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We report on tests with a mind typing paradigm based on a P300 brain-computer interface (BCI) on a group of amyotrophic
lateral sclerosis (ALS), middle cerebral artery (MCA) stroke, and subarachnoid hemorrhage (SAH) patients, suffering from motor
and speech disabilities. We investigate the achieved typing accuracy given the individual patient’s disorder, and how it correlates
with the type of classifier used. We considered 7 types of classifiers, linear as well as nonlinear ones, and found that, overall, one
type of linear classifier yielded a higher classification accuracy. In addition to the selection of the classifier, we also suggest and
discuss a number of recommendations to be considered when building a P300-based typing system for disabled subjects.

1. Introduction

Research on brain-computer interfaces (BCIs) has witnessed
a tremendous development in recent years [1] that has
even been covered in the popular media. Although a lot
of research has been done on invasive BCIs, leading to
brain implants decoding neural activity directly, which are
primarily tested on animals, noninvasive BCIs, for example,
based on electroencephalograms (EEG) recorded on the
subject’s scalp, have recently enjoyed an increasing visibility
since they do not require any surgical procedure, and can
therefore be more easily tested on human subjects. Several
noninvasive BCI paradigms have been described in the
literature, but the one we concentrate on relies on event-
related potentials (ERPs, a stereotyped electrophysiological
response to an internal or external stimulus [2]).

One of the most explored ERP components is the P300.
It can be detected while a subject is shown two types of
events with one occurring much less frequently than the
other (“rare event”). The rare event elicits an ERP consisting
of an enhanced positive-going signal component with a
latency of about 300 ms after stimulus onset [2]. In order to
detect ERPs, single-trial recordings are usually not sufficient,
and recordings over several trials need to be averaged: the

recorded signal is a superposition of the activity related to
the stimulus and all other ongoing brain activity together
with noise. By averaging, the activity that is time locked to
a known event (e.g., the onset of the attended stimulus) is
extracted as an ERP, whereas the activity that is not related
to the stimulus onset is expected to be averaged out. The
stronger the ERP signal, the fewer trials are needed, and vice
versa.

There has been a growing interest in the ERP detection
problem, as witnessed by the increased availability of BCIs
that rely on it. A notorious example is the P300 speller
[3], with which subjects are able to type words on a
computer screen. This application meets the BCI’s primary
goal, namely, to improve the quality of life of neurologically
impaired patients suffering from pathologies such as amy-
otrophic lateral sclerosis (ALS), brain stroke, brain/spinal
cord injury, cerebral palsy, muscular dystrophy, and so forth.
But, as it is mostly the case with BCI research, the P300 BCI
has primarily been tested on healthy subjects. Only very few
attempts have been made on patients [4–9]. Several of these
tests on patients [4, 9] deal with P300-based online typing,
however, since only very few patients were tested, it is still an
open question for which patient categories the P300 speller
is best suited.
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Figure 1: (a) Wireless 8 channel amplifier. (b) Locations of the electrodes on the scalp. (c) USB stick receiver. (d) Active electrode.

In addition, the performances of different P300 clas-
sifiers were compared for healthy subjects only, and their
outcomes were found to disagree to some extent. In [10],
a comparison of several classifiers (Pearson’s correlation
method, Fisher’s linear discriminant analysis (LDA), step-
wise linear discriminant analysis (SWLDA), linear support-
vector machine (SVM), and Gaussian kernel support vector
machine (nSVM)) was performed on 8 healthy subjects. It
was shown that SWLDA and LDA render the best overall
performance. In [11], it was shown that, among linear SVM,
Gaussian kernel SVM, multi-layer perceptron, Fisher LDA,
and kernel Fisher Discriminant, the best performance was
achieved with LDA. Based on these studies, albeit different
sets of classifiers were used, one can conclude that linear
classifiers work better than nonlinear ones, at least for the
case of the P300 BCI on healthy subjects. This statement is
also supported by other researchers (e.g., in [12]).

In light of this, and since a classifier comparison has never
been performed on patients, it remains an open question
what is the best classifier in this case. This is indeed an
important question since the P300 responses from healthy
subjects and patients can be quite different [5]. Thus, the
outcome of a comparison for healthy subjects might not be
valid for patients.

In this paper, we report on tests performed on a group
of (partially) disabled patients suffering from amyotrophic
lateral sclerosis (ALS), middle cerebral artery (MCA) stroke,
and subarachnoid hemorrhage (SAH). In addition to the
classifiers mentioned above, we also add two more linear
ones (i.e., Bayesian linear discriminant analysis and a method
based on feature extraction), since they have been used
before in P300 BCIs [7, 13]. In summary, we compare a
more extensive set of classifiers and perform our comparison
on patients, instead of on healthy subjects, both of which
distinguish our study from others.

2. Methods

2.1. EEG Data Acquisition. Our recordings were performed
with a prototype of a miniature EEG recording device
that wirelessly communicates with a USB stick receiver

(Figures 1(a) and 1(c)). The prototype was developed by
imec (http://www.imec.be/) and built around their ultra-low
power 8-channel EEG amplifier chip [14]. The EEG data
were recorded at a sampling frequency of 1000 Hz, which
is fixed by the hardware. A laptop working under Windows
XP SP3 with a bright 15′′ screen was used for the visual
stimulation as well as for EEG data recording, processing and
storing.

We used an electrode cap with large filling holes and
sockets for active Ag/AgCl electrodes (ActiCap, Brain Prod-
ucts, Figure 1(d)). The eight electrodes were placed primarily
on the parietal pole, namely at positions Cz, CPz, P1, Pz,
P2, PO3, POz, and PO4, according to the international 10–
10 system (Figure 1(b)). The reference and ground electrodes
were placed on the left and right mastoids, respectively.

Each experiment started with a pause of approximately
90 s, which is required for the EEG amplifier to stabilize its
internal filters. During this period, the EEG signals were not
recorded. The data for typing each character (see Section 2.3
for details) were recorded in one session. As the duration of
each session is known a priori, as well as the data transfer rate,
it is easy to estimate the amount of data transmitted during a
session. We used this estimate, increased by a 10% margin,
as the size of the serial port buffer. To make sure that the
entire recording session for one character fits completely into
the buffer, we cleared the buffer just before recording. This
strategy allowed us to avoid broken/lost data frames, which
might occur due to a buffer overflow. The EEG data frames
were only in rare cases lost during wireless transmission:
under normal experimental conditions, the data loss is
negligible (<0.01%) and never more than a few consecutive
samples, which could be (linearly) reconstructed from the
successfully received ones. The amount of broken/lost frames
can be precisely computed using the counter incorporated
into each data frame.

2.2. Data-Stimuli Synchronization. Unlike a conventional
EEG system, the system we used does not have any external
synchronization inputs. We used a synchronization scheme
based on the high-precision timestamps of the stimulus
onsets (during stimulation). The timestamps are obtained
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Figure 2: Typing matrix of the P300 speller. Rows and columns are intensified in random order; one trial consists of the intensifications all
six rows and all six columns. The intensification of the third column (a) and of the second row (b) are shown.

using the high-resolution system performance counter (via
QueryPerformanceCounter system call), which allows to
achieve microsecond resolution. We save the timestamps of
the EEG acquisition session start and end, as well as the
timestamps of the stimulus onsets and offsets. Due to the
fact that the EEG signal has a constant sampling rate, and
assuming a constant (virtual) serial port latency, the precise
mapping between the timestamps and the corresponding
EEG data samples is straightforward. We used this mapping
for partitioning the EEG signal into signal segments, for
further processing. To eliminate the unwanted load of the
computer system, all recordings were done on a PC working
in a special (“experimental”) hardware profile, which has a
minimal set of running services and devices. Additionally, we
have raised the priority of the application, responsible for the
visual stimulation and EEG data acquisition/processing, to
the “high” level.

2.3. Experiment Design. Twelve subjects, naı̈ve to BCI appli-
cations, participated in the experiments (ten male and
two female, aged 37–66 with an average age of 51.25).
The subjects were suffering from different types of brain
disorders. The experimental protocol was approved by the
ethical committee. After the recordings were made, four
subjects were excluded from the classifier comparison, since
their performance was close to chance level, possibly due
to the nature of their brain disorder, or because they did
not properly understand the experiment or were too tired
to perform the task. The information about the patients, of
which the recordings were further considered, that is, their
diagnosis, age, and gender, is presented in Table 1.

We have used the same visual stimulus paradigm as in the
first P300-based speller, introduced by Farwell and Donchin
in [3]: a matrix of 6 × 6 characters. The only difference is
with the character set: in our case, it is the usual set of 26
Latin characters, eight digits, but with two special characters
(“ ” instead of space and “¶” as the end of input indicator).
Additionally, for some subjects, the Cyrillic alphabet was
used. Each experiment was composed of one training and

several testing stages. During both stages, columns and rows
of the matrix were intensified (see Figure 2) in a random
manner. The duration of the intensification was fixed to
100 ms, followed by 100 ms of no intensification. Each
column and each row flashed only once during one trial, so
each trial consisted of 12 stimulus presentations.

During the training stage, 11 characters, taken from
the typing matrix, were presented to the subject. For each
character, 10 intensifications for each row/column were
performed. The subjects were asked to mentally count the
number of intensifications of the intended character. The
counting was used only to ensure that the participants paid
attention.

The recorded data was filtered (in the 0.5–15 Hz fre-
quency band with a fourth-order zero-phase digital But-
terworth filter) and cut into signal segments. Each of
these segments consisted of 1000 ms of recording, starting
from the stimuli onsets. Then, they were downsampled,
by retaining every 25th sample, and assigned to one of
two possible groups: target and nontarget, according to the
stimuli that they were locked to. For training the classifier,
we constructed a set of 1000 target, and the same amount
of nontarget averaged brain responses, where the averages
were taken based on k randomly selected responses from the
corresponding groups in the training set. The number k was
equal to the number of intensification sequences (trials), for
each stimulus, during the testing stage.

Signal amplitudes at specific time instants in the interval
100–750 ms after stimuli onset, of the downsampled EEG
signal, were taken as features. All these features were
normalized to their Z score through the estimation of fn,t =

(xn(t) − xn(t))/σxn(t), where xn(t) is the EEG amplitude
of nth channel (electrode) at time t, after stimulus onset,
xn(t) the average of xn(t), and σxn(t) the standard deviation
for all training examples of both the target and nontarget
recordings of the training set. When combining all those

features, we obtained a feature vector f = [ f1, . . . , fN ]T ,
which was used as input to either the linear classifier w1 f1 +
w2 f2 + · · · + wN fN + b = wT f + b (see further) or the
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Table 1: Information about the patients.

Patient ID Age Gender Diagnosis

Subject 1 43 M
Amyotrophic lateral sclerosis. Moderate bulbar palsy. Severe weakness of
upper and lower limbs and spasticity in lower limbs.

Subject 2 51 M Right MCA stroke with hypertension (stage II) and mild left hemiparesis.

Subject 3 58 M
Spontaneous SAH and secondary intracerebral hemorrhage in the right
hemisphere with hypertension (stage III) and severe left hemiparesis.

Subject 4 54 F Left MCA stroke with mild motor aphasia and right hemiparesis.

Subject 5 52 M Posterior circulation stroke. Right hemiparesis with dysarthria.

Subject 6 54 M Left MCA stroke with right hemiparesis and motor aphasia.

Subject 7 36 M Acute left MCA stroke with partial motor aphasia, right hemisensory loss.

Subject 8 65 M Right MCA stroke with hypertension (stage III) and mild left hemiparesis.

nonlinear one, y(f , w, b). Since we use Z scores as features,
and since we use a balanced training set (equal numbers of
target and nontarget responses), the parameter b should be
close to zero. After substituting the feature vector f into the
above-mentioned equation, we obtain a “distance” from the
point in feature space to the boundary (hyperplane in the
linear case), separating the target from the nontarget class,
with the sign indicating to which class the point belongs.

After training the classifier, each subject performed
several online test sessions during which (s)he was asked to
mind-type a few words. In the case of a mistyping, (s)he
was instructed to type further without trying to correct
the mistake (“backspace” was not allowed). The typing
performance (ratio of correctly typed characters) was used
for estimating the classification accuracy. For these online
test sessions, we considered a linear SVM classifier trained
on data averaged over 15 trials. Thus, each subject attempted
to type characters based on 15 row/column intensifications.
About 36 characters were typed by each subject. This number
slightly varied between subjects, since some subjects chose
the characters to spell themselves (free spelling). During
typing, the EEG data was stored for further (offline) analysis
based on a smaller amount k of trials (in this case we used
all k-combination of 15 trials for each typed character, for
assessing the accuracy).

The testing stage differs from the training stage by the
way the signal segments were grouped. During training, the
system “knows” exactly which one of 36 possible characters
is attended by the subject at any moment of time (copy
spelling). Based on this information, the collected signal
segments can be grouped into only two categories: target
(attended) and nontarget (not attended). However, during
testing, the system does not know which character is attended
by the subject, and the only meaningful way of grouping is by
stimulus type (which in the proposed paradigm can be one
of 12 types: 6 rows and 6 columns). Thus, during the testing
stage, for each trial, we had 12 segments (from all 12 types)
of 1000 ms EEG data recorded from each electrode. The
averaged EEG response for each electrode was determined for
each stimulus type. The selected features of the averaged data
were then fed into the classifier (see Section 3). As a result,
the classifier produces 12 (for each row/column) values
(c1, . . . , c12) which describe the distance to the class boundary

in the feature space, together with the sign. The row index
ir and the column index ic of the classified character were
calculated as

ir = arg max
i=1,...,6

{ci}, ic = arg max
i=7,...,12

{ci} − 6. (1)

The character at the intersection of the ithr row and ithc column
in the matrix was then taken as the result of the classification
and presented, as a feedback, to the subject, in online mode.

3. Classification Methods

3.1. Fisher’s Linear Discriminant Analysis. Fisher’s linear
discriminant analysis (LDA) is one of the most widely used
classifiers in P300 BCI systems [10, 15]. It was reported
to even outperform other classifiers [11]. Its main idea is
to find a projection from the N-dimensional feature space
onto a one-dimensional space wT f for which the ratio of
the variance between the two classes (target and nontarget)
versus the variance within the classes is maximal. This
“optimal” projection is estimated as w = (Σ−1 +Σ+1)−1(µ+1−

µ−1), where Σ and µ define the covariances and the means
of the two classes (target and nontarget) that need to be
separated.

3.2. Stepwise Linear Discriminant Analysis. Stepwise linear
discriminant analysis (SWLDA) has been used in patient
studies of the P300 BCI speller [4, 5]. It can be considered as
an extension of the LDA with an incorporated filter feature
selection. SWLDA adds and removes terms from a linear
discriminant model, based on their statistical significance in
regression, thus, producing model that is adjustable to the
training data. It was shown that SWLDA performs equally
well or even better than several other classification methods
in P300 BCIs [10]. For our comparison, we have used the
same procedure as in [10] (in the forward step, the entrance
tolerance P-value < 0.1; in the backward step, the exit
tolerance P-value > 0.15). The process was iterated until
convergence, or until it reached a predefined number of 60
features.

3.3. Bayesian Linear Discriminant Analysis. Bayesian linear
discriminant analysis (BLDA) has been used in P300 BCI
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Figure 3: Classification accuracy as a function of the number of intensifications, for every subject, and for all considered classifiers: Bayesian
linear discriminant analysis (BLDA), Fisher’s linear discriminant analysis (LDA), stepwise linear discriminant analysis (SWLDA), a method
based on feature extraction (FE), linear support vector machine (SVM), multilayer perceptron (NN), and Gaussian kernel support vector
machine (nSVM).

patient studies [7]. It is based on a probabilistic regression
network. Suppose that the targets ti (in the case of a
classification problem these are +1 and −1) are linearly

dependent on the observed features f i = [ f i1 , . . . , f iN ]T with
an additive Gaussian noise term εn: ti = wT f i + εi. Assuming
further an independent generation of the examples from
a data set, the likelihood of all data is p(t |w, σ2) =
∏N

i=1(2πσ2)−1/2 exp(−(ti −wT f i)2/2σ2). Additionally to this,
we have to introduce a prior distribution over all weights as
a zero-mean Gaussian

p(w | α) =
n
∏

j=1

(

α

2π

)1/2

exp

(

−
α

2
w2

j

)

. (2)

Using Bayes’s rule, we can define the posterior distribution

p
(

w | t, α, σ2
)

=
p
(

t | w, σ2
)

p(w | α)

p(t | α, σ2)
, (3)

which is a Gaussian with mean µ = (FTF + σ2αI)
−1

FT t and

covariance matrix Σ = σ2(FTF + σ2αI)−1, where I is the
identity matrix, F a matrix with each row corresponding to
a training example in feature space, and t a column vector
of true labels (classification) for all corresponding training
examples. As a result, our hyperplane will have the form
µT f . This solution is equivalent to a penalized least square

estimate E(w) = (1/2σ2)
∑N

i=1(ti − wT f i)2 + (α/2)
∑n

j=1 w
2
j

[16]. Regression parameters (σ2 and α) are tuned with an
automatic, iterative procedure [7].

3.4. Linear Support Vector Machine. In P300 BCI research,
the linear support vector machine (SVM) is regarded as one
of the more accurate classifiers [10, 17]. The principal idea of
a linear SVM is to find the separating hyperplane, between
two classes, so that the distance between the hyperplane
and the closest points from both classes is maximal. In
other words, we need to maximize the margin between
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Figure 4: Average classification accuracy as a function of the
number of intensifications for all considered classifiers.

the two classes [18]. Since it is not always the case that
the two classes are linearly separable, the linear SVM idea
was also generalized to the case where the data points are
allowed to fall within the margin (and even are on the wrong
side of the decision boundary) by adding a regularization
term. For our analysis, we used the method based on linear
least squares SVM [19] to solve the minimization problem

minw,b,e((1/2)wTw)+γ
∑N

i=1 e
2
i with respect to yi(wT f i+b) =

1−ei, i = 1, . . . ,n, where f i corresponds to the training points
in the feature space, and yi is the associated output (+1 for
the responses to the target stimulus and−1 for the nontarget
stimulus). The regularization parameter is estimated through
a line search on cross-validation results.

3.5. Nonlinear Support Vector Machine. Here, we used a
support vector machine with the Gaussian radial-basis
function K(f i, f j) = exp(−γ‖f i − f j‖2), γ > 0, as a kernel.
In our experiment, we opted for the SVMlight package
[20]. The SVM’s outcome, for a new sample, is a value for
y(f , w, b) =

∑n
i=1 wiyiK(f , f j) + b, where f j are the support

vectors chosen from the training set with known class labels
yi ∈ {−1, 1}, and where wi are Lagrange multipliers. The
sign of y(f , w, b) estimates the class the sample f belongs to.
For our nSVM classifier, a search through pairs (C, γ) (where
C is the regularization parameter and γ the kernel parameter)
was performed using a 5-fold cross-validation on the grid
(C, γ) : [2−5, 2−2, . . . , 216]× [2−15, 2−12, . . . , 26].

3.6. Method Based on Feature Extraction. Another linear
classifier used in P300 BCI research [13] relies on the one-
dimensional version of the linear feature extraction (FE)
approach proposed by Leiva-Murillo and Artès-Rodriguez in
[21]. The method searches for the “optimal” subspace max-
imizing (an estimate of) the mutual information between

the set of projections Y = {wT f i} and the set T of
corresponding labels ti = {−1, +1}. According to [21], the
mutual information between the set of projections Y and the
set of corresponding labels C can be estimated as I(Y ,C) =
∑Nt

p=1 p(tp)(J(Y | tp) − log σ(Y | tp)) − J(Y), with Nt = 2
the number of classes, Y | tp the projection of the pth class’
data points onto the direction w, σ(·) the standard deviation,
and J(·) the negentropy, estimated using Hyvärinen’s robust
estimator [22].

3.7. Artificial Neural Network. For comparison’s sake, we also
consider a multilayer feed-forward neural network (NN)
with a single hidden layer and with sigmoidal activation
functions, which is proved to be a universal approximator
[23]. Thus, our classifier has the form

y(f , w, b) =
M
∑

i=1

w2
i F

⎛

⎝

N
∑

j=1

w1
ji f j + bi

⎞

⎠ + b, (4)

where M is the number of neurons in the hidden layer, with
sigmoidal activation functions F(t) = 1/(1 + exp(t)), N the
number of observed features, b = {b1, . . . , bN , b} and w =

{w2
1 , . . . ,w2

M ,w1
11, . . . ,w1

NM} sets of thresholds and weight
coefficients, respectively. The latter were optimized using
a training procedure based on the Levenberg-Marquardt
back propagation method, where the desired outcome of the
neural network was set to +1 or −1 (target or nontarget),
depending on the class the individual training example
belongs to. Since such a network has NM+2M+1 parameters
to be trained, it can easily overfit the training data in the
case of a large number of features (N), and a large number
of hidden layer neurons (M). To avoid this, we performed a
5-fold cross-validation with a line search for the number of
hidden neurons M = 1, . . . , 20. The network with the best M
was further retrained on the whole training set.

4. Results

The data was recorded during the online typing of words/
characters (in copy spell and in free spell mode). In order
to assess the classification performance of all classifiers
considered, we opted for an offline analysis, in which case
we also evaluated the performance for a smaller amount of
intensification sequences k. This became possible since our
online spelling was performed with 15 intensifications of
each row and column for any character to be typed. This
also allowed us to construct a larger amount of test data
for k < 15. This was done by taking combinations of k
elements from the available 15 responses for each row and
column.

The performance results are shown in Figure 3 for each
individual patient, and the averaged performance result
in Figure 4, averaged over all subjects. In order to verify
the statistical significance of the comparison, we used a
repeated-measures two-way ANOVA (with “method” and
“intensification sequences” as factors) with Greenhouse-
Geisser correction (P < 0.001 for factor “method”) and
with post hoc multiple comparison based on Turkey LSD
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Figure 5: Distribution (percentage with respect to all typed characters) of the P300 speller outputs for k = 10 intensifications. Cells with zero
coordinates correspond to correctly spelled characters, while other cells show the results of mistyping. The coordinates of those cells indicate
the relative positions of the mistyped and intended characters. The presented results are for the Bayesian linear discriminant analysis (BLDA),
the Fisher’s linear discriminant analysis (LDA), the stepwise linear discriminant analysis (SWLDA), a method based on feature extraction
(FE), the linear support vector machine (SVM), the multilayer perceptron (NN), and the Gaussian kernel support vector machine (nSVM).

test for pairs of all methods. We found that the accuracy
of a BLDA in general is significantly (P ≤ 0.02) better
than that of any other classifier except the Gaussian kernel
SVM (nSVM versus BLDA has P = 0.227), since the later,
for some subjects, and for some numbers of intensifications
k, yielded on average better results. Both the linear and
nonlinear SVM’s (for which the results do not show any
significant difference) were second best. As for SWLDA and
LDA, which ranked third, SWLDA performs slightly better,
but not in a significant way. The worst results are obtained for
the feature extraction (FE) method and the multilayer feed-
forward neural network (NN).

We have also analyzed the distribution of the erroneously
typed characters (see Figure 5). We have found that, for
all classifiers, the misclassifications mostly occur for either
a row or a column in close proximity to the ones of the
intended characters (represented at the center of the plot). To
investigate any possible differences in the error distributions
for each of the considered classifiers, we computed the
horizontal (for the columns) and the vertical (for the rows)
standard deviations (std) between the typed and the intended
characters, and plot this as a function of the number of
intensifications (Figure 6). The BLDA classifier for the case
of the rows and BLDA together with nSVM for the case of



8 Computational Intelligence and Neuroscience

BLDA LDA SWLDA FE SVM NN nSVM

0.6

0.5

0.4

0.3

0.2

0.1
2 4 6 8 10 12 14

Intensification sequence

st
d

Vertical
0.6

0.5

0.4

0.3

0.2

0.1
2 4 6 8 10 12 14

Horizontal

Intensification sequence

st
d

Figure 6: Standard deviations of the vertical distance (left panel) and horizontal distance (right panel) between the typed and desired
characters, as a function of the number of intensifications, for each considered classifier: Bayesian linear discriminant analysis (BLDA),
Fisher’s linear discriminant analysis (LDA), stepwise linear discriminant analysis (SWLDA), a method based on feature extraction (FE),
linear support vector machine (SVM), multilayer perceptron (NN), and Gaussian kernel Support Vector Machine (nSVM).

the columns yield, in general, the smallest std, suggesting
that those classifiers lead to less wrong answers. In order
to verify the statistical significance of the comparison, we
used a repeated-measures three-way ANOVA for std using
the following factor levels: “method” (with further post
hoc multiple comparison of all pairwise combinations of
classifiers), “direction” (with two levels for this factor,
corresponding to rows and columns), and “intensification
sequences” (15 levels). We found that the distribution of
mistakes around the intended character, based on BLDA,
is, in general, significantly (P ≤ 0.03 for factor “method”)
smaller than for any other classifier, except for nSVM (nSVM
versus BLDA has P = 0.0829). This suggests that the BLDA,
in general, not only yields a better accuracy, but also leads
to a smaller divergence in mistakes. We also observe that
the vertical standard deviation is in general smaller than the
horizontal one (P ≤ 0.05 for factor “direction”), particularly
for the most accurate classifiers and, especially, after more
than 5-6 intensification sequences. For example, for BLDA
(fixing this level of factor “method” in previous model), this
difference is significant with P ≤ 0.02.

5. Discussion

Our comparison indicates that, in general, nonlinear classi-
fiers perform worse or equal to linear ones. This is in accor-
dance with other studies [10–12], which were performed
on healthy subjects. This could be due to the tendency of
nonlinear classifiers to overfit the training data, leading to an
inferior generalization performance. It is mostly relevant for
the multilayer feed-forward neural network, since the kernel
SVM is known to properly deal with high dimensional data
and small training sets [18]. In our study, the Gaussian kernel
SVM generates a result that is not significantly different from

its linear counterpart, but at the expense of an exhaustive
grid search. From this, we recommend a linear classifier for
a P300 spelling systems for patients, also since, to support
its online applicability, we have to minimize the classifier’s
training time.

Among all classifiers the Bayesian linear discriminant
analysis (BLDA) yields superior results, with the SVM as the
second best, at least for the group of patients considered
in our comparison. While a SVM is constructed so as to
maximize a margin between the two classes, the BLDA tries
to maximize the probability of having training data with the
correct class labels. Since both classifiers depend on some
regularization parameters, their optimal choice increases the
generalization accuracy. This optimization enables us to
achieve better results for the P300 speller based on SVM
and BLDA. While in SVM, the parameter optimization is
done with a search through a discrete set of parameters, in
the framework of a cross-validation (thus, depending on the
search algorithm, and the resolution of the discretization),
BLDA includes a self-adjustment of its parameters via an
automatic, iterative procedure. On the other hand, BLDA
relies on assumed distributions of the classification errors
and of the used parameters.

From the obtained classification results, we observe
that different classifiers lead to different accuracies. On the
one hand, this shows the necessity to properly choose the
classifier for the intended P300 BCI application. But on the
other hand, this diversity in results could be turned into
a benefit by combining different classifiers in a co-training
approach [15], to improve the classification performance.

For the validation of the performance of the classifiers
and their comparison, we used as features the amplitudes of
the filtered EEG signals from different electrodes. This led
to satisfactory results for healthy subjects (see, e.g., [17]).
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Figure 7: Classification accuracy based on BLDA for every subject as a function of the center of the 50 ms interval from which the features
for classification were taken. Consecutive interval centers are spaced by 25 ms.

Nevertheless, the accuracy could potentially be improved by
adding other features such as time-frequency ones, from a
wavelet transform [24], synchrony between EEG channels
[25], and the direction and speed of propagating waves
[26].

In our experiments, we used electrodes placed at posi-
tions Cz, CPz, P1, Pz, P2, PO3, POz, and PO4, which
include the parietal ones for which the P300 component
is known to be most prominent, but we also added more
posterior positions, as suggested in [7, 27–29] where it
was shown that the decoding accuracy increases due to
the negative-going component, appearing over the posterior
areas, prior to the P300 component. To incorporate this
additional early information into the decoding process, we
used the interval starting 100 ms after stimulus onset. The

negative-going component, called N2 in [30], was shown by
these authors to be important for the P300 speller, even if
the subject only covertly attended the intended target. Thus,
for patients, when experiencing problems with eye gazing,
the early negative component recorded over the posterior
positions seems to be beneficial.

To validate the added value of the different ERP
components into the decoding performance, we estimated
the classification accuracy in the P300 speller with 15
intensification sequences and the BLDA classifier, for each
patient separately, and for the features taken from 50 ms
time intervals (the centers of these intervals were spaced by
25 ms). The classification results are shown in Figure 7, and
the averaged ERP waveforms in Figure 8, for electrode POz.
The results suggest that the early ERP components should,
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Figure 8: Averaged ERP to target (blue solid line) and nontarget (red dashed line) stimuli for all considered subjects. Baseline correction
was performed on the basis of the 150 ms pre-stimulus interval. Zero time corresponds to the stimulus onset. Visible 5 Hz oscillations are
due to the stimulation rate.

for some of our patients, also be considered as features for
decoding.

The analysis of the distribution of the mistyped char-
acters (Figure 5) suggests that mistakes mostly occur due
to a wrongly selected row or column in the typing matrix.
Furthermore, we found that the incorrectly typed characters
are mostly close to the intended ones. This could, probably,
be due to the fact that the subject sometimes gets distracted
by the flashing of a column or row adjacent to one containing
the intended character. Or, it could be that the intensification
of the row/column containing the intended character is
immediately preceded or followed by an intensification
of an adjacent row/column, leading to a decreased P300
response. As a recommendation, one should try to avoid the
consecutive intensifications of adjacent rows/columns. But
this is hard to achieve in a row/column paradigm, since in
a free spelling mode we do not know a priori the character
that the subject wants to communicate. Additionally to this,
based on the fact that mistakes mostly occur along the row
or column containing the desired character, we can try to use
some smart scrambling of the intensifications where, instead

of a whole row or column, constellations of individual
characters, spread over the entire matrix, are intensified. The
design of the proper stimulation paradigm as in, for example,
[31] is the subject of further research.

Another way to improve the typing performance is by
incorporating the detection of the Error Potential (ErrP) [32,
33] into the P300 speller paradigm. The ErrP is evoked when
the subject perceives a wrong outcome of the BCI system.
When the ErrP is detected, we can take the second most
likely character (e.g., the row or the column with the second
largest distance to the classification boundary) for correcting
the classifier’s outcome. Since mistakes are expected to occur
in a row or column adjacent to that of the desired character
in the matrix (see Figure 5), we can also apply weights to
the previous distances (e.g., by inversely relating them to the
distance, in the matrix, to the mistyped character).

The typing accuracies achieved by our patients revealed
a large variability. While subjects 2 and 8 could achieve
an almost perfect typing performance for already k = 10
row/column intensifications, subjects 4 and 7 achieved the
worst accuracy (around 50% after k = 15 intensifications,
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with a chance level of 100/36 = 2.7%). As can be seen from
Table 1, the latter subjects suffered from some form of motor
aphasia (as was also the case with three of the four subjects
excluded from the classifier comparison study because of bad
classification performance (see Section 2.3)). Motor aphasia
is known to deteriorate the visual verbal P300 latency more
than the visual nonverbal one [34], possibly explaining the
inferior performance achieved with these patients. The effect
on the P300 speller should be examined further in a study
specifically designed for motor aphasia patients.

6. Conclusions

We have compared five linear and two nonlinear classifiers in
a P300 BCI speller tested on stroke and ALS patients. We have
found that the BLDA classifier performs the best, followed by
the (non)linear SVM. These results could be helpful to decide
what classifier to use for stroke and ALS patients. Finally,
we also listed and discussed a number of recommendations
for adjusting the P300 speller paradigm to stroke and ALS
patients.
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