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Comparison of Chiller Models for Use in Model-Based Fault Detection 
Priya Sreedharan and Philip Haves 

 
ABSTRACT 

Selecting the model is an important and essential step 
in model based fault detection and diagnosis (FDD). 
Factors that are considered in evaluating a model 
include accuracy, training data requirements, 
calibration effort, generality, and computational 
requirements.  The objective of this study was to 
evaluate different modeling approaches for their 
applicability to model based FDD of vapor 
compression chillers. 

Three different models were studied: the Gordon and 
Ng Universal Chiller model (2nd generation) and a 
modified version of the ASHRAE Primary Toolkit 
model, which are both based on first principles, and 
the DOE-2 chiller model, as implemented in 
CoolToolsTM, which is empirical.  The models were 
compared in terms of their ability to reproduce the 
observed performance of an older, centrifugal chiller 
operating in a commercial office building and a 
newer centrifugal chiller in a laboratory. 

All three models displayed similar levels of accuracy.  
Of the first principles models, the Gordon-Ng model 
has the advantage of being linear in the parameters, 
which allows more robust parameter estimation 
methods to be used and facilitates estimation of the 
uncertainty in the parameter values.  The ASHRAE 
Toolkit Model may have advantages when refrigerant 
temperature measurements are also available.  The 
DOE-2 model can be expected to have advantages 
when very limited data are available to calibrate the 
model, as long as one of the previously identified 
models in the CoolTools library matches the 
performance of the chiller in question. 

INTRODUCTION 

Fault Detection and Diagnosis Fundamentals 
The ability to detect faults in equipment can result in 
reduced energy and maintenance costs and extended 
equipment life.  FDD involves two steps: detecting 
that a fault is present and then isolating and 
diagnosing it.  Faults can be classified as either 
degradation or abrupt faults.  An example of a 
degradation fault is the gradual leakage of refrigerant 
from a chiller or an air conditioning unit.  Model-
based FDD automates the fault detection process, 
reducing the need for manual inspection of 
performance data.  Figure 1 describes the general 
process of model-based fault detection: 
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Figure 1.  Fault detection schematic. 

The inputs are sensor measurements or control 
signals.  The model processes the measured data and 
generates an output, which is then compared to the 
actual output from the system.  Residuals, or 
‘innovations’ that exceed a pre-determined threshold 
indicate the presence of a fault.  The selection of the 
model is an important step that governs the accuracy 
of fault detection.  Three models were studied to 
assess their applicability to model-based FDD of 
chillers. 

Modeling Basics 
Models can be classified into two broad classes: 
empirical (black-box), and analytical (physical or 
first principles). 

Empirical models do not incorporate any kind of 
prior knowledge of the system.  Examples of 
empirical models include polynomial curve fits, and 
artificial neural networks.  An advantage of empirical 
models is that detailed physical knowledge of the 
system is not necessary.  A disadvantage is that the 
model is reliable only for operating points within the 
range of the training data, and extrapolation outside 
this range may lead to significant error.  In order to 
properly train the model, adequate training data are 
required; the richer the data, the more accurate the 
model predictions. 

Analytical or physical models, also known as white-
box models, are largely based on the laws of physics. 
Physical models may require less training data, since 
the model should be valid at all operating conditions 
for which the assumptions inherent in the model are 
valid.  A disadvantage is that a good understanding of 
the physical phenomena is necessary for an accurate 
model, which is not always available.  In practice, a 
model may be partly empirical and partly based on 
first principles (Haves, 1999). 
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Desirable Characteristics of a Model 
The selection of a model is based on a variety of 
criteria.  These include: 

• accuracy 
• calibration effort and training data requirements 
• computational scheme 
• physical relevance of parameters (for physical 

models) 

All but the first require some explanation.  The more 
limited the range of conditions for which training 
data are required, the more quickly and easily these 
data can be obtained.  Although computational load is 
not usually a problem, the estimation of the values of 
the parameters of a model that is both non-linear in 
the inputs and non-linear in the parameters can be 
both slow and uncertain. 

When physical models are used, the parameters 
obtained through calibration should be physically 
meaningful.  For example, if their values suggest the 
presence of a fault, not only is a fault detected, but in 
addition, the cause of the fault may be more easily 
identified. 

Selected Models 
The following steady-state chiller models were 
selected for this study: 

1) ASHRAE Primary Toolkit Model (Bourdouxhe et 
al. 1997) 

2) Gordon-Ng Universal Chiller Model (Ng et al. 
1997) 

3) CoolTools/ DOE-2 Model (PG&E, 2001) 

The first two models were selected because they are 
both physical models, but differ somewhat in their 
formulation and structure.  The Primary Toolkit 
model is a component-based model, whose equations 
are solved iteratively.  The Gordon-Ng Universal 
model uses a systems approach and the model 
structure provides a simple, explicit solution.  The 
DOE-2 model is an empirical model based on 
polynomial curve fits.  Each model is described in 
subsequent sections of the paper. 

All models selected are steady-state models, and 
cannot be applied to data obtained during transient 
operation.  The model selection was limited by the 
kind of measurements and information available for 
the chillers studied.  For example, heat exchanger 
dimensions were not available for the building 
chiller.  Refrigerant temperature and pressure 
measurements were also unavailable for the building 

chiller, and are not generally available on-line,  
although this is slowly changing. 

DESCRIPTION OF DATA 

Laboratory Chiller 
Performance data from a centrifugal, 90 ton (316 
kW) water-cooled McQuay chiller installed in a 
laboratory at Purdue University were collected by 
Comstock et al. (2001) as part of an ASHRAE-
sponsored research project.  The test rig was designed 
to meet the American Refrigeration Institute 
specifications for testing chillers, with the goal of 
simulating the load of a real building.  Water flow 
rates and temperatures were measured on both the 
condenser and evaporator sides.  Temperatures were 
measured by Resistance Temperature Detectors 
(±0.05°F).  Vortex flow meters were used to measure 
the water flow rates (±1%).  The electric power 
consumed by the compressor motor was measured 
using a watt transducer (±1.5%). 

An energy balance was performed, together with an 
uncertainty analysis using the method outlined in 
Figliola (1995).  The uncertainty analysis indicates 
that the observed energy imbalance is not due to 
sensor uncertainty alone.  Furthermore, the energy 
balance shows a significantly stronger correlation with 
the compressor power than with either the evaporator 
or condenser load.  This suggests that the energy 
imbalance is associated with the motor or the 
compressor and could be a result of electromechanical 
losses from the motor to the environment.  The 
correlation of the energy imbalance with compressor 
power is shown in Figure 2. 

Two versions of the laboratory data set were used to 
test the physical models, the original and one in 
which the compressor power measurements were 
reduced by 30%, resulting in an approximately zero 
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Figure 2.  Energy balance vs. compressor power. 
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energy balance.  Equally good fits were obtained with 
each data set, although the values of the parameters 
differ, as discussed below. 

Building Chiller 
Data was collected from an older 225 ton (791 kW) 
Carrier water cooled centrifugal chiller over a period 
of 18 months.  Evaporator and condenser flow rates, 
temperatures, and compressor power were collected 
every minute using high quality sensors.  Water 
temperatures were measured by thermistors 
(calibrated to ±0.008°F), water flow rates by 
magnetic flow meters (±0.5%) and electric power by 
three phase power transducers (±0.2%) (Piette, 1998). 

A simple steady-state filter was developed to remove 
transient data.  In order to produce a representative 
data set for calibration of the models, the entire 
filtered data set was binned by chilled water 
temperature, condenser temperature, and evaporator 
load.  The data in each bin were averaged, and these 
average values comprised the training data. 

An energy balance confirmed that heat losses are 
within 10% of the maximum compressor power and 
2.5% of the evaporator load.  The uncertainty in the 
energy balance due to uncertainty in the 
measurements is ±2.9 kW. 

MODEL DESCRIPTIONS 

ASHRAE Toolkit 
The Toolkit model is a component-based model, the 
components being the evaporator, compressor, 
condenser, and expansion device.  Sensible heat 
exchange is ignored in both the condenser and the 
evaporator, which are modeled using the 
effectiveness-NTU method assuming an infinite 
capacity rate on the refrigerant side.  The 
electromechanical losses from the compressor are 
assumed to be a combination of a constant loss and a 
loss proportional to the compressor power.  These 
losses are assumed to heat the refrigerant sensibly 
before it enters the compressor.  The model assumes 
no energy is lost to the environment.  The Toolkit 
includes reciprocating, screw and centrifugal 
compressor models; the main difference between the 
three is in the equations used to estimate the 
volumetric flow rate through the compressor.  
Compression at full load is assumed to be isentropic 
for all compressor types.  Centrifugal compression is 
assumed to be isentropic at both full and part load.  
The real compressibility factor is used in modeling 
the refrigerant, which is otherwise treated as an ideal 
gas (Bourdouxhe, 1994). 

The ASHRAE Toolkit model was restructured to 
resembled the other models, such that the compressor 
power for a given chiller load is predicted.  With the 
additional input of evaporator load, the model could 
be calibrated using both full-load and part-load data. 
Also, fewer parameters, particularly the compressor 
parameters used to estimate volumetric flow rate, 
need to be estimated. The main physical concepts, 
particularly, the compressor efficiency relationships, 
and heat exchanger models, were retained.  In 
addition, the nested-looped computational scheme 
was made more efficient by replacing the 'one-point 
iteration' method with the secant method. 

Alternative Calibration Method 
The Toolkit includes a  centrifugal chiller calibration 
routine that uses full load data, linear regression, and 
a simple grid-type search method.  A direct search 
method is required because the model is non-linear in 
the parameters and the partial derivatives of the 
function are not easily evaluated.  In the work 
reported here, the Nelder-Mead Simplex method 
(Nelder, 1965) was used to calibrate the model.  The 
root mean square error of the power prediction was 
considered as the objective (error) function.  The 
parameters of the model are the heat exchanger 
conductances (UAe, UAc), the fixed losses from the 
compressor (Wlo) and the fraction representing 
compressor losses proportional to the power (α). 

Gordon-Ng Universal Chiller Model 
The model is based on both energy and entropy 
balances, thus incorporating both the first and second 
laws of thermodynamics.  As in the ASHRAE 
Toolkit model, sensible heat exchange is ignored in 
both the condenser and the evaporator, which are 
modeled using the effectiveness-NTU method 
assuming an infinite capacity rate on the refrigerant 
side.  Heat losses to, and gains from, the environment 
are treated.  The performance equation is expressed 
in a form that is linear in physically meaningful 
parameters. 
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where: 
 
Tei is the evaporator inlet water temperature, 
 
Tci is the condenser inlet water temperature, 
 
COP is the ratio of evaporator duty (kW) to 
compressor power (kW), and 
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Qe is the evaporator duty (kW) 
 
The three performance parameters are: 
 
a) total internal entropy production, ∆ST 
 
b) total heat exchanger ‘thermal resistance,’ 
 

 
pweepwcc cmcm

R
&& εε
11 +=  

(Note that R is not equal to the sum of the reciprocals of the 
conventional UA values but of UA values defined in terms 
of the difference between the inlet water temperature and 
the refrigerant temperature rather than the log mean 
temperature difference.) 

c) equivalent heat leak, 
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where Qleak,e is defined as an energy gain, and 
Qleak,comp is defined as an energy loss. 

The dependence of Qleak,eqv on the condenser and 
evaporator inlet temperatures has a small effect on 
COP for properly operating commercial chillers, 
according to the model's authors.  While the other 
parameters may also have slight dependence on 
temperatures, the authors found that adopting 
constant values resulted in performance predictions 
whose errors are less than the effects of typical 
measurement errors.  The model is calibrated by 
linear regression.  Once calibrated, the equation is 
rearranged to solve for COP or power explicitly. 

Comparison with Toolkit Model 
The Toolkit and Gordon-Ng models are both physical 
models, but differ in their approach and assumptions. 
These are listed in Table 1.  Note that, as mentioned 
earlier, the models also differ computationally, as 
well as in their method of calibration. 

DOE-2 Model Description 
The chiller model used in the DOE-2 building energy 
simulation program is an empirical model that 
predicts chiller power consumption from the 
evaporator outlet and condenser inlet water 
temperatures and the evaporator duty.  The model is 
based on three polynomial curves: 
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Table 1.  Comparison of Physical Model 

Assumptions. 
 

Toolkit Gordon - Ng 

Neglects environmental 
losses in the energy balance 

Includes environmental 
losses in the energy balance 

Assumes isentropic 
compression. 

Estimates entropy 
generation. 

Requires refrigerant  
thermo-physical properties  

Does not require refrigerant 
properties.  

Evaporator and condenser 
water flow rates are treated 
as variables (although the 
effect of flow rate on the 
convective heat transfer 
coefficient, and hence on 
the UA’s, is ignored). 

Evaporator and condenser 
water flow rates are treated 
as constants (and 
incorporated into the 
thermal resistance 
parameter), although there 
is a variable condenser flow 
rate version of the model. 1 

Evaporator and condenser 
UA’s are determined 
separately 

A single effective thermal 
resistance is determined for 
the whole chiller 

Electromechanical losses 
are proportional to the 
compressor power. 

Combined evaporator and 
compressor leaks are 
constant, independent of 
compressor power.  

1 This version is non-linear in the parameters when considering 
variable condenser water flow rate (Gordon, 2000). 

The first curve describes how the cooling capacity of 
the chiller varies at different inlet water temperatures, 
in comparison to the cooling capacity at reference 
conditions, normally 44°F (6.7°C) and 85°F (29.4°C).  
The second curve describes how the full load 
(in)efficiency, defined as power consumption in kW 
per ton of cooling varies with inlet water 
temperatures and the third curve describes how the 
power consumption varies at part load conditions. 

CoolTools is a software package developed by the 
Pacific Gas and Electric Company (PG&E) to 
facilitate calibration of the DOE-2 model.  
Calibration of the DOE-2 model requires full and 
part-load data.  The model can be directly calibrated 
by linear regression if sufficient data are available at 
both full and part load.  Data required are inlet 
evaporator and condenser water temperatures, 
compressor power, and evaporator load.  The 
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parameters for the capacity (CAPFT) and efficiency 
(EIRFT) curves are found using full-load data, while 
the part-load power curve (EIRPPLR) is calibrated 
with part-load data as well. 

Chillers rarely operate at full load in the field.  To 
facilitate the calibration of the DOE-2 chiller model 
from field operating data, the CoolTools project 
collected operating data both at full and part load 
from over 100 chillers and used these data to generate 
a library of curves that is included in the CoolTools 
package.  When limited performance data are 
available, a curve that matches the data can be 
selected from the library, usually resulting in a 
significantly better model than would have been 
obtainable otherwise. 

MODELING RESULTS 

The modeling results are organized firstly by model 
type and secondly by chiller.  A summary of 
parameter values, and r.m.s. error is included at the 
end of this section. 

ASHRAE Toolkit Laboratory Chiller Results 
Table 2 shows the parameter sets that were estimated 
for the ASHRAE Toolkit model from the measured 
performance of the laboratory chiller.  The 
parameters of a minimum.  The model was then 
exercised with a range of heat exchanger parameters, 
while holding the compressor loss parameters at their 
optimized values.  Figure 3 shows the shape of the 
objective function, which follows the expected 
behavior, in that the heat exchanger UAs are 
inversely related.  The sum of the reciprocals of the 
UA’s is approximately constant, indicating that the 
total thermal resistance of the condenser and the 
evaporator is well-defined by the performance data. 

Table 2.  ASHRAE Toolkit Parameters: 
Laboratory Chiller. 

 

Parameter Original Data Adjusted Data 

UAe (kW/K) 68.54 92.49 
UAc (kW/K) 171.36 170.37 

α (−) 0.28 0.0 
Wlo (kW) 26.82 18.09 

 
A comparison of the predicted and measured 
compressor powers is shown in Figure 4.  The root 
mean square (r.m.s) of the absolute prediction errors 
is 1.95 kW and the r.m.s. of the fractional prediction 
errors is 3.69%.  The uncertainty in model 

predictions due to measurement errors in the input 
data is estimated to be 0.83 kW or 1.37%. 

ASHRAE Toolkit Building Chiller Results 

Table 3 shows the parameters that were estimated for 
the ASHRAE Toolkit model from the measured 
performance of the building chiller. Again, the model 
parameters were perturbed to confirm a minimum, 
and the model was exercised with a range of heat 
exchanger UA's, while holding the loss terms at their 
optimized values.  The shape of the objective 
function, shown in Figure 5, is similar to that of the 
lab chiller.  Surprisingly, the UA's are larger for the 
laboratory chiller, although the building chiller has a 
larger capacity (by more than a factor of two). 

Figure 4.  Toolkit model results – laboratory chiller. 
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Figure 3.  Objective function – laboratory chiller. 
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Table 3.  ASHRAE Toolkit Parameters: 
Building Chiller. 

 
Parameter Value 

UAe (kW/K) 54.54 

UAc (kW/K) 135.98 
α (−) 0.00 

Wlo (kW) 41.40 
 

Figure 5.  Objective Function – Building Chiller. 
 

A comparison of the predicted and measured 
compressor powers is shown in Figure 6.  The 
significant discontinuity at 105 kW is found in the 
results from the other models as well.  The high 
power points are distinguished by larger differences 
between the condenser and evaporator water 
temperatures, as shown in Figure 7.  However, the 
expected decrease in efficiency resulting from the 
higher pressure lift is not observed, either in this 

chiller or in the other similar chiller in the building. 
In addition, the condenser water flows, as well as the 
evaporator  water flows, were verified to be constant, 
which is a prerequisite for using these particular 
models. 

The r.m.s. absolute error is 4.09 kW and the relative 
error is 4.82%.  The corresponding uncertainties in 
the model predictions due to measurement errors in 
the input data are 0.32 kW and 0.34%.  This 
uncertainty is particularly small, and is even less than 
the uncertainty in the flow measurement, because it is 
biased towards measurements of low power.  In the 
low power regime, a reduction (or increase) in flow, 
and hence, load, results in a comparatively small 
decrease (or increase) in power since the efficiency 
deteriorates rapidly. 

Gordon-Ng Laboratory Chiller Results 
Table 4 shows the parameter sets that were estimated 
from the measured performance of the laboratory 
chiller. 

Table 4.  Gordon-Ng Parameter Sets: 
Laboratory Chiller. 

 

Parameter Original Data Adjusted Data 

∆ST  (kW/K) 0.080 0.058 

R  (K/kW) 0.079 0.051 

Qleak,eqv (kW) 105.65 35.26 
 
Comparison with Toolkit Model 
As expected, the heat leak term, Qleak,eqv, is 
significantly larger for the original data.  However, 
considering the maximum compressor power is 85 
kW, the original data set heat leak term seems 
unreasonably high.  Ng (1997) determined heat leaks 
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Figure 6.  Toolkit model results – building chiller. 

Figure 7.  Efficiency and temperature lift. 
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on the order of 40% of the maximum compressor 
power for two reciprocating chillers.  The large heat 
leak estimate may be an outcome of the model's 
assumption of constant heat leaks over the operating 
range.  This assumption is not valid for the original 
data, which show that compressor losses are strongly 
dependent on compressor power. 

A comparison of the predicted and measured 
compressor powers is shown in Figure 8.  These 
results showed trends similar to the Toolkit results.  
The r.m.s. absolute error is 2.21 kW and the relative 
error is 3.73%.  The corresponding uncertainties in 

the model predictions due to measurement errors in 
the input data are 0.68 kW and 1.09%. 
 

Gordon-Ng Building Chiller Results 
Table 5 shows the parameter estimates for the 
building chiller. 

Table 5.  Gordon-Ng Parameters: 
Building Chiller 

 

Parameter Value 
∆ST  (kW/K) 0.134 
R  (K/kW) 0.043 
Qleak,eqv (kW) 12.05 

 
Parameter Comparison with Toolkit 
The entropy generation for the building chiller was 
larger than for the lab chiller by 100% for the 
adjusted data, and 50% for the original data.  The 
value for the adjusted data is what would be expected 
for a machine of approximately twice the capacity. 

The estimate of the heat loss parameter is 12 kW, 
which was approximately 7% of the maximum 
compressor power (180 kW).  This value is low 
compared to the 40% obtained by Ng et. al (1997) 
and the even larger fraction found for the laboratory 
chiller.  (Unlike the laboratory chiller, the building 
chiller did not exhibit significant heat losses to the 
environment, as indicated by the heat balance.)  The 
equivalent heat loss term can be compared to the 
compressor loss term obtained in the Toolkit model.  
The compressor losses from the Toolkit model were 
larger than the heat leak estimate from the Gordon-
Ng model, which was not the case with the laboratory 
chiller results. This may be due to the assumption of 
isentropic compression in the Toolkit model; an 
idealization that must be ‘corrected’ with a larger 
compressor loss term. 

Table 6 shows the thermal resistance values 
estimated for the two models and the two chillers. 
The heat exchanger parameters from the Toolkit 
model were used to calculate the equivalent thermal 
resistance as defined in the Gordon-Ng model.  They 
are less than the resistances estimated for the  
Gordon-Ng model, particularly for the original data, 
but as in the results for the Gordon-Ng model, the 
thermal resistance estimated from the original data 
using the Toolkit model is larger than that estimated 
from the adjusted data. 

Table 6.  Thermal Resistance of Physical Models. 
 

Thermal Resistance (K/kW) Toolkit Gordon-
Lab Chiller – Original Data 0.040 0.079 
Lab Chiller – Adjusted Data 0.037 0.051 
Building Chiller 0.034 0.043 

 
As shown in Table 6, the heat exchanger parameters 
for the building chiller estimated using the Toolkit 
model are equivalent to a thermal resistance of 0.034 
K/kW, somewhat less than the 0.043 K/kW obtained 
from the Gordon-Ng model., but these results are 
closer than the results for the lab chiller.  For both the 
lab and building chillers, the thermal resistances 
obtained from the two models are significantly 
different, although the ranking is the same in each 
case.  That is, the thermal resistance for the building 
is less than that of the lab chiller using adjusted data, 
which in turn is less than the thermal resistance for 
the lab chiller using the original data. 

Figure 8.  Gordon-Ng model results:  laboratory chiller. 
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A comparison of the predicted and measured 
compressor powers is shown in Figure 9.  The results 
are similar to those for the Toolkit and show large 
residuals for the same data.  In particular, the 
discontinuity at ~105 kW is similar to that seen in the 
Toolkit results.  The r.m.s. absolute error is 4.01 kW 
and the relative error is 3.86%.  The corresponding 
uncertainties in the model predictions due to 
measurement errors in the input data are 0.37 kW and 
0.40%. 

 
DOE-2 Laboratory Chiller Results 
Figure 10 shows the DOE-2 results for the laboratory 
chiller, obtained by direction calibration.  Compared 
to the physical models, the DOE-2 model shows a 
better fit at high duty and a poorer fit at low duty. 

 

This is a consequence of the calibration method, 
which utilizes full-load and part-load data separately.  
The r.m.s. absolute error is 2.42 kW and the relative 
error is 5.26%.  The corresponding uncertainties in 
the model predictions due to measurement errors in 
the input data are 0.58 kW and 0.99%. 

DOE-2 Building Chiller Results 
Since full load data for the building chiller were 
unavailable, the CoolTools software was used to 
select a chiller curves that have already been fitted to 
the DOE-2 model.  Each parameter set in the library 
is tested using data from the chiller to be calibrated 
and the curve producing the lowest RMSE is 
selected. 

Figure 11 shows a comparison of the measured 
power and the power predicted by the selected 
CoolTools library curve.  The results closely 
resemble the results from the other models. 

The r.m.s. absolute error is 4.24 kW and the relative 
error is 4.03%.  The corresponding uncertainties in 
the model predictions due to measurement errors in 
the input data are 0.37 kW and 0.41%. 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160
Measured Power (kW)

Pr
ed

ic
te

d 
Po

w
er

 (k
W

)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90
Measured Power (kW)

Pr
ed

ic
te

d 
Po

w
er

 (k
W

)

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

Measured Power (kW)

Pr
ed

ic
te

d 
Po

w
er

 (k
W

)

Figure 10.  DOE-2 model results – laboratory chiller. 

Figure 11.  CoolTools model results – building chiller. 

Figure 9.  Gordon-Ng model results – building chiller. 
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Table 7 summarizes the results from this section.. 

Table 7. Summary of Modeling Results. 

Laboratory Chiller 
 

Original 
Data 

Adjusted 
Data 

Building 
Chiller 

r.m.s.e.–TK (kW) 1.95 1.34 4.09 

r.m.s.e.–G-Ng (kW) 2.21 1.38 4.01 

r.m.s.e.–DOE-2 (kW) 2.42 1.92 4.24 

Wlo–TK (kW) 26.82 18.09 41.40 

α − ΤΚ (−−) 0.28 0.00 0.00 

UAe–TK (kW/K) 68.54 92.49 54.54 

UAc–TK (kW/K) 171.36 170.37 135.98 

R–TK (K/kW) 0.040 0.037 0.034 

R–G-Ng (K/kW) 0.079 0.051 0.043 

∆ST  (kW/K) 0.080 0.058 0.134 

Qleak (kW) 105.65 35.26 12.05 
 
DISCUSSION 

The ability of the models to reproduce the observed 
behavior, as indicated by the r.m.s. prediction errors, 
is quite similar.  The similarity of the graphs of 
predicted vs. measured power indicates that the 
dominant sources of error are either in the 
measurements or result from behavior that none of 
the models treat.  The variation in the parameter 
values from model to model and chiller to chiller can 
be explained in terms of the assumptions of the 
models. 

• The isentropic compression assumption in the 
Toolkit model results in a larger estimate for the 
loss term, as compared to the Gordon-Ng model, 
which accounts for entropy generation in 
compression. 

• The Gordon-Ng model's assumption of constant 
heat losses/gains over the operating range results in 
unreasonably large estimates of the leak parameter, 
questioning the ability of this model to treat 
chillers with heat losses proportional to compressor 
power. 

• The Toolkit model, as used in this study, produced 
larger estimates of the heat exchanger coefficients 
(UA's) for the laboratory chiller, although the 
building chiller had a significantly larger cooling 
capacity.  The estimates of thermal resistance, as 
defined in the Gordon-Ng model, were larger for 

the laboratory chiller, though not as large as would 
be expected from the difference in the cooling 
capacities of the two chillers. 

A significant discontinuity in the relationship 
between predicted and measured power was observed 
with all three models.  The chiller appears to perform 
more efficiently than expected at higher loads, 
assuming that the difference between the condenser 
and evaporator water temperatures is a reasonable 
proxy for pressure lift.  Discussion with one of the 
CoolTools developers confirmed that this behavior is 
not observed in the data in the CoolTools library 
(Hydeman, 2001). 

CONCLUSIONS 

All three models displayed similar levels of accuracy. 

Of the first principles models, the Gordon-Ng model 
has the advantage of being linear in the parameters, 
which allows more robust parameter estimation 
methods to be used and facilitates estimation of the 
uncertainty in the parameter values.  The ASHRAE 
Toolkit Model may have advantages when refrigerant 
temperature measurements are also available, since it 
should be possible to predict the expected 
performance of the compressor, condenser and 
evaporator separately with more confidence than has 
been found to be possible with only water side 
thermal measurements.  The DOE-2 model can be 
expected to have advantages when very limited data 
are available to calibrate the model, as long as one of 
the previously identified models in the CoolTools 
library matches the performance of the chiller in 
question. 
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