of the original ΨRR−GC showed two peaks at 0.3∼0.4 and 0.8∼0.9 (Fig. 3A the right side). In contrast

with the original data, the peaks in histogram of ΨRR−GC of the surrogate data showed lower (Fig. 3B

the right side). As a result, the distribution of ΨRR−GC in the 10–20 min measurement period during

cycling, there were no specific differences in the histograms of ΨRR−GC of the original and surrogate

data: both histograms showed no any peaks.

When the CLS criterion, which has been conducted by Kirby et al. (1992), was adopted here, the

difference between the original and surrogate ΨRR−GC trace during running observed by our method

became indefinite (Fig. 5).

[Insert Figure 5 here about]



Ms # SA 1851/02 – R2: 12

Also, the frequency ration between heart rate and gait rate, which were determined by 5 s data samples,

showed no difference in CLS between the original and surrogate data during running and cycling.

Finally, Table 2 shows that both the maximum durations of the CLS periods and the total CLS time

were significantly (P<0.05) longer during running than during cycling.

[Insert Table 2 here about]

Furthermore, the mean values of λ2:1(CLS) in the measurement periods was significantly reduced by

surrogation of the data obtained during running (P<0.05), but there were no significant differences

between the original and surrogate data obtained during cycling. Although there was no specific

variation in the mean λ2:1(CLS) among subjects because the value was calculated in the period when

λ2:1(CLS) are more than 0.8 for the 10–20 min measurement period, there was a little variation in

duration of CLS among subjects.
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DISCUSSION

In the present study, we demonstrated that, during running, relatively long periods of phase synchro-

nization between cardiac and locomotor rhythms occurred at specific phases using the phase synchro-

gram, and that the strength of the phase synchronization is diminished significantly after surrogation

of the original data using the surrogate data technique (Nomura et al. 2001) (Fig. 3). During cycling,

by contrast, only comparatively brief, intermittent periods of phase synchronization occurred at no

specific phase, and the strength of phase synchronization was changed little by surrogation (Fig. 4).

This result that the phase difference between cardiac and locomotor rhythms did not hold a specific

phases is in agreement with the findings of Kirby et al. (1989a). It is highly likely that CLS occur-

ring during running results from entrainment of the cardiac rhythm by the locomotor rhythm. During

cycling, by contrast, the phase relationship seems to be due solely to CLS occurring when the cardiac

rhythm approaches the locomotor rhythm by chance.

Methodological considerations

The rationale for using the phase synchrogram to investigate the phase relationship between cardiac and

locomotor rhythms was manifested by Niizeki et al. (1993) and Udo et al. (1990), and was illustrated

by the results of Kirby et al. (1989a). Niizeki et al. (1996) have shown that, during walking, the phase

synchronization between cardiac and locomotor rhythms occurred at the specific phases corresponding

to 0.1∼0.3 and 0.6∼0.8 per interval of the left heel strikes. Our previous study (Nomura et al. 2001)

has shown that, during running, the phase synchronization occurred at specific phases corresponding

to 0.2∼0.4 and 0.7∼0.9 per gait cycle. As shown in the previous studies and the current study (Fig.

3A), during walking and running, the phase synchronization between cardiac and locomotor rhythms

at specific phases indicates that the timing of the muscle contractions corresponded to the end systolic

to early diastolic phase of the cardiac cycle. By contrast, the results of Kirby et al. (1989a), which

during cycling the phase difference between cardiac and locomotor rhythms gradually lengthened and

shortened, is in consistent to our results (Fig. 4A). Consideration about the phase difference between

cardiac and locomotor rhythms was not completed in the frequency ration of heart rate and gait rate,
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which is mean value of brief (5 sec) samples.

The present study demonstrated that using the surrogate data technique (Nomura et al. 2001), during

running, the accidental provability of CLS was rejected but, during cycling, was not rejected. Not all

synchronization phenomena represent entrainment in that synchronization between two rhythms may

occur by chance when one oscillator rhythm is close to that of the other. To solve this problem,

Kirby et al. (Kirby et al. 1992, Kirby et al. 1991) used “cross-over test”, which the cardiac data from

one subject is compared to the locomotor rate data from another. And then, they suggested that

CLS during hopping and skipping (Kirby et al. 1992) and finger tapping (Kirby et al. 1991) were no

statistical significant. Because they defined CLS as being when cardiac and locomotor rate were within

1 % of the closest integer ratio, phase differences between cardiac and locomotor rhythms was not

taken into consideration. As our results, the frequency ration between heart rate and gait rate, which

were determined by means of 5 sec data samples, showed no obvious differences in the integer ration

within 1.0 % each other between the original and surrogate data during running and cycling (Fig. 5).

These results indicate that beat-by-beat and/or step-by-step analysis to relationship between cardiac

and locomotor rhythms is needed to test whether CLS represents an entrainment or if it is accidental.

Although the past studies evaluated the degree of CLS, which was duration (Niizeki et al. 1993) or

incidence (Kirby et al. 1989b, Kirby et al. 1992) of CLS, qualitatively, the current study demonstrated

the duration and strength over 10–20 min of measurement period quantitatively using the λ2:1(CLS)

index. In addition, using of the surrogate data technique and the λ2:1(CLS) index, we determined

the probability of accidental CLS as a function of its duration. The λ2:1(CLS) index detects phase

synchronization at not only specific phases but also any phases, however. Therefore, in addition to use

the λ2:1(CLS) index, evaluation of distribution of ΨRR−GC is also required when the phase difference is

important.

CLS originating directly from active muscles

In the relationship between CLS occurring and vertical acceleration of the body, Kirby et al. (1992)

evaluated CLS during skipping and hopping in human. They suggested that the vertical movements
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of visceral is unimportant to the CLS. As for a difference of exercise mode like running and cycling,

not only the existence of vertical acceleration of the body but the muscle contraction behavior, e.g.

concentric or eccentric, differs. As our result, it was indicated that, during cycling, the duration of

muscle contraction was longer than during running (Table 1). Although differences in the characteristics

of CLS between running (Fig. 3) and cycling (Fig. 4) cannot be explained only from the results of the

current study, one possibility is the difference in the duration of muscle contraction.

According to the concept of peripheral origin, CLS occurs because the afferent signal from active

muscles during voluntary contraction is phase dependent within the cardiac cycle. According to the

study conducted by Niizeki and Miyamoto (1999), it has been speculated that the phase dependency of

the afferent signal from muscle to the CVC via group III fibers would modulate cardiac parasympathetic

nervous (CPN) activity. In that regard, Niizeki et al. (1999, 1998) assessed the effects of the timing

of muscle contraction within the cardiac cycle on heart beat by estimating the phase response curve

for muscle contractions within several cardiac phases. The phase response curve showed that muscle

contractions occurring early phase in the cardiac cycle i.e., during systole provoke a shortening of

RRI, while muscle contractions occurring in the middle or later phase of the cycle i.e., during diastole

provoke a lengthening of RRI. Consequently, the slope of the phase response curve (−2 ∼ 0) in the

mid to latter phase of the cardiac cycle is negative and therefore consistent with the condition of stable

phase synchronization described in the theoretical analysis by Pavlidis (1973). Consistent with those

findings, we observed that CLS during running occurs at 0.4 and 0.9 of GC (Fig. 3A), indicating that

the timing of the muscle contractions corresponded to the end systolic to early diastolic phase of the

cardiac cycle.

On the other hand, Niizeki et al. (1999) also reported that the phase response curve from some

subjects did not exhibit the aforementioned characteristics. They speculated that if the duration of

muscle contraction was comparable to heart beat interval, despite the fact that subjects were asked

to contract impulsively their muscles as rapidly as possible, the phase-dependent heart beat response

to the muscle contraction occurring within the cardiac cycle is considered to be smoothed or averaged

over the duration of the muscle contraction. This might also explain, why, during cycling in the present
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study, CLS was intermittent and occurred at no specific phase; in that case, RRI was approximate

400 msec and duration of muscle contraction was approximate 320 msec corresponded to 80 % of the

cardiac cycle.

If as suggested above CLS is the product of the phase-dependent signaling via group III muscle

afferents to the CVC, and that information in turn plays a role in inhibiting CPN activity (Niizeki and

Miyamoto 1999), this inhibitory effect on CPN activity would likely induce a phase-dependent efferent

signal and would be synchronized to the heart beat. Evidence support such a scenario include the

observations that: 1) stimulation of group III afferent fibers drives the CVC (McMahon and McWilliam

1992, Rowell and O’Leary 1990); 2) with the muscle contracting every two heart beats, the frequency

is too high to transmit an efferent signal via the sympathetic nervous system (Berger et al. 1989); 3)

cardiac responses to sympathetic stimulation are phase-independent (Spear and Moore 1973); and 4)

CPN activity is phase-dependent within cardiac cycle (Levy et al. 1972, Yang et al. 1984). Recently,

Nakamura et al. (1997) found that respiratory sinus arrhythmias (RSA) were decreased with muscle

contraction during inspiration and increased with muscle contractions during expiration. By way of

explanation, they suggested that afferent information from contracting muscle might inhibit the CPN

activity, which is consistent with concept of Niizeki et al. (1999).

CLS of indirect peripheral origin

One alternative explanation for the difference of CLS characteristics could be locomotor-induced changes

in thoracic and abdominal pressures vary the rate of venous return (VR) and/or ventricular ejection

(VE), and thereby influence cardiac rhythm (Simmons et al. 1997). Simmons et al. (1997) observed

the intermittent CLS in trotting dogs, and suggested that the variation in cardiac period and the

resulting intermittent CLS are a function of locomotor and ventilatory influence on VR and/or VE.

They emphasized that the systole of the cardiac cycles began early in support phase of locomotion during

the intermittent CLS. In running mammals, the thoracic is subjected to repeated impact loading as

the limbs strike the ground (Bramble and Carrier 1983). However, there would be little impact loading

in cycling humans. Although, locomotor-induced changes in thoracic and abdominal pressures may
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vary the rate of VR and/or VE in quadrupedal species (Simmons et al. 1997) and running humans,

locomotor-induced changes are expected to be less pronounced in cycling humans.

Another alternative possibility is that respiratory rhythms exert an effect on cardiac rhythm. If

so, CRS would likely be indicative of CLS when LRS occurs during rhythmic exercise. This indirect

peripheral origin hypothesis may explain the difference in the characteristics of CLS seen with run-

ning and cycling because, like CLS, LRS occurs intermittently during cycling but for more prolonged

periods during running (Paterson et al. 1986, Bernasconi and Kohl 1993). In addition, CRS occurs

while individuals are at rest (Kenner et al. 1976, Schäfer et al. 1998, Seidel and Herzel 1998, Galletly

and Larsen 1990). Niizeki et al. (1993) reported that both CLS and LRS occur during walking, when

respiratory and locomotor rhythms are spontaneous; however, LRS was abolished when subjects volun-

tarily synchronized locomotor rhythm to cardiac rhythm. They speculated that to exhibit CLS, LRS

might need to be abolished, but emphasized that this was mere speculation. Since effects of respiratory

rhythm on CLS cannot be determined from the results of the current study, further study would be

needed to test these effects.

CLS of central origin

The cardiac rhythm is modulated by the centrally generated locomotor rhythm. For example, Kawahara

et al. (1993, 1994) reported that heart beat fluctuations are modulated by the frequency of locomotor

rhythm, which is indicated by integrated efferent discharges (time constant 0.1 s) in the hind-limb

muscle nerve during fictive locomotion in decerebrate cats whose hindlimb muscle nerves were dissected

peripherally to eliminate afferent discharge from the muscles. However, although they found a coherence

peak in heart beat fluctuations at a frequency corresponding to the mean stepping frequency, they did

not evaluate the phase relationship between cardiac and locomotor rhythms. Their findings nonetheless

suggest that the modulated heart beats rhythm by locomotor rhythm originates centrally, and is the

product of a direct interaction between the CVC and the CPG, though it is not clear whether or not

CLS occurred. If CLS is originated by the neural circuits in central nervous system, the characteristics

of CLS observed during different exercise modes, which have the same locomotor rhythm and the same
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intensity, may resemble each other.

To address that question, we compared CLS during cycling and running using a protocol in which

the two exercise modes had the same locomotor rhythm and the same intensity. In addition, we used

the surrogate data technique to assess whether the observed CLS resulted from entrainment of cardiac

to locomotor rhythms or from chance. As our results, the characteristics of the observed CLS during

running and cycling were different (Fig. 3, 4 and Table 2). It is, thus, suggested that the concept of

central origin might not be able to explain the CLS that occurs in rhythmically exercising humans.

The locomotor CPG, however, might behave differently depending on the exercise mode. In this study,

there was difference of the duration of muscle contraction between running and cycling.

In conclusion, the present study showed differences between running and cycling in the characteristics

of CLS. These differences may be used to explain the observed difference in the duration of muscle

contraction between two modes of locomotion. For running, the phase dependent afferent signals from

the muscle might influence on CVC and inhibit CPN activity when a relative short duration of muscle

contraction occurs within one cardiac cycle. By contrast, for cycling, because a duration of muscle

contraction is long enough within one cardiac cycle, the phase dependent effect of afferent signals from

the muscle might be smoothed or averaged. Further study are needed to investigate a phase dependent

heart beat response by muscle contractions during running.
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Schäfer C, Rosenblum MG, Abel H, Kurths J (1999), Synchronization in the human cardiorespiratory

system, Phys. Rev. E 60: 857–870.
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Table 1

RR interval, gait cycle and muscle contraction duration during running and cycling.

Run Bicycle

RRI [msec] 396.6±2.5 395.0±3.0

GC

mean [msec] 799.9±1.1 800.2±3.0

SDGC [msec] 18.1±2.2 17.7±4.8

Duration of muscle contraction [msec] 205.6± 20.2 317.0±18.1∗

Treadmill speed [m·min−1] 137.3±48.4 –

Work Rate [W] – 131.8±27.9

Values are group means±SD. RRI, RR interval; GC, gait cycle; SDGC, standard deviation of GC time

series. ∗Significant difference from Run, P < 0.05.
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Table 2

Max duration and total duration of cardio-locomotor synchronization (CLS) and degree of CLS during

running and cycling.

Run Bicycle

Max duration of CLS [sec] 113.6±66.5 58.0±29.3∗

Total duration of CLS [sec] 368.5±113.3 137.2±73.0∗

mean λ2:1(CLS)

org. 0.93±0.02 0.90±0.02∗

sur. 0.92±0.04§ 0.91±0.05

Values are group means±SD. org., the original data; sur., the surrogate data. ∗Significant difference

from Run, P<0.05. §Significant difference from the original data, P<0.05.



FIGURE LEGENDS

Fig. 1 The derivation of cardio-locomotor synchrogram from the phase of locomotor and times of heart

beats (R peaks in the ECG).

Fig. 2 Representative phase relationship between cardiac and locomotor rhythms in one subject.

Shown are the time series of RR interval (RRI) (A, A’), gait cycle (GC) (B, B’) and the trace

of the generalized relative phase difference between cardiac and locomotor rhythms (ΨRR−GC)

(C, C’) during running (A, B, C) and cycling (A’, B’, C’). Note that whereas periods of CLS

are relatively prolonged and occur in certain phases during running, only brief periods of CLS

occurred intermittently and in no specific phase during cycling.

Fig. 3 Comparison of original and surrogate running data. Shown are the trace (left side) and the

distribution (right side) of ΨRR−GC during 10–20 min measurement period from a representative

subject (data in Fig. 1 is from the same subject): (A)original data; (B)surrogate data; (C) time

courses of λ2:1(CLS) for the original (solid line) and surrogate (dashed line) data. Note that after

surrogation CLS was disrupted, and λ2:1(CLS) was diminished, especially after 12–14.5 min of

exercise.

Fig. 4 Comparison of original and surrogate cycling data. Data from the same subject are presented

as in Fig. 2. Note that surrogation had little effect on the data in this case.

Fig. 5 CLS criterion of frequency ration of cardiac and locomotor rhythms. CLS was defined as being

present when he frequency ratio of heart rate (HR) and gait rate (GR), which were determined

by means of 5 s data samples, become integer within 1.0 % of each other. Shown are the time

course of the frequency ration between HR and GR for 5 s data samples every 5 s: (A)running;

(B)cycling for the original (solid line and •) and surrogate (dashed line and ◦) data. Note that

after surrogation had little effect on the data in both exercise modes.
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