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1. Introduction

Today, the majority of color cameras are equipped with a single CCD (Charge-

Coupled Device) sensor. The surface of such a sensor is covered by a color filter array

(CFA), which consists in a mosaic of spectrally selective filters, so that each CCD ele-

ment samples only one of the three color components Red (R), Green (G) or Blue (B).

The Bayer CFA is the most widely used one to provide the CFA image where each pixel

is characterized by only one single color component. To estimate the color (R,G,B) of

each pixel in a true color image, one has to determine the values of the two missing co-

lor components at each pixel in the CFA image. This process is commonly referred to

as CFA demosaicing, and its result as the demosaiced image. In this paper, we propose

to compare the performances reached by the demosaicing methods thanks to specific

quality criteria.

An introduction to the demosaicing issue is given in section 2. Besides explaining

why this process is required, we propose a general formalism for it. Then, two ba-

sic schemes are presented, from which are derived the main principles that should be

fulfilled in demosaicing.

In section 3, we detail the recently published demosaicing schemes which are re-

grouped into two main groups : the spatial methods which analyze the image plane

and the methods which examines the frequency domain. The spatial methods exploit

assumptions about either spatial or spectral correlation between colors of neighbors.

The frequency-selection methods apply specific filters on the CFA image to retrieve

the color image.

Since these methods intend to produce “perceptually satisfying” demosaiced images,

the most widely used evaluation criteria detailed in section 4 are based on the fidelity

to the original images. Generally, the Mean Square Error (MSE) and the Peak Signal-

to-Noise Ratio (PSNR) are used to measure the fidelity between the demosaiced image

and the original one. The PSNR criterion cannot distinguish the case when there are
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a high number of pixels with slight estimation errors from the case when only a few

pixels have been interpolated with severe demosaicing artifacts. However, the latter

case would more significantly affect the result quality of a low-level analysis applied

to the estimated image. Therefore, we propose new criteria especially designed to de-

termine the most effective demosaicing method for further feature extraction.

The performances of the demosaicing methods are compared in section 5 thanks to

the presented measurements. For this purpose, the demosaicing schemes are applied to

twelve images of the benchmark Kodak database.
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2. Color Demosaicing

Digital images or videos are currently a preeminent medium in environment per-

ception. They are today almost always captured directly by a digital (still) camera,

rather than digitized from a video signal provided by an analog camera as they used to

be several years ago. Acquisition techniques of color images in particular have invol-

ved much research work and undergone many changes. Despite major advancements,

mass-market color cameras still often use a single sensor and require subsequent pro-

cessing to deliver color images. This procedure, named demosaicing, is the key point

of our study and is introduced in the present section. The demosaicing issue is first

presented in detail, and a formalism is introduced for it.

2.1. Introduction to the Demosaicing Issue

The demosaicing issue is here introduced from technological considerations. Two

main types of color digital cameras are found on the market, depending on whether they

embed three sensors or a single one. Usually known as mono-CCD cameras, the latter

are equipped with spectrally-sensitive filters arranged according to a particular pattern.

From such color filter arrays (CFA), an intermediate gray-scale image is formed, which

then has to be demosaiced into a true color image.

In the first subsection are compared the major implementations of three-CCD and

mono-CCD technologies. Then are presented the main types of colors filter arrays re-

leased by the various manufacturers. Proposed by Bayer from Kodak in 1976, the most

widespread CFA is considered in the following, not only to formalize demosaicing but

also to introduce a pioneer method using bilinear interpolation. This basic scheme ge-

nerates many color artifacts, which are analyzed to derive two main demosaicing rules.

Spectral correlation is one of them, and will be detailed in the last subsection. The

second one, spatial correlation, is at the heart of edge-adaptive demosaicing methods,

that will be presented in the next section.

2.1.1. Mono-CCD vs. Three-CCD Color Cameras

Digital area scan cameras are devices able to convert color stimuli from the ob-

served scene into a color digital image (or image sequence) thanks to photosensors.

Such an output image is spatially digitized, being formed of picture elements (pixels).

With each pixel is generally associated a single photosensor element, which captures

the incident light intensity of the color stimulus.

A digital color image I can be represented as a matrix of pixels, each of them being

denoted as P(x,y), where x and y are the spatial coordinates of pixel P within the image

plane of size X ×Y , hence (x,y) ∈ N
2 and 0 6 x 6 X − 1, 0 6 y 6 Y − 1. With each

pixel P is associated a color point, denoted as I(x,y) or Ix,y. This color point is defined

in the RGB three-dimensional color space by its three coordinates Ik
x,y, k ∈ {R,G,B},

which represent the levels of the trichromatic components of the corresponding color

stimulus.

The color image I may also be split into three component planes or images Ik,

k ∈ {R,G,B}. In each component image Ik, the pixel P is characterized by level Ik(P)
for the single color component k. Thus, three component images IR, IG and IB, must be

acquired in order to form any digital color image.
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(a) Beam splitting by a trichroic prism assembly.
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(b) Relative spectral sensitivity of the Kodak KLI-

2113 sensor.
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FIG. 1: Three-CCD technology.

The two main technology families available for the design of digital camera photo-

sensors are CCD (Charge-Coupled Device) and CMOS (Complementary Metal-Oxide

Semiconductor) technologies, the former being the most widespread one today. The

CCD technology uses the photoelectric effect of the silicon substrate, while CMOS is

based on a photodetector and an active amplifier. Both photosensors overall convert

the intensity of the light reaching each pixel into a proportional voltage. Additional

circuits then converts this analog voltage signal into digital data. For illustration and

explanation purposes, the following text relates to the CCD technology.

The various digital color cameras available on the market may also be distingui-

shed according to whether they incorporate only a single sensor or three. In accordance

with the trichromatic theory, three-CCD technology incorporates three CCD sensors,

each one being dedicated to a specific primary color. In most devices, the color sti-

mulus from the observed scene is split onto the three sensors by means of a trichroic
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(b) Relative spectral sensitivity of the Foveon X3 sensor endowed with an infrared

filter (Lyon and Hubel, 2002).

FIG. 2: Foveon X3 technology.

prism assembly, made of two dichroic prisms (see figure 1a)(Lyon, 2000). Alternately,

the incident beam may be dispatched on three sensors, each one being covered with

a spectrally selective filter. The three component images IR, IG and IB are simulta-

neously acquired by the three CCD sensors, and their combination leads to the final

color image. Each digital three-CCD camera is characterized by its own spectral sensi-

tivity functions R(λ ), G(λ ) and B(λ ) (see figure 1b for an example), which differ from

the CIE color matching functions of the standard observer (see figure 1b).

Since 2005, Foveon Inc. has been developing the X3 sensor, which uses a multi-

layer CMOS technology. This new sensor is based on three superimposed layers of pho-

tosites embedded in a silicon substrate. It takes advantage of the fact that lights of dif-

ferent wavelengths penetrate silicon to different depths (see figure 2a)(Lyon and Hubel,

2002). Each layer hence captures one of the three primary colors, namely blue, green

and red, in the light incidence order. The three photosites associated with each pixel
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thus provide signals from which the three component values are derived. Any camera

equipped with this sensor is able to form a true color image from three full component

images, as do three-CCD-based cameras. This sensor has been first used commercially

in 2007 within the Sigma SD14 digital still camera. According to its manufacturer, its

spectral sensitivity (see figure 2b) better fits with the CIE color matching functions

than those of three-CCD cameras, providing images that are more consistent with hu-

man perception.

Although three-CCD and Foveon technologies yield high quality images, the manu-

facturing costs of the sensor itself and of the optical device are high. As a consequence,

cameras equipped with such sensors have not been so far affordable to everyone, nor

widely distributed.

In order to overcome these cost constraints, a technology using a single sensor

has been developed. The solution suggested by Bayer from the Kodak company in

1976 (Bayer, 1976) is still the most widely used in commercial digital cameras today. It

uses a CCD or CMOS sensor covered by a filter (Color Filter Array, or CFA) designed

as a mosaic of spectrally selective color filters, each of them being sensitive to a specific

wavelength range. At each element of the CCD sensor, only one out of the three color

components is sampled, Red (R), Green (G) or Blue (B) (see figure 3a). Consequently,

only one color component is available at each pixel of the image provided by the CCD

charge transfer circuitry. This image if often related to as the raw image, but CFA image

is preferred hereafter in our specific context. In order to obtain a color image from the

latter, two missing levels must be estimated at each pixel thanks to a demosaicing

algorithm (sometimes spelled demosaicking).

As shown in figure 3b, many other processing tasks are classically achieved within

a mono-CCD color camera (Lukac and Plataniotis, 2007). They consist for instance in

raw sensor data correction or, after demosaicing, in color improvement, image shar-

pening and noise reduction, so as to provide a “visually pleasing” color image to the

user. These processing tasks are essential to the quality of the provided image and, as a

matter of fact, discriminate the various models of digital cameras, since manufacturers

and models of sensors are not so numerous. The related underlying algorithms have

common features or basis, and parameter tuning is often a key step leading to more or

fewer residual errors. Together with noise characteristics of the imaging sensor, such

artifacts may incidentally be used to typify each camera model (Bayrama et al., 2008).

2.1.2. Color Filter Arrays

Several configurations may be considered for the CFA, and figure 4 shows some

examples found in the literature. A few mono-CCD cameras use a CFA based on com-

plementary color components (Cyan, Magenta and Yellow), with a 2×2 pattern which

also sometimes includes a filter sensitive to the green light. But the very large majority

of cameras are equipped with filter arrays based on R, G and B primary color com-

ponents. Regardless of their arrangement and design, these arrays often include twice

as many filters sensitive to the green primary as filters sensitive to blue or red light.

This stems from Bayer’s observation that the human eye has a greater resolving po-

wer for green light. Moreover, the photopic luminous efficiency function of the human

retina – also known as the luminosity function – is similar to the CIE 1931 green mat-

ching function Gc(λ ), with a maximum reached in the same spectral domain. Bayer
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(a) Vertical stripes (b) Bayer (c) Pseudo-random

(d) Complementary colors (e) “Panchromatic”, or

CFA2.0 (Kodak)

(f) “Burtoni” CFA

FIG. 4: Configuration examples for the mosaic of color filters. Each square depicts a

pixel in the CFA image, and its color is that of the monochromatic filter covering the

associated photosite.

therefore both makes the assumption that green photosensors capture luminance, whe-

reas red and blue ones capture chrominance, and suggests to fill the CFA with more

luminance-sensitive (green) elements than chrominance-sensitive (red and blue) ele-

ments (see figure 4b).

The CFA using alternating vertical stripes (see figure 4a) of the RGB primaries

has been released first, since it is well suited to the interlaced television video signal.

Nevertheless, considering the Nyquist limits for the green component plane, Parulski

(1985) shows that the Bayer CFA has larger bandwidth than the latter for horizontal

spatial frequencies. The pseudo-random filter array (see figure 4c) has been inspired

by the human eye physiology, in an attempt to reproduce the spatial repartition of the

three cone cell types on the retina surface (Lukac and Plataniotis, 2005a). Its irregula-

rity achieves a compromise between the sensitivity to spatial variations of luminance

in the observed scene (visual acuity) and the ability to perceive thin objects with dif-

ferent colors (Roorda et al., 2001). Indeed, optimal visual acuity would require pho-

tosensors with identical spectral sensitivities which are constant over the spectrum,

whereas the perception of thin color objects is better ensured with sufficient local

density of different types of cones. Despite pseudo-random color filter arrays show

interesting properties (Alleysson et al., 2008), their design and exploitation have not

much been investigated so far ; for some discussions, see e.g. Condat (2009) or Savard

(2007) about CFA design and Zapryanov and Nikolova (2009) about demosaicing of

Bayer CFA “pseudo-random” variations. Among other studies drawing their inspira-

tion from natural physiology for CFA design, Kröger’s work (2004) yields a new mo-
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FIG. 5: Relative spectral sensitivity of the JAI CV-S3300P camera sen-

sor (Jai Corporation, 2000).

saic which mimics the retina of a cichlid fish, Astatotilapia burtoni (Günther, 1894). It

is shown that this particular arrangement (see figure 4f), which includes many spatial

frequencies and different geometries for color components, generates weak aliasing

artifacts. This complex mosaic configuration efficiently enhances the simulated image

quality (Medjeldi et al., 2009), but the effective implementation of such a sensor, and

the demosaicing step of the corresponding CFA images, are open and challenging pro-

blems.

Color filter arrays based on complementary primary colors have also been designed

and used, with two main advantages. First, they own higher spectral sensitivity and wi-

der bandwidth than RGB filters, which is of particular interest in noisy environments

and/or when the frame rate imposes low integration period (Hirakawa, 2008). Figure 5

shows the spectral sensitivity of the JAI CV-S3300P camera sensor, equipped with the

CFA of figure 4d. A few years ago, some professional still cameras used complemen-

tary color filter arrays to ensure high ISO sensitivity, as the Kodak DCS-620x model

equipped with a CMY filter (Noble, 2000). As a second advantage, these CFAs make

the generation of television luminance/chroma video signal almost immediate, and are

sometimes embedded in PAL or NTSC color video cameras (Sony Corporation, 2000).

Their usage is however largely restricted to television, since the strong mutual overlap-

ping of C,M,Y spectral sensitivity functions makes the conversion into R,G,B primaries

unsatisfactory.

New types of CFA have recently been released, and used in camera models re-

leased by two major manufacturers. Since 1999, Fuji develops a new so-called Super

CCD sensor, based on photosites in a 45-degree oriented honeycomb lattice (see fi-

gure 6). The HR version of 2003 (see figure 6a) allows to optimize the occupancy on

the CCD surface, hence to potentially capture more light. “Square” pixels are obtai-

ned from octagonal photosites by combining the four neighbors in part, so that new

pixels are created and the resolution is doubled. An alternative version of this sensor
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(a) Super CCD HR

(2003)

“R pixel” “S pixel”Photosite

(b) Super CCD SR

(2003)

“R pixel”“S pixel”

(c) Super CCD SRII

(2004)

Coupled pixels

(d) Super CCD EXR

(2008)

FIG. 6: Super CCD technology. For clarity sake, photosites are represented further

apart from each other than at their actual location.

(SR, see figure 6b) has expanded dynamic range, by incorporating both high-sensitivity

large photodiodes (“S-pixels”) used to capture normal and dark details, and smaller “R-

pixels” sensitive to bright details. The EXR version (see figure 6d) takes advantage of

same idea, but extra efforts have been conducted on noise reduction thanks to pixel

binning, resulting in a new CFA arrangement and its exploitation by pixel coupling. As

a proprietary technology, little technical detail is available on how Super CCD sensors

turn the image into an horizontal/vertical grid without interpolating, or on how demo-

saicing associated with such sensors is achieved. A few hints may however be found in

a patent using a similar imaging device (Kuno and Sugiura, 2006).

In 2007, Kodak develops new filter arrays (Hamilton and Compton, 2007) as ano-

ther alternative to the widely used Bayer CFA. The basic principle of this so-called

CFA2.0 family of color filters is to incorporate transparent filter elements (represen-

ted as white squares on figure 4e), those filters being hence also known as RGBW or

“panchromatic” ones. This property makes the underlying photosites sensitive to all

wavelengths of the visible light. As a whole, the sensors associated with CFA2.0 are

therefore more sensitive to low-energy stimuli than those using Bayer CFA. Such in-

crease of global sensitivity leads to better luminance estimation, but at the expense

of chromatic information estimation. Figure 7 shows the processing steps required to

estimate a full color image from the data provided by a CFA2.0-based sensor.

By modifying the CFA arrangement, manufacturers primarily aim at increasing

the spectral sensitivity of the sensor. Lukac and Plataniotis (2005a) tackled the CFA

design issue by studying the influence of the CFA configuration on demosaicing results.

They considered ten different RGB color filter arrays, three of them being shown on

figures 4a to 4c. A CFA image is first simulated by sampling one out of the three

color components at each pixel in an original color image, according to the considered

CFA pattern. A universal demosaicing framework is then applied to obtain a full-color

image. The quality of the demosaiced image is finally evaluated by comparing it to the

original image thanks to several objective error criteria. The authors conclude that the

CFA design is critical to demosaicing quality results, but cannot advise any CFA that

would yield best results in all cases. Indeed, the relative performance of filters is highly

dependent on the tested image.
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FIG. 7: Processing steps of the raw image provided by a CFA2.0-based sensor. “Pan-

chromatic pixels” are those associated with photosites covered with transparent filters.

All in all, the Bayer CFA achieves a good compromise between horizontal and

vertical resolutions, luminance and chrominance sensitivities, and therefore remains

the favorite CFA in industrial applications. As this CFA is the most commonly used

and has inspired some more recent ones, it will be considered first and foremost in

the following text. Demosaicing methods presented hereafter are notably based on the

Bayer CFA.

2.1.3. Demosaicing Formalization

Estimated colors have less fidelity to color stimuli from the observed scene than

those provided by a three-CCD camera. Improving the quality of color images acquired

by mono-CCD cameras is still a highly relevant topic, investigated by researchers and

engineers (Lukac, 2008). In this paper, we focus on the demosaicing step and examine

its influence on the estimated image quality.

In order to set a formalism for the demosaicing process, let us compare the acqui-

sition process of a color image in a three-CDD camera and in a mono-CCD camera.

Figure 8a outlines a three-CCD camera architecture, in which the color image of a

scene is formed by combining the data from three sensors. The resulting color image I
is composed of three color component planes Ik, k ∈ {R,G,B}. In each plane Ik, a gi-

ven pixel P is characterized by the level of the color component k. A three-component

vector defined as Ix,y , (Rx,y,Gx,y,Bx,y) is therefore associated with each pixel – lo-

cated at spatial coordinates (x,y) in image I. In a color mono-CCD camera, the color

image generation is quite different, as shown in figure 8b : the single sensor delivers a

raw image, hereafter called CFA image and denoted ICFA. If the Bayer CFA is consi-

dered, to each pixel with coordinates (x,y) in image ICFA is associated a single color
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CFA image

ICFA

demosaicing

estimated color

image Î
(b) Mono-CCD color camera

FIG. 8: Color image acquisition outline, according to the camera type.

component R, G or B (see figure 9) :

ICFA
x,y =





Rx,y if x is odd and y is even, (1a)

Bx,y if x is even and y is odd, (1b)

Gx,y otherwise. (1c)

The color component levels range from 0 to 255 when they are quantized with

8 bits.

The demosaicing scheme F , most often implemented as an interpolation proce-

dure, consists in estimating a color image Î from ICFA. At each pixel of the estimated

image, the color component available in ICFA at the same pixel location is picked up,

whereas the other two components are estimated :

ICFA
x,y

F−→ Îx,y =





(Rx,y,Ĝx,y,B̂x,y) if x is odd and y is even, (2a)

(R̂x,y,Ĝx,y,Bx,y) if x is even and y is odd, (2b)

(R̂x,y,Gx,y,B̂x,y) otherwise. (2c)

Each triplet in equations (2) stands for a color, whose color component available

at pixel P(x,y) in ICFA is denoted Rx,y, Gx,y or Bx,y, and whose other two components

among R̂x,y, Ĝx,y and B̂x,y are estimated for Îx,y.

Before we get to the heart of the matter, let us still precise a few notations that

will be most useful later in this section. In the CFA image (see figure 9), four different
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G0,4 R1,4 G2,4 R3,4 G4,4

B0,3 G1,3 B2,3 G3,3 B4,3

G0,2 R1,2 G2,2 R3,2 G4,2

B0,1 G1,1 B2,1 G3,1 B4,1

G0,0 R1,0 G2,0 R3,0 G4,0

...

...

...

...

...

... ... ... ... ...

FIG. 9: CFA image from the Bayer filter. Each pixel is artificially colorized with the

corresponding filter main spectral sensitivity, and the presented arrangement is the most

frequently encountered in the literature (i.e. G and R levels available for the first two

row pixels).

B−1,1 G0,1 B1,1

G−1,0 R0,0 G1,0

B−1,−1 G0,−1 B1,−1

(a) {GRG}

R−1,1 G0,1 R1,1

G−1,0 B0,0 G1,0

R−1,−1 G0,−1 R1,−1

(b) {GBG}

G−1,1 B0,1 G1,1

R−1,0 G0,0 R1,0

G−1,−1 B0,−1 G1,−1

(c) {RGR}

G−1,1 R0,1 G1,1

B−1,0 G0,0 B1,0

G−1,−1 R0,−1 G1,−1

(d) {BGB}

FIG. 10: 3×3 neighborhood structures of pixels in the CFA image.
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structures are encountered for the 3× 3 spatial neighborhood, as shown on figure 10.

For each of these structures, the pixel under consideration for demosaicing is the cen-

tral one, at which the two missing color components should be estimated thanks to the

available components and their levels at the neighboring pixels. Let us denote the afo-

rementioned structures by the color components available on the middle row, namely

{GRG}, {GBG}, {RGR} and {BGB}. Notice that {GRG} and {GBG} are structurally

similar, apart from the slight difference that components R and B are exchanged. The-

refore, they can be analyzed in the same way, as can {RGR} and {BGB} structures. A

generic notation is hence used in the following : the center pixel is considered having

(0,0) spatial coordinates, and its neighbors are referred to using their relative coordi-

nates (δx,δy). Whenever this notation bears no ambiguity, (0,0) coordinates are omit-

ted. Moreover, we also sometimes use a letter (e.g. P) to generically refer to a pixel, its

color components being then denoted as R(P), G(P) and B(P). The notation P(δx,δy)
allows to refer to a pixel thanks to its relative coordinates, its colors components being

then denoted Rδx,δy, Gδx,δy and Bδx,δy, as in figure 10.

2.1.4. Demosaicing Evaluation Outline

Demosaicing objective is to generate an estimated color image Î as close as possible

to the original image I. Even this image is unavailable effectively, I is generally used

as a reference to evaluate the demosaicing quality. Then, one either strive to obtain as a

low value as possible for an error criterion, or as a high value as possible for a quality

criterion comparing the estimated image and the original one. A classical evaluation

procedure for the demosaicing result quality consists in (see figure 11) :

1. simulating a CFA image provided by a mono-CCD camera from a color original

image provided by a three-CCD camera. This is achieved by sampling a single

color component R, G or B at each pixel, according to the considered CFA arran-

gement (Bayer CFA of figure 9, in our case) ;

2. demosaicing this CFA image to obtain an estimated color image ;

3. comparing the original and estimated color images, so as to highlight artifacts

affecting the latter.

There is no general agreement on the demosaicing quality definition, which is

highly dependent upon the estimated color image exploitation – as will be detailed in

the next sections. In a first time, we will rely on visual examination, or else on the most

used quantitative criterion (signal-to-noise ratio) for a quality result evaluation, which

both require a reference image. As in most works related to demosaicing, we will here

use the Kodak image database (Kodak, 1991) as a benchmark for performance com-

parison of the various methods, as well as for illustration purposes. More precisely, to

avoid overloaded results, a representative subset of twelve of these images has been

picked up as the most used set in literature. These natural images contain rich colors

and textural regions, and are fully reproduced in figure 37 so that they can be referred

to in the text.
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Original

image I
(simulated)

CFA image ICFA

Estimated

image Î
1. Color

sampling

2. Demosaicing

3. Comparison according to criteria

FIG. 11: Classical evaluation procedure for the demosaicing result quality (example of

bilinear interpolation on an extract from the Kodak benchmark image “Lighthouse”).

2.2. Basic Schemes and Demosaicing Rules

2.2.1. Bilinear Interpolation

The first solutions for demosaicing were proposed in the early eighties. They pro-

cess each component plane separately and find the missing levels by applying linear in-

terpolation on the available ones, in both main directions of the image plane. Such a bi-

linear interpolation is traditionally used to resize gray-level images (Gribbon and Bailey,

2004). Considering the {GRG} structure, the missing blue and green values at the cen-

ter pixel are respectively estimated by bilinear interpolation thanks to the following

equations :

B̂ =
1

4
(B−1,−1 +B1,−1 +B−1,1 +B1,1) , (3)

Ĝ =
1

4
(G0,−1 +G−1,0 +G1,0 +G0,1) . (4)

As for the {RGR} structure, the missing red and blue component levels are estima-

ted as follows :

R̂ =
1

2
(R−1,0 +R1,0) , (5)

B̂ =
1

2
(B0,−1 +B0,1) . (6)

Alleysson et al. (2008) notice that such interpolation is achievable by convolution.

For that purpose, consider the three planes formed of the sole levels of component k,

k ∈ {R,G,B}, available in the CFA image, other component levels being set to zero. Let
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FIG. 12: Definition of planes ϕ k
(
ICFA

)
by sampling the CFA image according to each

color component k, k ∈ {R,G,B}. The CFA image and planes ϕ k
(
ICFA

)
are here colo-

rized for illustration sake.

us denote ϕ k(I) the function sampling a gray-level image I according to the locations

of the available color component k in the CFA :

ϕ k(I)(x,y) =

{
I(x,y) if component k is available at pixel P(x,y) in ICFA,

0 otherwise.
(7)

Figure 12 illustrates the special cases of planes ϕ k(ICFA) obtained by applying func-

tions ϕ k to ICFA.

Let us also consider the convolution filters defined by the following kernels :

HR = HB =
1

4




1 2 1

2 4 2

1 2 1


 (8) and HG =

1

4




0 1 0

1 4 1

0 1 0


 . (9)

In order to determine the color image Î, each color component plane Îk can now be

estimated by applying the convolution filter of kernel Hk on the plane ϕ k
(
ICFA

)
, res-

pectively :

Îk = Hk ∗ϕ k(ICFA) , k ∈ {R,G,B} . (10)

Bilinear interpolation is easy to be implemented and not processing time consu-

ming, but generates severe visible artifacts, as also shown in figure 11. The above

scheme provides satisfying results in image areas with homogeneous colors, but many

false colors in areas with spatial high frequencies – as for the fence bars in this extract.

Following Chang and Tan (2006), a deep study of the causes of theses artifacts can be

achieved by simulating their generation on a synthetic image (see figure 13a). In this

original image, two homogeneous areas are separated by a vertical transition, which

recreates the boundary between two real objects with different gray levels. At each

pixel, the levels of all three color components are then equal. Levels of pixels depicting

the darker left object (labeled as b) are lower than those of pixels depicting the lighter

right object (labeled as h). Figure 13b shows the CFA image ICFA yielded by sampling
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FIG. 13: Demosaicing by bilinear interpolation of an gray-level image with a vertical

transition. The CFA image and R̂, Ĝ and B̂ planes are here colorized for illustration

sake.

a single color component per pixel according to the Bayer CFA. The result of bilinear

interpolation demosaicing applied to this image is given on figure 13c. Figures 13d

to 13f give details on the three estimated color planes R̂, Ĝ and B̂. On R̂ and B̂ planes,

this demosaicing algorithm generates a column of intermediate-level pixels, whose va-

lue is the average of the two object levels. On the green plane, it produces a jagged

pattern on both edge sides, formed of pixels alternating between two intermediate le-

vels – a low one (3b + h)/4 and a high one (3h + b)/4. As a whole, the edge area is

formed of a square 2× 2 pattern of four different colors repeated alongside the tran-

sition (see the estimated image in figure 13c). This demosaicing procedure has hence

generated two types of artifacts : erroneously estimated colors (hereafter referred to as

“false colors”), and an artificial jagged pattern (so-called “zipper effect”), which are

both studied in section 4.2. According to the horizontal transition location relative to

the CFA mosaic, the generated pattern may be either orange-colored as in figure 13c or

with bluish colors as in figure 14c. These two dominant-color patterns may be actually

observed in the estimated image of figure 11.

2.2.2. Main Demosaicing Rules

Let us examine the component-wise profiles of the middle pixel row in the original

image 13a and its corresponding estimated image 13c. Dissimilarities between these

profiles on R, G and B planes are underlined on figure 15 : the transition occurs at

identical horizontal locations on the three original image planes, but this is no more

the case for the estimated image. Such inconsistency among the demosaicing results

for different components generates false colors in the estimated image formed from
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FIG. 14: Variant version of image 13a, demosaiced by bilinear interpolation as well.

their combination. It can also be noticed that the transition corresponds, in each color

plane of the original image, to a local change of homogeneity along the horizontal

direction. Bilinear interpolation averages the levels of pixels located on both sides of

the transition, which makes the latter less sharp.

In accordance with the previous observations, we can state that two main rules have

to be enforced so as to improve demosaicing results : spatial correlation and spectral

correlation.

– Spectral correlation.

The transition profiles plotted in figure 15 are identical for the original image

component planes, which conveys strict correlation between components. For

a natural image, Gunturk et al. (2002) show that the three color components

are also strongly correlated. The authors apply a bidimensional filter built on

a low-pass filter h0 = [1 2 1]/4 and a high-pass one h1 = [1 − 2 1]/4, so as to

split each color component plane into four subbands resulting from row and co-

lumn filtering : (LL) both rows and columns are low-pass filtered ; (LH) rows

are low-pass and columns high-pass filtered ; (HL) rows are high-pass and co-

lumns low-pass filtered ; (HH) both rows and columns are high-pass filtered. For

each color component, four subband planes are obtained in this way, respectively

representing data in rather homogeneous areas (low-frequency information), ho-

rizontal detail (high-frequency information in the horizontal direction), vertical

detail (high-frequency information in the vertical direction) and diagonal detail

(high-frequency information in both main directions). The authors then compute

a correlation coefficient rR,G between red and green components over each sub-

band according to the following formula :

rR,G =

X−1

∑
x=0

Y−1

∑
y=0

(
Rx,y −µR

)(
Gx,y −µG

)

√
X−1

∑
x=0

Y−1

∑
y=0

(Rx,y −µR)2

√
X−1

∑
x=0

Y−1

∑
y=0

(Gx,y −µG)
2

, (11)

in which Rx,y (respectively Gx,y) is the level at (x,y) pixel in the red (respectively

green) component plane within the same subband, µR and µG being the average

of Rx,y and Gx,y levels over the same subband planes. The correlation coefficient

between the blue and green components is similarly computed. Test results on
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FIG. 15: Component-wise profiles of middle pixel row levels A-A in the original and

estimated images. Black dots stand for available levels, and white dots for estimated

levels.
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twenty natural images show that those coefficients are always greater than 0.9
in subbands carrying spatial high frequencies at least in one direction (i.e. LH,

HL and HH). As for the subband carrying low frequencies (LL), coefficients are

lower but always greater than 0.8. This reveals a very strong correlation bet-

ween levels of different color components in a natural image, especially in areas

with high spatial frequencies. Lian et al. (2006) confirm, using a wavelet coef-

ficient analysis, that high-frequency information is not only strongly correlated

between the three component planes, but almost identical. Such spectral corre-

lation between components should be taken into account to retrieve the missing

components at a given pixel.

– Spatial correlation.

A color image can be viewed as a set of adjacent homogeneous regions whose

pixels have similar levels for each color component. In order to estimate the

missing levels at each considered pixel, one therefore should exploit the levels

of neighboring pixels. However, this task is difficult at pixels near the border

between two distinct regions due to high local variation of color components.

As far as demosaicing is concerned, this spatial correlation property avoids to

interpolate missing components at a given pixel thanks to neighbor levels which

do not belong to the same homogeneous region.

These two principles are generally taken into account sequentially by the demo-

saicing procedure. In the first step, demosaicing often consists in estimating the green

component using spatial correlation. According to Bayer’s assumption, the green com-

ponent has denser available data within the CFA image, and represents the luminance

of the image to be estimated. Estimation of red and blue components (assimilated to

chrominance) is only achieved in a second step, thanks to the previously interpola-

ted luminance and using the spectral correlation property. Such a way of using both

correlations is used by a large number of methods in the literature. Also notice that, al-

though red and blue component interpolation is achieved after the green plane has been

fully populated, spectral correlation is also often used in the first demosaicing step to

improve the green plane estimation quality.

2.2.3. Spectral Correlation Rules

In order to take into account the strong spectral correlation between color com-

ponents at each pixel, two main hypotheses are proposed in the literature. The first

one assumes a color ratio constancy and the second one is based on color difference

constancy. Let us examine the underlying principles of each of these assumptions be-

fore comparing both.

Interpolation based on color hue constancy, suggested by Cok (1987), is historically

the first one based on spectral correlation. According to Cok, hue is understood as the

ratio between chrominance and luminance, i.e. R/G or B/G. His method proceeds in

two steps. In the first step, missing green values are estimated by bilinear interpolation.

Red (and blue) levels are then estimated by weighting the green level at the given pixel

with the hue average of neighboring pixels. For instance, interpolation of the blue level

at the center pixel of {GRG} CFA structure (see figure 10a) uses the four diagonal
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neighbors where this blue component is available :

B̂ = Ĝ · 1

4

[
B−1,−1

Ĝ−1,−1

+
B1,−1

Ĝ1,−1

+
B−1,1

Ĝ−1,1

+
B1,1

Ĝ1,1

]
. (12)

This bilinear interpolation between color component ratios is based on the local

constancy of this ratio within an homogeneous region. Kimmel (1999) justifies the co-

lor ratio constancy assumption thanks to a simplified approach that models any color

image as a Lambertian object surface observation. According to the Lambertian model,

such a surface reflects the incident light to all directions with equal energy. The inten-

sity I(P) received by the photosensor element associated to each pixel P is therefore

independent of the camera position, and can be represented as :

I(P) = ρ
〈
~N(P),~l

〉
, (13)

where ρ is the albedo (or reflection coefficient), ~N(P) is the normal vector to the surface

element which is projected on pixel P, and~l is the incident light vector. As the albedo ρ
characterizes the object material, this quantity is different for each color component

(ρR 6= ρG 6= ρB), and the three color components may be written as :

IR(P) = ρR
〈
~N(P),~l

〉
, (14)

IG(P) = ρG
〈
~N(P),~l

〉
, (15)

IB(P) = ρB
〈
~N(P),~l

〉
. (16)

Assuming that any object is composed of one single material, coefficients ρR, ρG

and ρB are then constant at all pixels representing an object. So, the ratio between two

color components is also constant :

Kk,k′ =
Ik(P)

Ik′(P)
=

ρk
〈
~N(P),~l

〉

ρk′
〈
~N(P),~l

〉 =
ρk

ρk′ = constant, (17)

where (k,k′) ∈ {R,G,B}2. Although this assumption is simplistic, it is locally valid and

can be used within the neighborhood of the considered pixel.

Another simplified and widely used model of correlation between components re-

lies on the color difference constancy assumption. At a given pixel, this can be written

as :

Dk,k′ = Ik(P)− Ik′(P) = ρk
〈
~N(P),~l

〉
−ρk′

〈
~N(P),~l

〉
= constant, (18)

where (k,k′) ∈ {R,G,B}2. As the incident light direction and amplitude are assumed to

be locally constant, the color component difference is also constant within the consi-

dered pixel neighborhood.
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As a consequence, the chrominance interpolation step in Cok’s method may be

rewritten by using component difference averages, for instance :

B̂ = Ĝ+
1

4

[
(B−1,−1 − Ĝ−1,−1)+(B1,−1 − Ĝ1,−1)+(B−1,1 − Ĝ−1,1)+(B1,1 − Ĝ1,1)

]
,

(19)

instead of equation (12). The validity of this approach is also justified by Lian et al.

(2007) on the ground of spatial high frequency similarity between color components.

The color difference constancy assumption is globally consistent with the ratio rule

used in formula (12). By considering the logarithmic non-linear transformation, the

difference D
k,k′
2 ,(k,k′) ∈ {R,G,B}2, can be expressed as :

D
k,k′
2 = log10

(
Ik(P)

Ik′(P)

)
= log10

(
Ik(P)

)
− log10

(
Ik′(P)

)
. (20)

Furthermore, we propose to compare those two assumptions expressed by equa-

tions (17) and (18). In order to take into account spectral correlation for demosaicing,

it turns out that the difference of color components presents some benefits in compa-

rison to their ratio. The latter is indeed error-prone when its denominator takes low

values. This happens for instance when saturated red and/or blue components lead to

comparatively low values of green, making the ratios in equation (12) very sensitive to

red and/or blue blue small variations. Figure 16a is a natural image example which is

highly saturated in red. Figures 16c and 16d show the images where each pixel value

is, respectively, the component ratio R/G and difference R−G (pixel levels being nor-

malized by linear dynamic range stretching). It can be noticed that these two images

actually carry out less high-frequency information than the green component plane

shown on figure 16b.

A Sobel filter is then applied to these two images, so as to highlight the high-

frequency information location. The Sobel filter output module is shown on figures 16e

and 16f. In the right-hand parrot plumage area where red is saturated, the component

ratio plane contains more high-frequency information than the component difference

plane, which makes it more artifact-prone when demosaiced by interpolation. Moreo-

ver, high color ratio values may yield to estimated component levels beyond the data

bounds, which is undesirable for the demosaicing result quality.

To overcome these drawbacks, a linear translation model applied on all three color

components is suggested by Lukac and Plataniotis (2004a, 2004b). Instead of equa-

tion (17), the authors reformulate the color ratio rule by adding a predefined constant

value β to each component. The new constancy assumption, which is consistent with

equation (17) in homogeneous areas, now relies on the ratio :

K
k,k′
2 =

Ik +β
Ik′ +β

, (21)

where (k,k′) ∈ {R,G,B}2, and where β ∈ N is a ratio normalization parameter. Under

this new assumption on the normalized ratio, the blue level interpolation formulated in
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(a) Original image (b) G plane

(c) R/G ratio plane (d) R−G difference plane

(e) Sobel filter output on the R/G plane (f) Sobel filter output on the R−G plane

FIG. 16: Component ratio and difference planes on a same image (“Parrots” from the

Kodak database).
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equation (12) under the ratio rule now becomes1 :

B̂ = −β +
(
Ĝ+β

)
· 1

4
·
[

B−1,−1 +β
Ĝ−1,−1 +β

+
B1,−1 +β
Ĝ1,−1 +β

+
B−1,1 +β
Ĝ−1,1 +β

+
B1,1 +β
Ĝ1,1 +β

]
. (22)

In order to avoid too different values for the numerator and denominator, Lukac

and Plataniotis advise to set β = 256, so that the normalized ratios R/G and B/G range

from 0.5 to 2. They claim that this assumption improves the interpolation quality in

areas of transitions between objects and of thin details.

In our investigation of the two main assumptions used for demosaicing, we finally

compare the estimated image quality in both cases. The procedure depicted on figure 11

is applied on twelve natural images selected from Kodak database : the demosaicing

schemes presented above, respectively using component ratio and difference, are ap-

plied to the simulated CFA image. To evaluate the estimated color image quality in

comparison with the original image, we then compute an objective criterion, namely

the peak signal-to-noise ratio (PSNR) derived from the mean square error (MSE) bet-

ween the two images. On the red plane for instance, these quantities are defined as :

MSER =
1

XY

X−1

∑
x=0

Y−1

∑
y=0

(
IR
x,y − ÎR

x,y

)2
, (23)

PSNRR = 10 · log10

(
2552

MSER

)
. (24)

As the green component is bilinearly interpolated without using spectral correla-

tion, only red and blue estimated levels vary according to the considered assumption.

The PSNR is hence computed on these two planes. Results displayed in table 1 show

that using the color difference assumption yields better results than using the simple

ratio rule K, which is particularly noticeable for image “Parrots” of figure 16a. The

normalized ratio K2, which is less prone to large variations than K in areas with spatial

high frequencies, leads to higher values for PSNRR and PSNRB. However, the color

difference assumption generally outperforms ratio-based rules according to the PSNR

criterion, and is most often used to exploit spectral correlation in demosaicing schemes.

1The authors use, in this interpolation formula, extra weighting factors depending on the local pattern and

dropped here for conciseness.
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Image
PSNRR PSNRB

D K K2 D K K2

1 (“Parrots”) 38.922 36.850 38.673 38.931 38.678 38.936
2 (“Sailboats”) 31.321 31.152 31.311 31.154 30.959 31.129

3 (“Windows”) 37.453 36.598 37.348 37.093 36.333 36.676

4 (“Houses”) 27.118 26.985 27.146 27.007 26.889 27.008
5 (“Race”) 36.085 35.838 36.073 35.999 35.819 35.836

6 (“Pier”) 32.597 31.911 32.563 32.570 32.178 32.217

7 (“Island”) 34.481 34.376 34.470 34.402 34.208 34.399

8 (“Lighthouse”) 31.740 31.415 31.696 31.569 31.093 31.289

9 (“Plane”) 35.382 35.058 35.347 34.750 34.324 34.411

10 (“Cape”) 32.137 31.863 32.118 31.842 31.532 31.693

11 (“Barn”) 34.182 33.669 34.143 33.474 33.193 33.363

12 (“Chalet”) 30.581 30.413 30.565 29.517 29.263 29.364

Average 33.500 33.011 33.454 33.192 32.872 33.027

TAB. 1: Peak signal-to-noise ratios (in decibels) for red (PSNRR) and blue (PSNRB)

planes of twelve Kodak images (Eastman Kodak and various photographers, 1991),

demosaiced under the color difference D (see equation (18) and interpolation for-

mula (19)), under the color ratio K (see equation (17) and interpolation formula (12))

and under the normalized ratio K2 (β = 256) (see equation (21) and interpolation for-

mula (22)) constancy rules. For each color component and image, the value printed in

bold typeface highlights the best result.
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3. Demosaicing Schemes

In this section, the main demosaicing schemes proposed in the literature are descri-

bed. We distinguish two main procedures families, according to whether they scan the

image plane or chiefly use the frequency domain.

3.1. Edge-adaptive Demosaicing Methods

Estimating the green plane before R and B ones is mainly motivated by the double

amount of G samples in the CFA image. A fully populated G component plane will sub-

sequently make the R and B plane estimation more accurate. As a consequence, the G

component estimation quality becomes critical in the overall demosaicing performance,

since any error in the G plane estimation is propagated in the following chrominance

estimation step. Important efforts are therefore devoted to improve the estimation qua-

lity of the green component plane – usually assimilated to luminance –, especially in

high-frequency areas. Practically, when the considered pixel lies on an edge between

two homogeneous areas, missing components should be estimated along the edge rather

than across it. In other words, neighboring pixels to be taken into account for interpola-

tion should not belong to distinct objects. When exploiting the spatial correlation, a key

issue is to determine the edge direction from CFA samples. As demosaicing methods

presented in the following text generally use specific directions and neighborhoods in

the image plane, some useful notations are introduced in figure 17.

3.1.1. Gradient-based Methods

Gradient computation is a general solution to edge direction selection. Hibbard’s

method (1995) uses horizontal and vertical gradients, computed at each pixel where

the G component has to be estimated, in order to select the direction which provides

the best green level estimation. Let us consider the {GRG} CFA structure for instance

(see figure 10a). Estimating the green level Ĝ at the center pixel is achieved in two

successive steps :

1. Approximate the gradient module (hereafter simply referred to as gradient for

simplicity) according to horizontal and vertical directions, as :

∆x = |G−1,0 −G1,0| , (25)

∆y = |G0,−1 −G0,1| . (26)

2. Interpolate the green level as :

Ĝ =





(G−1,0 +G1,0)/2 if ∆x < ∆y , (27a)

(G0,−1 +G0,1)/2 if ∆x > ∆y , (27b)

(G0,−1 +G−1,0 +G1,0 +G0,1)/4 if ∆x = ∆y. (27c)

Laroche and Prescott (1993) suggest to consider a 5× 5 neighborhood for partial

derivative approximations thanks to available surrounding levels, for instance ∆x =
|2R−R−2,0 −R2,0|. Moreover, Hamilton and Adams (1997) combine both approaches.
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FIG. 17: Notations for the main spatial directions and considered pixel neighborhoods.
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FIG. 18: 5×5 neighborhood with central {GRG} structure in the CFA image.
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To select the interpolation direction, these authors take into account both gradient and

Laplacian second-order values by using the green levels available at nearby pixels and

red (or blue) samples located 2 pixels apart. For instance, to estimate the green le-

vel at {GRG} CFA structure (see figure 18), Hamilton and Adams use the following

algorithm :

1. Approximate the horizontal ∆x and vertical ∆y gradients thanks to absolute dif-

ferences as :

∆x = |G−1,0 −G1,0|+ |2R−R−2,0 −R2,0| , (28)

∆y = |G0,−1 −G0,1|+ |2R−R0,−2 −R0,2| . (29)

2. Interpolate the green level as :

Ĝ =





(G−1,0 +G1,0)/2+(2R−R−2,0 −R2,0)/4 if ∆x < ∆y, (30a)

(G0,−1 +G0,1)/2+(2R−R0,−2 −R0,2)/4 if ∆x > ∆y, (30b)

(G0,−1 +G−1,0 +G1,0 +G0,1)/4

+(4R−R0,−2 −R−2,0 −R2,0 −R0,2)/8 if ∆x = ∆y. (30c)

This proposal outperforms Hibbards’ method. Indeed, precision is gained not only

by combining two color component data in partial derivative approximations, but also

by exploiting spectral correlation in the green plane estimation. It may be noticed that

formula (30a) for the horizontal interpolation of green component may be split into one

left Ĝg and one right Ĝd side parts :

Ĝg = G−1,0 +(R−R−2,0)/2, (31)

Ĝd = G1,0 +(R−R2,0)/2, (32)

Ĝ =
(

Ĝg + Ĝd
)

/2. (33)

Such interpolation is derived from the color difference constancy assumption, and

hence exploits spectral correlation for green component estimation. Also notice that,

in these equations, horizontal gradients are assumed to be similar for both red and blue

components. A complete formulation has been given by Li and Randhawa (2005). As

these authors show besides, the green component may more generally be estimated

by a Taylor series as long as green levels are considered as a continuous function g

which is differentiable in both main directions. The above equations (31) and (32)

may then be seen as first-order approximations of this series. Indeed, in Ĝg case for

instance, the horizontal approximation is written as g(x) = g(x − 1) + g′(x − 1) ≈
g(x−1)+(g(x)−g(x−2))/2. Using the local constancy property of color component

difference yields Ĝx − Ĝx−2 = Rx −Rx−2, from which expression (31) is derived. Li

and Randhawa suggest an approximation based on the second-order derivative, Gg es-

timation becoming :

Ĝg = G−1,0 +(R−R−2,0)/2+(R−R−2,0)/4− (G−1,0 −G−3,0)/4, (34)
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for which a neighborhood size of 7×7 pixels is required. The additional term compa-

red to (31) enables to refine the green component estimation. Similar reasoning may

be used to select the interpolation direction. According to the authors, increasing the

approximation order in such a way improves estimation results under the mean square

error (MSE) criterion.

Another proposal comes from Su (2006), namely to interpolate the green level as a

weighted sum of values defined by equations (30a) and (30b). Naming the latter respec-

tively Ĝx = (G−1,0 +G1,0)/2 + (2R−R−2,0 −R2,0)/4 and Ĝy = (G0,−1 +G0,1)/2 +
(2R−R0,−2 −R0,2)/4, horizontal and vertical interpolations are combined as :

Ĝ =

{
w1 · Ĝx +w2 · Ĝy if ∆x < ∆y, (35a)

w1 · Ĝy +w2 · Ĝx if ∆x > ∆y, (35b)

where w1 and w2 are the weighting factors. Expression (30c) remains unchanged (i.e.

Ĝ =
(
Ĝx + Ĝy

)
/2 if ∆x = ∆y). The smallest level variation term must be weighted by

the highest factor (i.e. w1 > w2) ; expressions (30a) and (30b) incidentally correspond to

the special case w1 = 1, w2 = 0. Incorporating terms associated to high level variations

allows to undertake high-frequency information in the green component interpolation

expression itself. Su sets w1 to 0.87 and w2 to 0.13, since these weighting factor va-

lues yield the minimal average MSE (for the three color planes) over a large series of

demosaiced images.

Other researchers, like Hirakawa and Parks (2005) or Menon et al. (2007), use the

filterbank approach in order to estimate missing green levels, before selecting the ho-

rizontal or vertical interpolation direction at {GRG} and {GBG} CFA structures. This

enables to design five-element mono-dimensional filters which are optimal towards

criteria specifically designed to avoid interpolation artifacts. The proposed optimal fil-

ters (e.g. hopt = [−0.2569 0.4339 0.5138 0.4339 − 0.2569] for Hirakawa and Parks’

scheme) are close to the formulation of Hamilton and Adams2.

3.1.2. Component-consistent Demosaicing

Hamilton and Adam’s method selects the interpolation direction on the basis of ho-

rizontal and vertical gradient approximations. But this may be inappropriate, and unsa-

tisfying results may be obtained in areas with textures or thin objects. Figure 19 shows

an example where horizontal ∆x and vertical ∆y gradient approximations do not allow

to take the right decision for the interpolation direction. Wu and Zhang (2004) propose

a more reliable way to select this direction, still by using a local neighborhood. Two

candidate levels are computed to interpolate the missing green value at a given pixel :

one using horizontal neighbors, the second using vertical neighboring pixels. Then, the

missing R or B value is estimated in both horizontal and vertical directions with each

of these G candidates. A final step consists in selecting the most appropriate interpola-

tion direction, namely that minimizing the gradient sum on the color difference planes

(R−G and B−G) in the considered pixel neighborhood. This interpolation direction

2No detail will be here given about how R and B components are estimated by the above methods, for

their originality mainly lies in the G component estimation.
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FIG. 19: Direction selection issue in Hamilton and Adams’ interpolation

scheme (1997), on an extract of the original image “Lighthouse” containing thin de-

tails. Plots highlight the R and G component values used for horizontal and vertical

gradient computations : color dots represent available levels in the CFA image, whe-

reas white dots are levels to be estimated. As ∆x < ∆y, horizontal neighboring pixels

are wrongly used in Ĝ estimation. This is shown on the lower right subfigure, together

with the erroneous demosaicing result (at center pixel only).
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allows to select the levels – computed beforehand – to be taken into account for the

missing component estimation.

More precisely, Wu and Zhang’s approach proceeds in the following steps :

1. At each pixel where the green component is missing, compute two candidate

levels : one denoted as Ĝx by using the horizontal direction (according to equa-

tion (30a)), and another Ĝy by using the vertical direction (according to (30b)).

For other pixels, set Ĝx = Ĝy = G.

2. At each pixel where the green component is available, compute two candidate

levels (one horizontal and one vertical) for each of the missing red and blue com-

ponents. At {RGR} CFA structure these levels are expressed as (see figure 10c) :

R̂x = G+
1

2
(R−1,0 − Ĝx

−1,0 +R1,0 − Ĝx
1,0), (36)

R̂y = G+
1

2
(R−1,0 − Ĝ

y
−1,0 +R1,0 − Ĝ

y
1,0), (37)

B̂x = G+
1

2
(B0,−1 − Ĝx

0,−1 +B0,1 − Ĝx
0,1), (38)

B̂y = G+
1

2
(B0,−1 − Ĝ

y
0,−1 +B0,1 − Ĝ

y
0,1). (39)

3. At each pixel with missing green component, compute two candidate levels for

the missing chrominance component (i.e. B̂ at R samples, and conversely). At

{GRG} CFA structure, the blue levels are estimated as (see figure 10a) :

B̂x = Ĝx +
1

4
∑

P∈N′
4

(B(P)− Ĝx(P)), (40)

B̂y = Ĝy +
1

4
∑

P∈N′
4

(B(P)− Ĝy(P)), (41)

where N′
4 is composed of the four diagonal pixels (see figure 17c).

4. Achieve the final estimation at each pixel P by selecting one component triplet

out of the two candidates computed beforehand in both horizontal and vertical

directions. So as to use the direction for which variations of (R−G) and (B−G)

component differences are minimal, the authors suggest the following selection

criterion :

(R̂,Ĝ,B̂) =

{
(R̂x,Ĝx,B̂x) if ∆x < ∆y, (42a)

(R̂y,Ĝy,B̂y) if ∆x > ∆y, (42b)

where ∆x and ∆y are, respectively, the horizontal and vertical gradients on the

difference plane of estimated colors. More precisely, these gradients are com-

puted by considering all distinct (Q,Q′) pixel pairs, respectively row-wise and

column-wise, within the 3×3 window centered at P (see figure 17e) :
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∆x = ∑
(Q,Q′)∈N9×N9
y(Q)=y(Q′)

∣∣(R̂x(Q)− Ĝx(Q)
)
−
(
R̂x(Q′)− Ĝx(Q′)

)∣∣

+
∣∣(B̂x(Q)− Ĝx(Q)

)
−
(
B̂x(Q′)− Ĝx(Q′)

)∣∣ , (43)

∆y = ∑
(Q,Q′)∈N9×N9
x(Q)=x(Q′)

∣∣(R̂y(Q)− Ĝy(Q)
)
−
(
R̂y(Q′)− Ĝy(Q′)

)∣∣

+
∣∣(B̂y(Q)− Ĝy(Q)

)
−
(
B̂y(Q′)− Ĝy(Q′)

)∣∣ . (44)

This method uses the same expressions as Hamilton and Adams’ ones in order to

estimate missing color components, but improves the interpolation direction decision

by using a 3×3 window – rather than a single row or column – in which the gradient of

color differences (R−G and B−G) is evaluated so as to minimize its local variation.

Among other attempts to refine the interpolation direction selection, Hirakawa and Parks

(2005) propose a selection criterion which uses the number of pixels with homoge-

neous colors in a local neighborhood. The authors compute the distances between the

color point of the considered pixel and those of its neighbors in the CIE L∗a∗b∗ co-

lor space (defined in section 4.3.2), which better fits with the human perception of

colors than RGB space. They design an homogeneity criterion with adaptive threshol-

ding which reduces color artifacts due to incorrect selection of the interpolation di-

rection. Chung and Chan (2006) nicely demonstrate that green plane interpolation is

critical to the estimated image quality, and suggest to evaluate the local variance of

color difference as an homogeneity criterion. The selected direction corresponds to mi-

nimal variance, which yields green component refinement especially in textured areas.

Omer and Werman (2004) use a similar way to select the interpolation direction, ex-

cept that the local color ratio variance is used. These authors also propose a crite-

rion based on a local corner score. Under the assumption that demosaicing generates

artificial corners in the estimated image, they apply the Harris corner detection fil-

ter (Harris and Stephens, 1988), and select the interpolation direction which provides

the fewest detected corners.

3.1.3. Template Matching-based Methods

This family of methods aims at identifying a template-based feature in each pixel

neighborhood, in order to interpolate according to the locally encountered feature. Such

strategy has been first implemented by Cok in a patent dating back to 1986 (Cok,

1986)(Cok, 1994), in which the author classifies 3×3 neighborhoods into edge, stripe

or corner features (see figure 20). The algorithm original part lies in the green com-

ponent interpolation at each pixel P where it misses (i.e. at center pixel of {GRG} or

{GBG} CFA structures) :

1. Compute the average green level available at the four nearest neighbor pixels of

P (i.e. belonging to N4, as defined on figure 17b). Examine whether each of these

four green levels is lower (b), higher (h), or equal to their average. Sort these four
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values in descending order, let G1 > G2 > G3 > G4, and compute their median

M = (G2 +G3)/2.

2. Classify P neighborhood as :

(a) edge if 3 h and 1 b are present, or 1 h and 3 b (see figure 20a) ;

(b) stripe if 2 h and 2 b are present and opposite by pairs (see figure 20b) ;

(c) corner if 2 h and 2 b are present and adjacent by pairs (see figure 20c).

In the special case when two values are equal to the average, the encountered

feature is taken as :

(a) a stripe if the other two pixels b and h are opposite ;

(b) an edge otherwise.

3. Interpolate the missing green level according to the previously identified feature :

(a) for an edge, Ĝ = M ;

(b) for a stripe, Ĝ = CLIP
G2
G3

(M− (S−M)), where S is the average green level

over the eight neighboring pixels labeled as Q in figure 20d ;

(c) for a corner, Ĝ = CLIP
G2
G3

(M− (S′−M)), where S′ is the average green

level over the four neighboring pixels labeled as Q in figure 20e, which are

located on both sides of the borderline between b and h pixels.

Function CLIP
G2
G3

simply limits the interpolated value to range [G3,G2] :

∀α ∈ R, CLIP
G2
G3

(α ) =





α if G3 6 α 6 G2,

G2 if α > G2,

G3 if α < G3.

(45)

This method, which classifies neighborhood features into three groups, encom-

passes three possible cases in an image. But the criterion used to distinguish the three

features is still too simple, and comparing green levels with their average may not be

sufficient to determine the existing feature adequately. Moreover, in case of a stripe

feature, interpolation does not take into account this stripe direction.

Chang and Tan (2006) also implement a demosaicing method based on template-

matching, but apply it on the color difference planes (R−G and B−G) in order to

interpolate R and B color components, G being estimated beforehand thanks to Ha-

milton and Adams’ scheme described above. The underlying strategy consists in si-

multaneously exploiting the spatial and spectral correlations, and relies on a local edge

information which causes fewer color artifacts than Cok’s scheme. Although color dif-

ference planes carry less high-frequency information than color component planes (see

figure 16), they can provide relevant edge information in areas with high spatial fre-

quencies.

3.1.4. Adpative Weighted-Edge Method

Methods described above, as template-based or gradient-based ones, achieve inter-

polation according to the local context. They hence require prior neighborhood clas-

sification. The adaptive weighted-edge linear interpolation, first proposed by Kimmel
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FIG. 20: Feature templates proposed by Cok to interpolate the green component at

pixel P. These templates, which are defined modulo π/2, provide four possible Edge

and Corner features, and two possible Stripe features.

(1999), is a method which merges these two steps into a single one. It consists in weigh-

ting each locally available level by a normalized factor as a function of a directional

gradient. For instance, interpolating the green level at center pixel of {GRG} or {GBG}
CFA structures is achieved as :

Ĝ =
w0,−1 ·G0,−1 +w−1,0 ·G−1,0 +w1,0 ·G1,0 +w0,1 ·G0,1

w0,−1 +w−1,0 +w1,0 +w0,1
, (46)

where wδx,δy coefficients are the weighting factors. In order to exploit spatial correla-

tion, these weights are adjusted according to the locally encountered pattern.

Kimmel suggests to use local gradients to achieve weight computation. In a first

step, directional gradients are approximated at a CFA image pixel P by using the levels

of its neighbors. Gradients are respectively defined in horizontal, vertical, x′-diagonal

(top-right to bottom-left) and y′-diagonal (top-right to bottom-right) directions (see

figure 17a) over a 3×3 neighborhood by the following generic expressions :

∆x(P) = (P1,0 −P−1,0)/2, (47)

∆y(P) = (P0,−1 −P0,1)/2, (48)

∆x′(P) =





max
(∣∣∣(G1,−1 −G)/

√
2

∣∣∣ ,
∣∣∣(G−1,1 −G)/

√
2

∣∣∣
)

at G locations, (49a)

(P1,−1 −P−1,1)/2
√

2 elsewhere, (49b)
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∆y′(P) =





max
(∣∣∣(G−1,−1 −G)/

√
2

∣∣∣ ,
∣∣∣(G1,1 −G)/

√
2

∣∣∣
)

at G locations, (50a)

(P−1,−1 −P1,1)/2
√

2 elsewhere, (50b)

where Pδx,δy stands for the neighboring pixel of P, with relative coordinates (δx,δy), in

the CFA image. Here, R, G or B is not specified, since these generic expressions apply

to all CFA image pixels, whatever the considered available component. However, we

notice that all differences involved in equations (47) and (48) imply levels of a same

color component.

The weight wδx,δy in direction d, d ∈ {x,y,x′,y′}, is then computed from directional

gradients as :

wδx,δy =
1√

1+∆d(P)2 +∆d(Pδx,δy)2
, (51)

where direction d used to compute the gradient ∆d is defined by the center pixel P

and its neighbor Pδx,δy. At the right-hand pixel (δx,δy) = (1,0) as an example, the

horizontal direction x is used for d ; ∆d(P) and ∆d(P1,0) are therefore both computed

by expression (47) defining ∆x, and the weight is expressed as :

w1,0 =
1√

1+(P−1,0 −P1,0)2/4+(P2,0 −P)2/4
. (52)

Definition of weight wδx,δy is built so that a local transition in a given direction

yields a high gradient value in the same direction. Consequently, weight wδx,δy is close

to 0 for the neighbor Pδx,δy and does not contribute much to the final estimated green

level according to equation (46). On the opposite, weight wδx,δy is equal to 1 when the

directional gradients are equal to 0.

Adjustments in weight w computation are proposed by Lu and Tan (2003), who

use a Sobel filter to approximate the directional gradient, and the absolute – instead of

square – value of gradients in order to boost computation speed. Such a strategy is also

implemented by Lukac and Plataniotis (2005b).

Once then green plane has been fully populated thanks to equation (46), red and

blue levels are estimated by using component ratios R/G and B/G among neighboring

pixels. Interpolating the blue component is for instance achieved according to two steps

(the red one being processed in a similar way) :

1. Interpolation at red locations (i.e. for {GRG} CFA structure) :

B̂ = Ĝ·
∑

P∈N′
4

w(P) · B(P)

Ĝ(P)

∑
P∈N′

4

w(P)
= Ĝ·

w−1,−1 · B−1,−1

Ĝ−1,−1
+w1,−1 · B1,−1

Ĝ1,−1
+w−1,1 · B−1,1

Ĝ−1,1
+w1,1 · B1,1

Ĝ1,1

w−1,−1 +w1,−1 +w−1,1 +w1,1
.

(53)

35



2. Interpolation at other CFA locations with missing blue level (i.e. at {RGR} and

{BGB} structures) :

B̂ = G·
∑

P∈N4

w(P) · B̂(P)

Ĝ(P)

∑
P∈N4

w(P)
= G·

w0,−1 · B̂0,−1

Ĝ0,−1
+w−1,0 · B̂−1,0

Ĝ−1,0
+w1,0 · B̂1,0

Ĝ1,0
+w0,1 · B̂0,1

Ĝ0,1

w0,−1 +w−1,0 +w1,0 +w0,1
.

(54)

Once all missing levels have been estimated, Kimmel’s algorithm (1999) achieves

green plane refinement by using the color ratio constancy rule. This iterative refine-

ment procedure is taken up by Muresan et al. (2000) with a slight modification : ins-

tead of using all N8 neighboring pixels in step 1 below, only neighboring pixels with

green available component are considered. The following steps describe this refinement

scheme :

1. Correct the estimated green levels with the average of two estimations (one on

the blue plane, the other on the red one), so that the constancy rule is locally

enforced for color ratio G/R :

Ĝ =
1

2

(
ĜR + ĜB

)
, (55)

where :

ĜR ,
⌢

R ·
∑

P∈N4

w(P)·G(P)

R̂(P)

∑
P∈N4

w(P) and ĜB ,
⌢

B ·
∑

P∈N4

w(P)·G(P)

B̂(P)

∑
P∈N4

w(P) ,

⌢

B and
⌢

R standing either for an estimated level or an available CFA value, accor-

ding to the considered CFA structure ({GRG} or {GBG}).

2. Correct then red and blue estimated levels at green locations, by using weighted

R/G and B/G ratios at the eight neighboring pixels :

R̂ = G ·
∑

P∈N8

w(P) ·
⌢
R(P)
⌢
G(P)

∑
P∈N8

w(P)
(56) and B̂ = G ·

∑
P∈N8

w(P) ·
⌢
B(P)
⌢
G(P)

∑
P∈N8

w(P)
. (57)

3. Repeat the two previous steps twice.

This iterative correction procedure gradually enforces more and more homoge-

neous G/R and G/B color ratios, whereas the green component is estimated by using

spectral correlation. Its convergence is however not always guaranteed, which may

cause trouble for irrelevant estimated values. When a level occurring in any color ratio

denominator is very close or equal to zero, the associated weight may not cancel the

resulting bias. Figure 21c shows some color artifacts which are generated in this case.

In pure yellow areas, quasi-zero blue levels cause a saturation of the estimated green

component at R and B locations, which then alternate with original green levels.

Smith (2005) suggests to compute adaptive weights as wδx,δy = 1
1+4|∆d(P)|+4|∆d(Pδx,δy)|

,

in order to reduce the division bias and contribution of pixels on both edge sides.
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(a) Original image (b) Estimated image before cor-

rection

(c) Estimated image after cor-

rection

FIG. 21: Demosaicing result achieved by Kimmel’s method (1999), before and after

the iterative correction steps. Generated artifacts are pointed out on image (c).

Lukac et al. (2006) choose to apply adaptive weighting on color difference planes for R

and B component estimations, which avoids the above-mentioned artifacts during the

iterative correction step. Tsai and Song (2007) take up the latter idea, but enhance the

green plane interpolation procedure : weights are adapted to the local topology thanks

to a preliminary distinction between homogeneous and edge areas.

3.1.5. Local Covariance-based Methods

In his PhD dissertation, Li (2000) presents an interpolation scheme to increase the

resolution of a gray-level image. Classical interpolation methods (bilinear and bicu-

bic), based on spatial invariant models, tend to blur transitions and generate artifacts in

high-frequency areas. Li’s approach exploits spatial correlation by computing a local

level covariance, without relying on directional gradients as do the above-mentioned

methods in this section. Beyond resolution enhancement, the author applies this ap-

proach to demosaicing (Li and Orchard, 2001). In the CFA image, each of R, G or

B color component plane may be viewed as a sub-sampled version of its respective,

fully-populated estimated color plane. According to this consideration, a missing level

in a given color plane is interpolated by using local covariance, preliminarily estimated

from neighboring levels available in the same plane.

The underlying principle of this method may be better understood by considering

the resolution enhancement problem first. More precisely, figure 22 illustrates how the

resolution of a gray-level image can be doubled thanks to geometric duality, in a two-

step procedure. The first step consists in interpolating P2i+1,2 j+1 level (represented by a

white dot in figure 22a) from available P2(i+k),2( j+l) levels (black dots). The following

linear combination of N′
4 neighbors is used here :

P̂2i+1,2 j+1 =
1

∑
k=0

1

∑
l=0

α2k+lP2(i+k),2( j+l), (58)

in which αm coefficients, 0 6 m 6 3, of ~α are computed as follows (see justification
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FIG. 22: Geometric duality between the low-resolution covariance and the high-

resolution covariance. Black dots are the available levels at low resolution, and the

white dot is the considered pixel to be interpolated. In subfigure (b), diamonds re-

present pixels estimated in the previous step.
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â0

â1
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FIG. 23: Geometric duality between covariances used in demosaicing. Color dots are

the available components in the CFA image, and the white dot is the considered pixel

to be interpolated. In subfigures (b) and (c), diamonds represent pixels estimated in the

previous step, and spatial coordinates are shifted one pixel right.
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and details in Li and Orchard, 2001) :

~α = A−1~a. (59)

This expression incorporates the local covariance matrix A , [Am,n], 0 6 m,n 6 3 bet-

ween the four neighboring levels considered pair-wise (e.g. A03 in figure 22a), and the

covariance vector~a , [am], 0 6 m 6 3 between the pixel level to be estimated and those

of its four available neighbors (see figure 22a)3. The main issue is to get these cova-

riances for the high-resolution image from levels which are available at low resolution.

This is achievable by using the geometric duality principle : once covariance is com-

puted in a local neighborhood of the low-resolution image, the equivalent covariance

at high resolution is estimated by geometric duality which considers pixel pairs in the

same direction at both resolutions. Under this duality principle, a0 is for instance esti-

mated by â0, A03 being replaced by Â03 (see figure 22). The underlying assumption to

approximate am by âm and Am,n by Âm,n, is that the local edge direction is invariant to

image resolution.

The second step consists in estimating remaining unavailable levels, as for the white

dot on figure 22b. Interpolation then relies on exactly the same principle as above,

except that the available pixel lattice is now the previous one rotated by π/4.

Applying this method to demosaicing is rather straightforward :

1. Fill out the green plane at R and B locations by using :

Ĝ = ∑
P∈N4

α (P)G(P), (60)

where α coefficients are computed according to expression (59) and figure 23a.

2. Fill out the two other color planes, by exploiting the assumption of color diffe-

rence (R−G and B−G) constancy. For the red plane as example :

(a) At B locations, interpolate the missing red level as :

R̂ = Ĝ+ ∑
P∈N′

4

α (P)
(

R(P)− Ĝ(P)
)

, (61)

where α coefficients are computed according to figure 23b.

(b) At G locations, interpolate the missing red level as :

R̂ = G+ ∑
P∈N4

α (P)
(

⌢

R(P)− Ĝ(P)
)

, (62)

where α coefficients are computed according to figure 23c,
⌢

R being a value

either available in ICFA or estimated.

3Notations used here differ from those in the original publication (i.e. R and~r for covariances) in order

to avoid any confusion.
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Although this method yields satisfying results (see next subsection), some limits

may be pointed out. First, it requires the covariance matrix A to be invertible so that

α coefficients can be computed. Li shows that this condition may not be verified in

homogeneous areas of the image. Second, computing covariance matrices is a greedy

processing task. To overcome those drawbacks, the author proposes a hybrid approach

by using covariance-based interpolation only in edge areas, and a simple method (like

bilinear interpolation) in homogeneous areas. This scheme avoids the covariance ma-

trix invertibility issue, while decreasing computation time – since edge areas generally

take up a small part of the whole image.

Leitão et al. (2003) observe that this method performs worse in textured areas than

edge areas. They advise, for covariance estimation, to avoid considering pixels which

are too far from the pixel to be interpolated. Asuni and Giachetti (2008) refine the de-

tection scheme of areas in which the covariance estimation is appropriate for inter-

polation. These authors also improve the covariance matrix conditioning by adding

a constant to pixel levels where they reach very low values. Tam et al. (2009) raise

the covariance mismatch problem, which occurs when the geometric duality property

is not satisfied, and solve it by extending the covariance matching into multiple di-

rections. Multiple low-resolution training windows are considered, and the one that

yields the highest covariance energy is retained to apply the linear interpolation accor-

ding to generic equation (58). Lukin and Kubasov (2004) incorporate covariance-based

interpolation for the green plane estimation, in a demosaicing algorithm combining

several other techniques – notably Kimmel’s. In addition, it is suggested to split non-

homogeneous areas into textured and edge ones. The interpolation step is then achieved

specifically to each kind of high-frequency contents.

3.1.6. Comparison Between Edge-adaptive Methods.

Finally, it is relevant to compare results achieved by the main exposed propositions

which exploit spatial correlation. The key objective of these methods is to achieve the

best estimation of green plane as possible, on which relies subsequent estimation of red

and blue ones. Hence, we propose to examine the peak signal-to-noise ratio PSNRG

(see expression (24)) of the estimated green plane, according to the experimental pro-

cedure described on figure 11. Table 2 shows the corresponding results, together with

those achieved by bilinear interpolation for comparison. It can be noticed that all me-

thods based on spatial correlation provide significant improvement in regard to bilinear

interpolation. Among the six tested methods, Cok’s (1986) and Li’s (2001) estimate

missing green levels by using only available green CFA samples, like bilinear interpo-

lation ; all three generally provide the worst results. The green plane estimation may

therefore be improved by using information from R and B components. In Kimmel’s al-

gorithm for instance (1999), green plane quality is noticeably enhanced, for 10 images

out of 12, thanks to corrective iterations based on spectral correlation (see results of

columns Kimmel0 and Kimmel1).

From these results may be asserted that any efficient demosaicing method should

take advantage of both spatial and spectral correlations, simultaneously and for each

color plane interpolation. Both methods proposed by Hamilton and Adams (1997) and

by Wu and Zhang (2004) use the same expression to interpolate green levels, but dif-

ferent rules to select the interpolation direction. A comparison of respective results
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Image Bilinear Hamilton Kimmel0 Kimmel1 Wu Cok Li

1 38.982 44.451 40.932 28.244 44.985 39.320 39.999

2 32.129 37.179 33.991 37.947 39.374 32.984 34.305

3 37.477 43.161 39.870 38.207 43.419 38.161 38.780

4 28.279 34.360 31.643 34.673 35.352 30.420 30.705

5 36.709 42.603 39.291 41.477 43.515 38.103 38.849

6 33.168 38.148 34.913 38.659 39.176 33.762 34.354

7 35.682 40.650 37.605 40.978 43.121 36.734 38.356

8 32.804 39.434 36.261 39.514 40.193 35.073 35.747

9 35.477 40.544 37.470 39.603 41.013 36.219 36.656

10 32.512 37.367 34.224 38.342 38.125 33.117 36.656

11 34.308 38.979 35.934 38.321 39.194 34.837 35.107

12 30.251 34.451 31.248 35.145 35.943 30.150 30.173

Average 33.981 39.277 36.115 37.592 40.284 34.907 35.807

TAB. 2: Peak Signal-to-Noise Ratio (in decibels) of the green plane (PSNRG), es-

timated by various interpolation methods. For each image, the best result is prin-

ted in bold typeface. Tested methods are here referred to chiefly by their first au-

thor’s name : 1. Bilinear interpolation – 2. Hamilton and Adams’ gradient-based

method (1997) – 3 and 4. Kimmel’s adaptive weighted-edge method (1999), before

(Kimmel0) and after (Kimmel1) corrective iterations – 5. Wu and Zhang’s component-

consistent scheme (2004) – 6. Cok’s method based on template matching (1986) –

7. Li’s covariance-based method (2001).

show that careful selection of the interpolation direction is important for overall perfor-

mance. This is all the most noticeable that, compared to other algorithms, computation

complexity is rather low for both Hamilton and Adams’ and Wu and Zhang’s methods.

Indeed, they do not require any corrective iteration step nor covariance matrix estima-

tion step, which are computation-expensive operations.

3.2. Estimated Color Correction

Once the two missing components have been estimated at each pixel, a post-processing

step of color correction is often applied to remove artifacts in the demosaiced image. To

remove false colors in particular, a classical approach consists in strengthening spectral

correlation between the three estimated color components. Such a goal may be reached

first by median filtering, as described below. An iterative update of initial interpolated

colors is also sometimes achieved, as Kimmel’s corrective step (1999) presented in sub-

section 3.1.4. A still more sophisticated algorithm proposed by Gunturk et al. (2002)

is described in detail in the second part of this section. Among other correction tech-

niques of estimated colors, Li (2005) builds a demosaicing scheme by using a iterative

approximation strategy with a spatially-adaptive stopping criterion ; he also studies the

influence of the number of corrective iteration steps on the estimated image quality.

Let us also mention here regularization schemes based on the Bayesian framework, as

Markov Random Fields (see e.g. Mukherjee et al., 2001), which are however poorly

adapted to real-time implementation.
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3.2.1. Median Filtering

One of the most widespread techniques in demosaiced image post-processing is

median filtering. Such a filter has been used for years to remove impulse noise in gray-

level images, but also efficiently removes color artifacts without damaging local color

variations. Freeman (1988) was the first person to take advantage of the median filter

to remove demosaicing artifacts. Applied to the estimated planes of color differences

R−G and B−G, this filter noticeably improves the estimation provided by bilinear

interpolation. As shown on figure 16d, these planes contain little high-frequency in-

formation. False estimated colors, which result from inconsistency between the local

interpolation and those achieved in a neighborhood, may hence be more efficiently

corrected on these planes while preserving object edges.

Median filtering is implemented in several works of the demosaicing literature.

For instance, Hirakawa and Parks (2005) propose to iterate the following correction

– without giving more details about the number of iteration steps nor the filter kernel

size –, defined at each pixel as :

R̂′ = Ĝ+MRG, (63)

Ĝ′ =
1

2

(
R̂+MGR + B̂+MGB

)
, (64)

B̂′ = Ĝ+MBG, (65)

where R̂′, Ĝ′ and B̂′ denote the filtered estimated components, and Mkk′ is the output

value of the median filter applied on estimated planes of color differences Îk − Îk′ ,

(k,k′) ∈ {R,G,B}2. Lu and Tan (2003) use a slight variant of the latter, but advise to

apply it selectively, since median filtering tends to attenuate color saturation in the

estimated image. An appropriate strategy is proposed for the pre-detection of artifact-

prone areas, where median filtering is then solely applied. However, Chang and Tan

(2006) notice that median filtering applied to color difference planes, which still bear

some textures around edges, tends to induce “zipper” artifact in these areas. In order to

avoid filtering across edges in the color difference planes, edge areas are preliminarily

detected thanks to a Laplacian filter.

Some artifacts may however remain in the median filtered image, which is mainly

due to separate filtering of color difference planes (R−G and B−G). An alternative

may be to apply a vector median filter on the estimated color image while exploiting

spectral correlation. The local output of such a filter is the color vector which mini-

mizes the sum of distances to all other color vectors in the considered neighborhood.

But according to Lu and Tan (2003), the vector filter brings out little superiority – if

any – in artifact removal, compared with the median filter applied to each color diffe-

rence plane. The authors’ justification is that the estimation errors may be considered

as additive noise which corrupts each color plane. These noise vector components are

loosely correlated. In such conditions, Astola et al. (1990) show that vector median

filtering does not achieve better results than marginal filtering on the color difference

planes.
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3.2.2. Alternating Projection Method

As previously mentioned in section 2.2.3, pixel levels bear strong spectral corre-

lation in high spatial frequency areas of a natural color image. From this observation,

Gunturk et al. (2002) aim at increasing the correlation of high-frequency information

between estimated R̂, Ĝ and B̂ component planes, while keeping the CFA image data.

These two objectives are enforced by using two convex constraint sets, on which the

algorithm alternately projects estimated data. The first set is named “Observation” and

ensures that interpolated data are consistent with those available in the CFA image. The

second set, named “Detail”, is based on a decomposition of each R, G and B plane into

four frequency subbands thanks to a filterbank approach. A filterbank is a set of pass-

band filters which decompose (analyze) the input signal into several subbands, each

one carrying the original signal information in a particular frequency subband. On the

opposite, a signal may be reconstructed (synthesized) in a filterbank by recombination

of its subbands.

The algorithm uses an initially estimated image as starting point ; it may hence be

considered as a – sophisticated – refinement scheme. To get the initial estimation Î0,

any demosaicing method is suitable. The authors suggest to use Hamilton and Adams’

scheme to estimate the green plane ÎG
0 , and a bilinear interpolation to get the red ÎR

0 and

blue ÎB
0 planes. Two main steps are achieved then, as illustrated on figure 24a :

1. Update the green plane by exploiting high-frequency information of red and blue

planes. This enhances the initial green component estimation.

(a) Use available red levels of the CFA image (or ÎR
0 ) to form a downsampled

plane IR
0 of size X/2×Y/2, as illustrated on figure 24b.

(b) Sample, at the same R locations, green levels from the initial estimation ÎG
0

to form a downsampled plane Î
G(R)
0 , also of size X/2×Y/2.

(c) Decompose the downsampled plane IR
0 into four subbands :

I
R,LL
0 (x,y) = h0(x)∗

[
h0(y)∗ IR

0 (x,y)
]

, (66)

I
R,LH
0 (x,y) = h0(x)∗

[
h1(y)∗ IR

0 (x,y)
]

, (67)

I
R,HL
0 (x,y) = h1(x)∗

[
h0(y)∗ IR

0 (x,y)
]

, (68)

I
R,HH
0 (x,y) = h1(x)∗

[
h1(y)∗ IR

0 (x,y)
]

, (69)

and do the same with plane Î
G(R)
0 . In their proposition, Gunturk et al. use

a low-pass filter H0(z) and a high-pass filter H1(z) to analyze each plane

respectively in low and high frequencies, as described above in subsec-

tion 2.2.1.

(d) Use the low-frequency subband (LL) of Î
G(R)
0 and the three subbands of

IR
0 with high frequencies (LH, HL and HH) to synthesize a re-estimated
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Î
G(R)
0

Î
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Î
R,LL
1

Î
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Ĩ
G(B)
0

ĨR
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gure 24c). Alternating projection of R and B components : ⑤ Subband analysis of intermediate estimation Î1

planes – ⑥ Synthesis of re-estimated red and blue planes – ⑦ Projection of these planes onto the “Observation”

constraint set (see details on figure 24d).
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ĜBĜB

ÎR
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ĜRĜR
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ĨR
1

ĨB
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ÎR

ÎB
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FIG. 24: Demosaicing procedure proposed by Gunturk et al. (2002) from an initial es-

timation Î0.
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downsampled green plane Ĩ
G(R)
0 :

Ĩ
G(R)
0 (x,y) = g0(x)∗

[
g0(y)∗ Î

G(R),LL

0 (x,y)
]
+g0(x)∗

[
g1(y)∗ I

R,LH
0 (x,y)

]

+g1(x)∗
[
g0(y)∗ I

R,HL
0 (x,y)

]
+g1(x)∗

[
g1(y)∗ I

R,HH
0 (x,y)

]
.

(70)

Filters G1(z) and G0(z) used for this synthesis have impulse responses

g1 = [1 2 −6 2 1]/8 and g0 = [−1 2 6 2 −1]/8, respectively.

(e) Apply above instructions (a)-(d) similarly on the blue plane ÎB
0 , which yields

a second re-estimated downsampled green plane Ĩ
G(B)
0 .

(f) Insert these two re-estimated downsampled estimations of the green plane

at their respective locations in plane ÎG
0 (i.e. Ĩ

G(R)
0 at R locations, and Ĩ

G(B)
0

at B locations, as illustrated on figure 24c). A new full-resolution green

plane ÎG
1 is obtained, which forms an intermediate estimated color image Î1

together with planes ÎR
0 and ÎB

0 from the initial estimation.

2. Update red and blue planes by alternating projections.

(a) Projection onto the “Detail” set : this step insures that high-frequency in-

formation is consistent between the three color planes, while preserving

as much details as possible in the green plane. To achieve this, a) analyze

the three color planes ÎR
1 , ÎG

1 and ÎB
1 of the intermediate image Î1 into four

subbands by using the same filterbank as previously (composed of H0(z)
and H1(z)) ; b) use the low-frequency subband of the red plane and the three

high-frequency subbands of the green plane to synthesize a re-estimated red

plane ĨR
1 , similarly to equation (70). At last, c) repeat the same operations

on the blue plane to estimate ĨB
1 .

(b) Projection onto the “Observation” set : this step insures that estimated va-

lues are consistent with the ones available (“observed”) in the CFA. The

latter are simply inserted in re-estimated planes ĨR
1 and ĨB

1 at corresponding

locations, as illustrated on figure 24d.

(c) Repeat above instructions (a) and (b) several times (the authors suggest to

use eight iterations).

In short, high-frequency subbands at red and blue CFA locations are used first to

refine the initial estimation of green color plane. The high-frequency information of

red and blue planes is then determined by using green plane details so as to remove

color artifacts. This method achieves excellent results, and is often considered as a

reference in demosaicing benchmarks. However, its computation cost is rather high,

and its performance depends on the quality of initial estimation Î0. A non-iterative

implementation of this algorithm has been recently proposed (Lu et al., 2009), which

achieves the same results as alternating projection at convergence, but at about height

times faster speed.

Chen et al. (2008) exploit both subband channel decomposition and median filte-

ring : a median filter is applied on the difference planes ÎR,LL − ÎG,LL and ÎB,LL − ÎG,LL
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of low-frequency subbands. Components are updated thanks to formulas proposed by

Hirakawa and Parks (see equations (63) to (65)), but on each low-frequency subband.

High-frequency subbands are not filtered, in order to preserve spectral correlation. The

final estimated image is synthesized from the four frequency subbands, as in the al-

ternating projection scheme of Gunturk et al.. Compared to the latter, median filtering

mainly improves the demosaicing result on chrominance planes. Menon et al. (2006)

notice that Gunturk et al.’s method tends to generate zipper effect along object boun-

daries. To avoid such artifact, a corrective technique is proposed, which uses the same

subband decomposition principle but pre-determines the local edge direction (horizon-

tal or vertical) on the estimated green plane. The authors suggest to use this particular

direction to correct green levels by replacing high-frequency components with those

of the available component (R or B) at the considered pixel. As the same direction is

used to correct estimated R̂ and B̂ levels at G locations on the color difference planes,

this technique insures interpolation direction consistency between color components,

which has been shown to be important in subsection 3.1.2.

3.3. Demosaicing using the Frequency Domain

Some recent demosaicing schemes rely on a frequency analysis, by following an

approach originated by Alleysson et al. (2005). The fundamental principle is to use a

frequency representation of the Bayer CFA image4. In the spatial frequency domain,

such a CFA image may be represented as a combination of a luminance signal and two

chrominance signals, all three being well localized. Appropriate frequency selection

therefore allows to estimate each of these signals, from which the demosaiced image

can be retrieved. Notice that frequency-based approaches do not use Bayer’s assump-

tion that assimilates green levels to luminance, and blue and red levels to chrominance

components.

3.3.1. Frequency Selection Demosaicing

A simplified derivation of Alleysson et al.’s approach has been proposed by Dubois

(2005), whose formalism is retained here to present the general framework of frequency-

domain representation of CFA images. Let us assume that, for each component k of

a color image, k ∈ {R,G,B}, there exists an underlying signal f k. Demosaicing then

consists in computing an estimation f̂ k (coinciding with Îk) at each pixel. Let us as-

sume similarly that there exists a signal f CFA which underlies the CFA image. This

signal is referred to as CFA signal and coincides with ICFA at each pixel. The CFA si-

gnal value at each pixel with coordinates (x,y) may be expressed as the sum of spatially

sampled f k signals :

f CFA(x,y) = ∑
k=R,G,B

f k(x,y)mk(x,y) , (71)

4Let us make here clear that frequency (i.e. spatial frequency), expressed in cycles per pixel, corresponds

to the inverse number of adjacent pixels representing a given level series according to a particular direction

in the image (classically , the horizontal or vertical direction).
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where mk(x,y) is the sampling function for the color component k, k ∈ {R,G,B}. For

the Bayer CFA of figure 9, this set of functions is defined as :

mR(x,y) =
1

4

(
1− (−1)x

)(
1+(−1)y

)
, (72)

mG(x,y) =
1

2

(
1+(−1)x+y

)
, (73)

mB(x,y) =
1

4

(
1+(−1)x

)(
1− (−1)y

)
. (74)

With the definition
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
, the expression of f CFA

becomes :

f CFA(x,y) = f L(x,y)+ f C1(x,y)(−1)x+y + f C2(x,y)
(
(−1)x − (−1)y

)

= f L(x,y)+ f C1(x,y)e j2π(x+y)/2 + f C2(x,y)
(

e j2πx/2 − e j2πy/2
)

.(75)

The CFA signal may therefore be interpreted as the sum of a luminance component

f L at baseband, a chrominance component f C1 modulated at spatial frequency (hori-

zontal and vertical) (0.5,0.5), and of another chrominance component f C2 modulated

at spatial frequencies (0.5,0) and (0,0.5). Such interpretation may be easily checked

on an achromatic image, in which f R = f G = f B : the two chrominance components

are then equal to zero.

Provided that functions f L, f C1 and f C2 can be estimated at each pixel from the

CFA signal, estimated color levels f̂ R, f̂ G and f̂ B are simply retrieved as :




f̂ R

f̂ G

f̂ B


=




1 −1 −2

1 1 0

1 −1 2






f̂ L

f̂ C1

f̂ C2


 . (76)

To achieve this, the authors take the Fourier transform of the CFA signal (75) :

FCFA(u,v) = FL(u,v)+FC1(u−0.5,v−0.5)+FC2(u−0.5,v)−FC2(u,v−0.5), (77)

expression in which terms are, respectively, the Fourier transforms of f L(x,y), of f C1(x,y)(−1)x+y,

and of the two signals defined as f C2a(x,y)
△
= f C2(x,y)(−1)x and f C2b(x,y)

△
=− f C2(x,y)(−1)y.

It turns out that the energy of a CFA image is concentrated in nine zones of the fre-

quency domain (see example of figure 25), centered on spatial frequencies according

to equation (77) : energy of luminance FL(u,v) is mainly concentrated at the center

of this domain (i.e. at low frequencies), whereas that of chrominance is located on its

border (i.e. at high frequencies). More precisely, the energy of FC1(u−0.5,v−0.5) is

located around diagonal zones (“corners” of the domain), that of FC2(u−0.5,v) along
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(a) “Lighthouse” CFA image

C1C1

C1

L

C2b

C2b
C1

C2aC2a

v

u-0.5 0 +0.5

-0.5

0

+0.5

(b) Normalized energy (frequencies in cycles/pixel)

FIG. 25: Localization of the energy (Fourier transform module) of a CFA signal in the

frequency domain (Alleysson et al., 2005).

u axis of horizontal frequencies, and that of FC2(u,v−0.5) along v axis of vertical fre-

quencies. These zones are quite distinct, so that isolating the corresponding frequency

components is possible by means of appropriately designed filters. But their bandwidth

should be carefully selected, since the spectra of the three functions mutually over-

lap. In these frequency zones where luminance and chrominance cannot be properly

separated, the aliasing phenomenon might occur and color artifacts be generated.

In order to design filter bandwidths which achieve the best possible separation of lu-

minance (L) and chrominance (C1, C2), Dubois (2005) proposes an adaptive algorithm

that mainly handles the spectral overlap between chrominance and high-frequency lu-

minance components. The author observes that spectral overlap between luminance

and chrominance chiefly occurs according to either the horizontal or the vertical axis.

Hence he suggests to estimate f C2 by giving more weight to the sub-component of C2

(C2a or C2b) that is least prone to spectral overlap with luminance. The implemented

weight values are based on an estimation of the average directional energies, for which

Gaussian filters (with standard deviation σ = 3.5 pixels and modulated at spatial fre-

quencies (0,0.375) and (0.375,0) cycles per pixel) are applied to the CFA image.

3.3.2. Demosaicing by Joint Frequency and Spatial Analyses

Frequency selection is also a key feature used by Lian et al. (2007), who propose

a hybrid method based on an analysis of both frequency and spatial domains. They

state that the filter used by Alleysson et al. for luminance estimation may not be opti-

mal. Moreover, since the parameters defining its bandwidth (see figure 26a) depend on

the image content, they are difficult to be adjusted (Lian et al., 2005). Although low-

pass filtering the CFA image allows to extract the luminance component, it removes
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(b) Lian et al. (filter used at G locations)

FIG. 26: Filters (bandwidth and spectrum) used to estimate luminance, as proposed by

Alleysson et al. (2005) and Lian et al. (2007).

the high-frequency information along horizontal and vertical directions. As the human

eye is highly sensitive to the latter, such loss is prejudicial to the estimation quality.

Lian et al. then notice that FC2 components in horizontal and vertical directions have

same amplitudes but opposite signs5. Consequently, the luminance spectrum FL at G

locations is obtained as the CFA image spectrum from which C1 (“corner”) component

has been removed (see details in Lian et al., 2007). A low-pass filter is proposed to this

purpose, which cancels C1 while preserving the high-frequency information along ho-

rizontal and vertical axes. This filter is inspired from Alleysson et al.’s, reproduced on

figure 26a, but its bandpass is designed to remove C1 component only (see figure 26b).

The main advantage of this approach is that luminance L spectrum bears less overlap

with the spectrum of C1 than that of C2 (see example of figure 25b), which makes the

filter design easier.

From these observations, Lian et al. propose a demosaicing scheme with three main

steps (see figure 27) :

1. Estimate the luminance (denoted as L̂) at G locations, by applying a low-pass

filter on the CFA image to remove C1. Practically, the authors suggest to use the

following 5×5 kernel, which gives very good results at low computational cost :

H =
1

64




0 1 −2 1 0

1 −4 6 −4 1

−2 6 56 6 −2

1 −4 6 −4 1

0 1 −2 1 0




. (78)

2. Estimate the luminance at R and B locations by a spatial analysis. As isolating

the spectrum of component C2 is rather difficult, the authors suggest an adaptive

algorithm based on color difference constancy (exploiting spectral correlation)

and adaptive weighted-edge linear interpolation (exploiting spatial correlation) :

5We keep here notations used by Alleysson et al. for C1 and C2, although switched by Lian et al.
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FIG. 27: Demosaicing scheme proposed by Lian et al. (2007) : 1. Luminance estima-

tion at G locations – 2.(a) Pre-estimation of R and B components at G locations –

2.(b) Luminance estimation at R and B samples – 2.(c) Repetition of steps (a) and (b) –

3. Final color image estimation from the fully-populated luminance plane. Notation

ÎL used here for illustration sake coincides at each pixel with the luminance signal of

expression (75), namely L̂x,y , ÎL(x,y) ≡ f̂ L(x,y).

(a) Pre-estimate R and B components at G locations, by simply averaging the

levels of the two neighboring pixels at which the considered component is

available.

(b) Estimate the luminance at R and B locations by applying, on the component

difference plane L−R or L−B, a weighted interpolation adapted to the

local level transition. For instance, luminance L̂ at R locations is estimated

as follows :

L̂ = R+

∑
P∈N4

w(P)
(
L̂(P)− R̂(P)

)

∑
P∈N4

w(P)
. (79)

For the same {GRG} CFA structure, weights w(P) ≡ wδx,δy are expressed

by using the relative coordinates Pδx,δy of the neighboring pixel as :

wδx,δy =
1

1+
∣∣R0,0 −R2δx,2δy

∣∣+
∣∣L̂δx,δy − L̂−δx,−δy

∣∣ , (80)

which achieves an adaptive weighted-edge interpolation, as in Kimmel’s

method (see section 3.1.4).

(c) Repeat the previous steps to refine the estimation : a) re-estimate R com-

ponent (then B similarly) at G locations, by averaging L−R levels at neigh-

boring R locations ; b) re-estimate L at R (then B) locations according to

equation (79) (weights w(P) remaining unchanged).

3. From the fully-populated luminance plane ÎL, estimate the two missing compo-

nents at each pixel of the CFA image by using bilinear interpolation :

Îk
x,y = ÎL

x,y +
(

Hk ∗ϕ k
(
ICFA − ÎL

))
(x,y), (81)
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where ϕ k(I)(x,y), k ∈ {R,G,B} is the plane defined by expression (7) and shown

on figure 12, and where convolution kernels Hk which achieve bilinear interpo-

lation are defined by expressions (8) and (9)6.

The above approach does not require to design specific filters in order to esti-

mate C1 and C2 components, as do methods using the frequency domain only (Dubois

uses for instance complementary asymmetric filters). Lian et al. show that their method

globally outperforms other demosaicing schemes according to MSE (or PSNR) crite-

rion. The key advantage seems to lie in exploiting the frequency domain at G locations

only. According to results presented by Lian et al. (2007), luminance estimations are

less error-prone than green level estimations provided by methods which chiefly scan

the spatial image plane (shown in table 2).

3.4. Conclusion

An introduction to the demosaicing issue and to its major solutions has been expo-

sed in the above section. After having described why such a processing task is required

in mono-CCD color cameras, the various CFA solutions have been presented. Focu-

sing on the Bayer CFA, we have detailed the formalism in use throughout the paper.

The simple bilinear interpolation has allowed us to introduce both artifact generation

that demosaicing method have to overcome, and two major rules widely used in the

proposed approaches : spatial and spectral correlations.

The vast majority of demosaicing methods strive to estimate the green plane first,

which bear the most high-frequency information. The quality of this estimation stron-

gly influences that of red and blue planes. When exploiting spatial correlation, we expe-

rimentally show that a correct selection of the interpolation direction is crucial to reach

a high interpolation quality for green levels. Moreover, component-consistent direc-

tions should be enforced in order to avoid color artifact generation. Spectral correlation

is often taken into account by interpolating on the difference, rather than ratio, of com-

ponent planes. An iterative post-processing step of color correction is often achieved,

so as to improve the final result quality by reinforcing spectral correlation.

Demosaicing methods may exploit spatial and/or frequency domains. The spatial

domain has been historically used first, and many studies are based on it. More recently,

authors exploit the frequency domain, which opens large perspectives. Such approaches

indeed allow to avoid using – at least partially or in a first step – the heuristic rule of

color difference constancy to take spectral correlation into account. In all cases where

such assumptions are not fulfilled, even locally, exploiting the frequency domain is an

interesting solution. Dubois foresaw several years ago (2005) that frequency selection

approaches are preeminently promising. This will be corroborated is the next sections,

dedicated to the objective quality evaluation of images demosaiced by the numerous

presented methods. Already mentioned criteria (MSE and PSNR) will be completed

by measures suited to human color perception, and new specific ones dedicated to the

local detection of demosaicing artifacts.

6Notice that ϕ k(I) may equally be expressed as ϕ k(I)(x,y) = I(x,y)mk(x,y), where sampling functions mk

are defined by (72) to (74).
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4. Objective Evaluation Criteria for Demosaiced Images

4.1. Introduction

The performances reached by different demosaicing schemes applied to the same

CFA image can be very different. Indeed, different kinds of artifacts which alter the

image quality, can be generated by demosaicing schemes. A description of these arti-

facts is given in subsection 4.2.

Measuring the performance reached by a demosaicing scheme requires to evaluate

the quality of its output image. Indeed, such a measurement helps to compare the per-

formances of the different schemes. For this purpose, we always follow the same ex-

perimental procedure (see figure 11). First, we simulate the color sampling by keeping

only one out of the three color components at each pixel of the original image I, accor-

ding to the Bayer CFA mosaic. Then, we apply the considered demosaicing scheme to

obtain the estimated color image Î (hereafter called demosaiced image) from the CFA

samples. Finally, we measure the demosaicing quality by comparing the original and

demosaiced images.

The main strategy of objective comparison is based on error estimation between the

original and demosaiced images. In subsection 4.3, we present the most used criteria

for objective evaluation of the demosaiced image.

The objective criteria are generally based on a pixel-wise comparison between the

original and the estimated colors. These fidelity criteria are not specifically sensitive

to one given artifact. Hence, in subsection 4.5, we present new measurements which

quantify the occurrences of demosaicing artifacts.

Since demosaicing methods intend to produce “perceptually satisfying” images,

the most widely used evaluation criteria are based on the fidelity to the original images.

Rather than displaying images, our goal is to apply automatic image analysis proce-

dures to the demosaiced images in order to extract features. These extracted features

are mostly derived from either colors or detected edges in the demosaiced images.

Since the quality of features is sensitive to the presence of artifacts, we propose to

quantify the demosaicing performance by measuring the rates of erroneously detected

edge pixels. This evaluation scheme is presented in the last subsection.

4.2. Demosaicing Artifacts

The main artifacts caused by demosaicing are blurring, false colors and zipper ef-

fect. In this part, we present those artifacts on examples and explain their causes by

considering the spatial and frequency domains.

4.2.1. Blurring Artifact

Blurring is located in areas where high frequency information, representing pre-

cise details or edges, is altered or erased. Figure 28, illustrates different blurring levels

according to the used demosaicing scheme. A visual comparison between the original

image 28b and image 28c which has been demosaiced by bilinear interpolation, shows

that this scheme causes severe blurring. Indeed, some details of the parrot plumage

are not retrieved by demosaicing and blurring is generated by low-pass filtering. As

stated in section 2.2.1, this interpolation can be achieved by a convolution applied to
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(a) Original Image.

(b) (c) (d)

FIG. 28: Blurring in the demosaiced image. Image (b) is an extract from the ori-

ginal image (a), located by a black box. Images (c) and (d) are the correspon-

ding extracts of the images respectively demosaiced by bilinear interpolation and

by Hamilton and Adams’ (1997) schemes.

each sampled color component plane (see expression (10)). The corresponding filters,

whose masks Hk are given by expressions (8) and (9), reduce high frequencies. Hence,

fine details may be not properly estimated in the demosaiced image (see figure 28c).

This artifact is less visible in image 28d, which has been demosaiced by Hamilton and Adams’

scheme (1997). A visual comparison with image 28c shows that this scheme, presented

in section 3.1.1, generates a small amount of visible blurring. It first estimates vertical

and horizontal gradients, then interpolates the green levels along the direction with the

lowest gradient module, i.e. by using as homogeneous levels as possible. This selection

of neighbors used to interpolate the missing green level at a given pixel, tends to avoid

blurring.

4.2.2. Zipper Effect

Let us examine figure 29, and more precisely images 29b and 29d which are extrac-

ted from the original “Lighthouse” image 29a. Images 29c and 29e are the correspon-

ding extracts from the demosaicing result of Hamilton and Adams’ scheme (1997). On

image 29e, one can notice repetitive patterns in transition areas between homogeneous

ones. This phenomenon is called zipper effect.

The main reason for this artifact is the interpolation of levels which belong to ho-

mogeneous areas representing different objects. It occurs at each pixel where the inter-

polation direction (horizontal or vertical) is close to that of the color gradient computed

in the original image. Image 29c does not contain any zipper effect, since the interpo-

lation direction is overall orthogonal to that of a color gradient, hence close to the tran-

sition direction between homogeneous areas. Oppositely, image 29e contains strong

zipper effect. In this area with high spatial frequencies along the horizontal direction,

the scheme often fails to determine the correct gradient direction (see section 3.1.2 and
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(b)

(d)

(a) Original image

(b) (c)

(d) (e)

(c)

(e)

(f) Demosaiced image

FIG. 29: Zipper effect due to erroneous selection of the interpolation direction.

Images (b) and (d) are two extracts from the original image (a), located by black

boxes. Images (c) and (e) are the corresponding extracts from the image (f) demosaiced

by Hamilton and Adams’s scheme (1997).

(b)

(a) Original image (b) (c)

(c)

(d) Demosaiced image

FIG. 30: False colors on a diagonal detail. Image (b) is an extract from the original

image (a), located by a black box. Image (c), on which artifacts are circled in black,

is the corresponding extract from image (d) demosaiced by Hamilton and Adams’s

scheme (1997).

figure 19).

The other main reason is related to the arrangement, in the CFA image, of pixels

whose green level is not available. Indeed, these pixels where the green levels can be

erroneously estimated, are arranged in staggered locations.

4.2.3. False Colors

False color at a pixel corresponds to a large distance between the original color and

the estimated one, in the acquisition color space RGB. Figures 30c and 31c show that

this phenomenon is not characterized by a specific geometrical structure in the image.

Incorrect estimation of the color components may cause perceptible false colors, in

particular in areas with high spatial frequencies.
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(a) Original Image (b) (c)

FIG. 31: False colors generated on a textured area. (b) Extract from the original

image (a), located by a black box. (c) Extract demosaiced by Wu and Zhang scheme

(2004), with artifacts circled in black.

4.2.4. Artifacts Described in the Frequency Domain

The representation of the CFA color samples in the frequency domain, proposed

by Alleysson et al. (2005), also allows to explain the reasons why artifacts are genera-

ted by demosaicing schemes.

As seen in section 3.3.1, the CFA image signal is made up of a luminance signal,

mainly modulated at low spatial frequencies, and of two chrominance signals, mainly

modulated at high frequencies (see figure 25 page 48). Therefore, demosaicing can

be considered as an estimation of luminance and chrominance components. Several

schemes which analyze the frequency domain (Alleysson et al., 2005; Dubois, 2005;

Lian et al., 2007) estimate the missing levels by selective filters applied to the CFA

image. The four possible artifacts caused by frequency analysis are shown in figure 32

extracted from (Alleysson et al., 2005) : excessive blurring, grid effect, false colors

and watercolor. When the bandwidth of the filter applied to the CFA image to estimate

the luminance is too narrow, an excessive blurring occurs in the demosaiced image (see

figure 32a). When the bandwidth of this filter is too wide, it may select high frequencies

in zones of chrominance. Such a case can result in a grid effect, especially visible in flat

(homogeneous) areas of the image (see figure 32b). Moreover, false colors appear when

the chrominance filters overlap with the luminance filter in the frequency domain (see

figure 32c). Finally, when the chrominance filter is too narrow, watercolor effect may

appear as colors which are “spread beyond” the edges of an object (see figure 32d).

These artifacts are caused by a bad conception of the selective filters used to esti-

mate luminance and chrominance. They can also be generated by demosaicing methods

which spatially scan the image. Indeed, several spatial demosaicing schemes generate

blurring and false colors since they tend to under-estimate luminance and over-estimate

chrominance. Kimmel’s (1999) and Gunturk et al.’s (2005) schemes also generate grid

effect and watercolor.

4.3. Classical Objective Criteria

All the described artifacts are due to errors in color component estimation. The

classical objective evaluation criteria sum up the errors between levels in the origi-

nal and demosaiced images. At each pixel, the error between the original and demo-

saiced images is quantized thanks to a distance between two color points in a three-

dimensional color space (Busin et al., 2008). In this subsection, we regroup the most
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(a) Blurring (b) Grid effect

(c) False color (d) Watercolor

FIG. 32: Four kinds of artifacts caused by demosaicing (Alleysson et al., 2005).
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widely used measurements into two categories, namely the fidelity and perceptual cri-

teria.

4.3.1. Fidelity Criteria

These criteria use colors coded in the RGB acquisition color space in order to esti-

mate the fidelity of the demosaiced image compared with the original image.

1. Mean Absolute Error.

This criterion evaluates the mean absolute error between the original image I and

the demosaiced image Î. Denoted by MAE, it is expressed as (Chen et al., 2008;

Li and Randhawa, 2005) :

MAE(I,Î) =
1

3XY
∑

k=R,G,B

X−1

∑
x=0

Y−1

∑
y=0

∣∣∣Ik
x,y − Îk

x,y

∣∣∣, (82)

where Ik
x,y is the level of the color component k at the pixel whose spatial coor-

dinates are (x,y) in the image I. X and Y are respectively the number of columns

and rows of the image.

The MAE criterion can be used to measure the estimation errors of a specific

color component. For example, this criterion is evaluated on the red color plane

as :

MAER(I,Î) =
1

XY

X−1

∑
x=0

Y−1

∑
y=0

∣∣IR
x,y − ÎR

x,y

∣∣. (83)

MAE values range from 0 to 255, and the demosaicing quality is considered as

better as its value is low.

2. Mean Square Error.

This criterion measures the mean quadratic error between the original image

and the demosaiced image. Denoted by MSE, it is defined as (Alleysson et al.,

2005) :

MSE(I,Î) =
1

3XY
∑

k=R,G,B

X−1

∑
x=0

Y−1

∑
y=0

(Ik
x,y − Îk

x,y)
2. (84)

The MSE criterion can also measure the error on each color plane, as in equa-

tion (23). The optimal quality of demosaicing is reached when MSE is equal to 0,

whereas the worst is measured when MSE is close to 2552.

3. Peak Signal-to-Noise Ratio.

The PSNR criterion is a widely used distortion measurement to estimate the qua-

lity of image compression. Many authors (e.g. Alleysson et al., 2005; Hirakawa and Parks,

2005; Lian et al., 2007; Wu and Zhang, 2004) use this criterion to quantify the

performance reached by demosaicing schemes. The PSNR is expressed in deci-

bels as :

PSNR(I,Î) = 10 · log10

(
d2

MSE(I,Î)

)
, (85)
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where d is the maximum color component level. When the color components are

quantized with 8 bits, d is set to 255.

Like the preceding criteria, PSNR can be applied to a specific color plane. For

the red color component, it is defined as :

PSNRR(I,Î) = 10 · log10

(
d2

MSER(I,Î)

)
. (86)

The higher the PSNR value is, the better is the demosaicing quality. The PSNR

measured on demosaiced images generally ranges from 30 to 40 dB (i.e. MSE

ranges from 65.03 to 6.50).

4. Correlation.

A correlation measurement between the original image and the demosaiced image

is used by Su and Willis (2003) to quantify the demosaicing performance. The

correlation criterion between two gray-level images I and Î is expressed as :

C(I,Î) =

∣∣∣∣∣∣∣∣∣∣∣

(
X−1

∑
x=0

Y−1

∑
y=0

Ix,yÎx,y

)
−XY µµ̂

[(
X−1

∑
x=0

Y−1

∑
y=0

Ix,y
2

)
−XY µ2

]1/2[(
X−1

∑
x=0

Y−1

∑
y=0

Îx,y
2

)
−XY µ̂2

]1/2

∣∣∣∣∣∣∣∣∣∣∣

, (87)

where µ and µ̂ are the mean gray levels in the two images.

When a color demosaiced image is considered, one estimates the correlation le-

vel Ck
(
Ik, Îk

)
, k ∈ {R,G,B}, between the original and demosaiced color planes.

The mean of the three correlation levels is used to measure the quality of de-

mosaicing. The correlation levels C range between 0 and 1, and a measurement

close to 1 can be considered as a satisfying demosaicing quality.

4.3.2. Perceptual Criteria

The preceding criteria are not well consistent with quality estimation provided by

the human visual system. That is the reason why new measurements have been defined,

which operate in perceptually uniform color spaces (Chung and Chan, 2006).

1. Estimation Error in the CIE L∗a∗b∗ color space.

The CIE L∗a∗b∗ color space is recommended by the International Commission

on Illumination to measure the distance between two colors (Busin et al., 2008).

This space is close to a perceptually uniform color space which has not been

completely defined yet. So, the Euclidean distance in the CIE L∗a∗b∗ color space

is a perceptual distance between two colors.

The three color components (R,G,B) at a pixel are first transformed into (X ,Y,Z)
components according to a CIE XY Z linear operation. Then, the color compo-

nents CIE L∗a∗b∗ are expressed as :
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L∗ =

{
116× 3

√
Y/Yn −16 if Y/Yn > 0.008856, (88a)

903.3×Y/Yn otherwise, (88b)

a∗ = 500× ( f (X/Xn)− f (Y/Yn)) , (89)

b∗ = 200× ( f (Y/Yn)− f (Z/Zn)) , (90)

with :

f (x) =

{
3
√

x if Y/Yn > 0.008856 , (91a)

7.787x+ 16
116

otherwise, (91b)

where the used reference white is characterized by the color components (Xn,Yn,Zn).
We can notice that L∗ represents the eye response to a specific luminance level,

whereas a∗ and b∗ components correspond to chrominance. The component a∗

represents an opposition of colors Red–Green, and b∗ corresponds to an opposi-

tion of colors Blue–Yellow.

The color difference is defined as the distance between two color points in this

color space. Then, the estimation error caused by demosaicing is the mean error

processed with all image pixels :

∆EL∗a∗b∗(I,Î) =
1

XY

X−1

∑
x=0

Y−1

∑
y=0

√
∑

k=L∗,a∗,b∗

(
Ik
x,y − Îk

x,y

)2
. (92)

The lower ∆EL∗a∗b∗ is, the lower is the perceptual difference between the original

and demosaiced images, and the higher is the demosaicing quality.

2. Estimation Error in the S-CIE L∗a∗b∗ color space.

In order to introduce spatial perception properties of the human visual system,

Zhang and Wandell (1997) propose a new perceptual color space, called S-CIE L∗a∗b∗.

The color components (R,G,B) are first transformed into the color space XY Z

which does not depend on the acquisition device. Then, these color components

are converted into the antagonist color space AC1C2, where A represents the per-

ceived luminance and C1, C2, the chrominance information in terms of opposition

of colors Red–Green and Blue–Yellow, respectively. The three component planes

are then separately filtered by Gaussian filters with specific variances, which ap-

proximate the contrast sensitivity functions of the human visual system.

The three filtered components A, C1 and C2 are converted back into (X ,Y,Z)
components, which are then transformed into CIE L∗a∗b∗ color space thanks to

equations (88) and (89). Once the color components L∗, a∗ and b∗ have been

computed, the estimation error ∆E in S-CIE L∗a∗b∗ is defined by equation (92).

This measurement was used by Li (2005), Su (2006) and Hirakawa and Parks

(2005) to measure the demosaicing quality.
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3. Normalized Color Difference in the CIE L∗u∗v∗ color space.

The CIE proposes another perceptually uniform color space called CIE L∗u∗v∗,

whose luminance L∗ is the same as that of CIE L∗a∗b∗ color space. The chromi-

nance components are expressed as :

u∗ = 13×L∗× (u′−u′n), (93)

v∗ = 13×L∗× (v′− v′n), (94)

with :

u′ =
4X

X +15Y +3Z
, (95)

v′ =
9Y

X +15Y +3Z
, (96)

where u′n et v′n are the chrominance of the reference white.

The criterion of normalized color difference NCD is expressed as (Li and Randhawa,

2005; Lukac and Plataniotis, 2004b) :

NCD(I,Î) =

X−1

∑
x=0

Y−1

∑
y=0

√
∑

k=L∗,u∗,v∗

(
Ik
x,y − Îk

x,y

)2

X−1

∑
x=0

Y−1

∑
y=0

√
∑

k=L∗,u∗,v∗

(
Ik
x,y

)2
, (97)

where Ik
x,y is the level of color component k, k ∈ {L∗,u∗,v∗}, at the pixel having

(x,y) spatial coordinates. This normalized measurement ranges from 0 (optimal

demosaicing quality) to 1 (worst demosaicing quality).

Among other measurements found in the literature, let us also mention Buades et al.

(2008). These authors first consider artifacts as noise which corrupts the demosaiced

image, and propose an evaluation scheme based on specific characteristics of white

noise. Unfortunately, the evaluation is only achieved by subjective appreciation. More

interesting is the suggestion to use gray-level images for demosaicing evaluation. In-

deed, color artifacts are then not only easily visually identified, but may also also be

analyzed by considering the chromaticity. The rate of estimated pixels whose chroma-

ticity is higher than a threshold reflects the propensity of a given demosaicing scheme

to generate false colors.

4.4. Artifact-sensitive Measurements

The objective measurements presented above are based on an evaluation of the

color estimation error. None of these measurements quantify the specific presence of

each kind of artifact within the demosaiced images. Though, it would be interesting to

isolate specific artifacts during the evaluation process. In this part, we present measu-

rements which are sensitive to specific kinds of artifacts by taking their properties into

account.
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4.4.1. Blurring Measurement

The blurring measurement proposed by Marziliano et al. (2004) is sensitive to the

decrease of local level variations in transition areas. The authors notice that blurring

corresponds to an expansion of these transition areas, and propose to measure the tran-

sition widths to quantify this artifact. The evaluation scheme analyzes the luminance

planes of the original and demosaiced images, respectively denoted as L and L̂. The

transition width increase, evaluated at the same pixel locations in both images, yields

an estimation of the blurring caused by demosaicing.

This blurring measurement consists in the following successive steps :

1. Apply the Sobel filter to the luminance plane L according to the horizontal direc-

tion, and threshold its output. The pixels detected in this way are called vertical

edge pixels.

2. At each vertical edge pixel P, examine the luminance levels of pixels located on

the same row as P in the luminance plane L. The pixel Pl (resp. Pr) corresponds

to the first local luminance extremum located on the left (resp. the right) of P.

To each vertical edge pixel P, associate in this way a pair of pixels Pl and Pr,

one of them corresponding to a local luminance maximum and the other one to

a minimum (see figure 33).

3. The transition width at P is defined as the difference between the x coordinates
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of pixels Pl and Pr.

4. Compute the blurring measurement as the mean transition width estimated over

all vertical edge pixels in the image.

5. From the spatial locations of vertical edge pixels in L – which have been detected

in step 1 –, steps 2 to 4 are performed on the luminance plane L̂ of the demosaiced

image. A blurring measurement is then obtained for this plane.

6. The two measurements, obtained respectively for the original and demosaiced

images, are compared in order to estimate blurring caused by the considered

demosaicing scheme.

4.4.2. Zipper Effect Measurements

As far as we know, the single proposition for zipper effect measurement was gi-

ven by Lu and Tan (2003). This artifact is characterized at a pixel by an increase of

the minimal distance between its color and those of its neighbors. This measurement

therefore relates to the original color image.

The zipper effect measurement in a demosaiced image Î, compared with the original

image I, is computed by these successive steps :

1. At each pixel P in the original image I, identify the neighboring pixel P′ whose

color is the closest to that of P in CIE L∗a∗b∗ color space :

P′ = argmin
Q∈N8

‖I(P)− I(Q)‖ , (98)

where N8 is the 8-neighborhood of P and ‖·‖ is the Euclidean distance in CIE L∗a∗b∗

color space. The color difference is then computed as :

∆I(P) =
∥∥I(P)− I(P′)

∥∥ . (99)

2. At the same locations as P and P′, compute their color difference in the demo-

saiced image Î :

∆Î(P) =
∥∥Î(P)− Î(P′)

∥∥ . (100)

3. Compute the color difference variation ϕ (P) = ∆Î(P)−∆I(P).

4. Threshold the color difference variation, in order to detect the pixels P where

zipper effect occurs. If |ϕ (P)|> Tϕ , the pixel P in the demosaiced image presents

a high variation of the difference between its color and that of P′. More precisely,

when ϕ (P) is lower than −Tϕ , the demosaicing scheme has reduced the color

difference between pixels P and P′. On the other hand, when ϕ (P) > Tϕ , the

difference between the color of P and that of P′ has been highly increased in Î
compared with I ; so, the pixel P is considered as affected by zipper effect. The

authors propose to set the threshold Tϕ to 2.3

5. Compute the rate of pixels affected by zipper effect in the demosaiced image :

ZE% = Card
{

P(x,y) | ϕ (P) > Tϕ
}

. (101)

62



(a) Original image I (b) Demosaiced image Î (c) Zipper effect map

FIG. 34: Over-detection of the zipper effect by Lu and Tan’s measurement (2003), in a

synthetic image.

In the detection map (c), pixels affected by zipper effect are labeled as ×, and the

ground-truth (determined by visual examination) is labeled as gray. A pixel labeled

both as × and gray corresponds to a correct detection, whereas a pixel labeled only as

× corresponds to an over-detection of the zipper effect.

The effectiveness of this measurement was illustrated by its authors with a syn-

thetic image7. However, by applying it to images of Kodak Database, we will show

in section 5.2 that it tends to over-detect zipper effect in the demosaiced images. Two

reasons explain this over-detection.

First, a pixel whose color is correctly estimated and which has neighboring pixels

whose colors are erroneously estimated, can be considered as being affected by zipper

effect (see figure 34).

Second, we notice that all the pixels detected by Lu and Tan’s measurement are not

located in areas with perceptible alternating patterns which correspond to zipper effect.

Indeed, all the artifacts which can increase the minimal difference between the color of

a pixel and those of its neighbors do not always bear the geometric properties of zipper

effect. An example of this phenomenon is found on the zipper effect detection result

of figure 38c4 : almost all pixels are detected as affected by zipper effect, although the

demosaiced image 38b4 does not contain this repetitive and alternating pattern.

To avoid over-detection, we propose a scheme – hereafter referred to as directional

alternation measurement – which quantifies the level variations over three adjacent

pixels along the horizontal or vertical direction in the demosaiced image.

Two reasons explain why the direction of zipper effect is mainly horizontal or ver-

tical. Demosaicing schemes usually estimate the green color component first, then the

red and blue ones by using color differences or ratios. However, along a diagonal direc-

tion in the CFA image, all the green levels are either available or missing. Since there

is no alternating pattern between estimated and available levels along this diagonal

direction, there are few alternating estimation errors which characterize zipper effect.

Secondly, edges of objects in a natural scene tend to follow horizontal and vertical

directions.

We propose to modify the selection of neighboring pixels used to decide, thanks

to Lu and Tan’s criterion, whether the examined pixel is affected by zipper effect. We

7This image is not available.
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require the selected adjacent pixels to present a green alternating pattern specific to

zipper effect. Moreover, this series of three adjacent pixels has to be located along

transitions between homogeneous areas, so that the variations of levels associated with

this transition are not taken into account.

The zipper effect detection scheme based on directional alternation, which provides

a measurement for this artifact, consists in the following successive steps :

1. At a give pixel P, determine the local direction (horizontal or vertical) along

which the green variations are the lowest in the original image. This direction is

selected so that the green level dispersion is the lowest :

σx(P)=
1

3

1

∑
i=−1

(
IG
x+i,y −µx(P)

)2

(102)

and σy(P)=
1

3

1

∑
i=−1

(
IG
x,y+i −µy(P)

)2
,

(103)

where µx(P) (respectively, µy(P)) is the mean of the green levels IG
x+i,y (respec-

tively, IG
x,y+i), i ∈ {−1,0,1}, in the original image I.

The determined direction δ is that for which the directional variance is the lo-

west :

δ = argmin
d∈{x,y}

(
σd(P)

)
. (104)

Thanks to this step, the green levels of the three selected adjacent pixels are

locally the most homogeneous.

2. Evaluate the alternation amplitude at pixel P, between the three adjacent pixels

along direction δ, in the original and estimated images. When δ is horizontal,

the amplitude on a plane I is computed as :

α x(I,P) =
∣∣Ix−1,y − Ix,y

∣∣+
∣∣Ix,y − Ix+1,y

∣∣−
∣∣Ix−1,y − Ix+1,y

∣∣ , (105)

When δ is vertical, the amplitude is computed as :

α y(I,P) =
∣∣Ix,y−1 − Ix,y

∣∣+
∣∣Ix,y − Ix,y+1

∣∣−
∣∣Ix,y−1 − Ix,y+1

∣∣ . (106)

When the three green levels present an alternating “high-low-high” or “low-high-

low” pattern, α δ(I,P) is strictly positive, otherwise zero.

3. Compare the alternation amplitudes on the G plane of the original image I and

that of the demosaiced image Î. When α δ (ÎG,P
)

> α δ (IG,P
)
, the alternation

amplitude of green levels has been amplified by demosaicing along the direc-

tion δ. The pixel P is retained as a candidate pixel affected by zipper effect.

4. Apply to these candidate pixels a modified the scheme proposed by Lu and Tan,

except that the neighboring pixel P′ whose color is the closest to P has to be one

of the two neighboring pixels along the selected direction δ.
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4.4.3. False Colors Measurement

We also propose a measurement for the false color artifact (Yang et al., 2007). At

a pixel in the demosaiced image, any mere error in the estimated value a color com-

ponent can be considered as a false color. However, the human visual system cannot

actually distinguish any subtle color difference which is lower than a specific thre-

shold (Faugeras, 1979). We consider that the estimated color at a pixel is false when

the absolute difference between an estimated color component and the original one is

higher than a threshold T . The proposed measurement FC% is the ratio between the

number of pixels affected by false colors and the image size :

FC% =
100

XY
Card

{
P(x,y) | max

k=R,G,B

(∣∣∣Ik
x,y − Îk

x,y

∣∣∣
)

> T

}
. (107)

FC% is easy to be implemented and expresses the rate of pixels affected by false

colors as a measurement of the performance reached by a demosaicing scheme. Mo-

reover, this criterion can be also used to locate pixels affected by false colors. However,

as classical fidelity criteria, it requires the original image in order to compare the effi-

ciency of demosaicing schemes.

4.5. Measurements Dedicated to Low-level Image Analysis

Since the demosaicing methods intend to produce “perceptually satisfying” demo-

saiced images, the most widely used evaluation criteria are based on the fidelity to the

original images. Rather than displaying images, our long-term goal is pattern recogni-

tion by means of feature analysis. These features extracted from the demosaiced images

are mostly derived from either colors or detected edges. Artifacts generated by demo-

saicing (mostly blurring and false colors) may affect the performance of edge detection

methods applied to the demosaiced image. Indeed, blurring reduces the sharpness of

edges, and false colors can give rise to irrelevant edges. That is why we propose to

quantify the demosaicing performance by measuring the rates of erroneously detected

edge pixels.

4.5.1. Measurements of Sub- and Over-detected Edges.

The edge detection procedure is sensitive to the alteration of high spatial frequen-

cies caused by demosaicing. Indeed, low-pass filtering tends to generate blurring, and

so to smooth edges. Moreover, when the demosaicing scheme generates false colors

or zipper effect, it may give rise to abnormally high values of a color gradient module.

The respective expected consequences are sub- and over-detection of edges. Notice that

the different demosaicing algorithms are more or less efficient in avoiding to generate

blurring, false color and zipper effect artifacts.

So, we propose a new evaluation scheme which performs these successive steps (Yang et al.,

2007) :

1. Apply a hysteresis thresholding of the module of the color gradient proposed

by Di Zenzo (1986), in order to detect edges in the original image I. The same

edge detection scheme with the same parameters is applied to the demosaiced

image Î.

Edge detection is performed as follows :
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(a) Compute the square module of the Di Zenzo gradient at each pixel in image

I as :

‖∇ I‖2 =
1

2

(
a+ c+

√
(a− c)2 +4b2

)
, (108)

θ =
1

2
arctan

(
2b

a− c

)
, (109)

where coefficients a, b and c are computed by approximating the partial

derivatives of the image function I :

a =
(

∂ I
∂x

)2

≈
(
∆x(IR)

)2
+
(
∆x(IG)

)2
+
(
∆x(IB)

)2
,

b = ∂ I
∂x

∂ I
∂y

≈ ∆x(IR)∆y(IR)+∆x(IG)∆y(IG)+∆x(IB)∆y(IB),

c =
(

∂ I
∂y

)2

≈
(
∆y(IR)

)2
+
(
∆y(IG)

)2
+
(
∆y(IB)

)2
.

Each approximative partial derivative ∆d(Ik), d ∈ {x,y} , k ∈ {R,G,B}, is

computed thanks to the Deriche operator (Deriche, 1987).

(b) Find the local maxima of the vector gradient module ‖∇ I‖.

(c) Among pixels which are associated with local maxima, detect the edge

pixels thanks to a hysteresis thresholding, parametrized by a low thre-

shold Tl and a high threshold Th.

2. Store the edge detection result for the original image in a binary edge map B,

and similarly for the demosaiced image edges in B̂. Notice that these two maps,

in which edge pixels are labeled as white, may be different due to artifacts in the

demosaiced image.

3. In order to quantify the influence of demosaicing on edge detection quality, we

propose to follow the strategy developed by Martin et al. (2004). Edge maps B

and B̂ are compared by means of two successive operators (see figure 35a) :

(a) Apply the XOR logical operator to edge maps B and B̂, in order to enhance

the differences between them in a new binary map J ;

(b) Apply the AND logical operator to maps J and B, which results in the

binary sub-detected edge map SD. Similarly, the AND logical operator is

applied to maps J and B̂, which results in the binary over-detected edge

map OD.

Pixels labeled as white in map SD are edge pixels which are detected in the

original image I but undetected in the demosaiced image Î. Pixels labeled as

white in the image OD are edge pixels erroneously detected in the demosaiced

image Î, compared with edge pixels detected in I.
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detection

Edge

detection

Original image I

Demosaiced image Î

Original edges B

Demosaiced edges B̂

Sub-detection map

SD = J AND B

Over-detection map

OD = J AND B̂

Difference map

J = B XOR B̂

(a) General scheme

I
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B̂

SD

OD

J

(b) Example

FIG. 35: Steps to measure the quality of edge detection.

In subfigure (b), over-detected edge pixels are labeled as ××××××××× (in bold typeface) in B̂, J

and OD, in order to distinguish them from sub-detected edge pixels (labeled as ×).
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S̃D

ÕD

SD (X)

OD (X)

FIG. 36: Computing S̃D and ÕD from SD and OD, on an example. Pixels labeled as

dotted × belong to pairs of shifted edge pixels, and are dropped out in the final detection

maps.

4. Compute the rates of sub- and over-detected edge pixels respectively as :

SD% =
100

XY
Card

{
P(x,y) | SDx,y 6= 0

}
, (110)

OD% =
100

XY
Card

{
P(x,y) | ODx,y 6= 0

}
. (111)

Finally, the rate of erroneously detected edge pixels is expressed as ED% =
SD% +OD%.

4.5.2. Measurements Based on Shifted Edges

By visually examining the map J in figure 35b, we notice the presence of many

pairs of adjacent edge pixels. In such edge pairs, one pixel is detected in B only (i.e. sub-

detected), and the other one in B̂ only (i.e. over-detected). For example, the map J

of figure 35b presents five pairs of adjacent pixels composed of a sub-detected edge

pixel (labeled as ×) and an over-detected edge pixel (labeled as × in bold typeface).

These cases do not result from a bad edge detection, but from a spatial shift of edge

pixels between the original and demosaiced images. A sub-detected (respectively, over-

detected) edge pixel is shifted when at least one of its neighbors is an over-detected

(respectively, sub-detected) edge pixel. Such pairs of pixels are hereafter called pairs

of shifted (edge) pixels.

In order to characterize the effect of demosaicing on edge detection precisely, we

want to distinguish pairs of shifted edge pixels from other edge pixels. For this pur-

pose, we represent unshifted sub- and over-detected edge pixels as two binary maps

respectively denoted as S̃D and ÕD, and defined as :
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S̃Dx,y 6= 0 ⇔ SDx,y 6= 0∧
(
6 ∃Q(x′,y′) ∈ N8 (P(x,y))

∣∣ODx′,y′ 6= 0
)

, (112)

ÕDx,y 6= 0 ⇔ ODx,y 6= 0∧
(
6 ∃Q(x′,y′) ∈ N8 (P(x,y))

∣∣SDx′,y′ 6= 0
)

, (113)

where symbol ∧ represents the logical AND operator.

Figure 36 illustrates, from the example of figure 35, how maps S̃D and ÕD are

obtained. In this figure, maps SD and OD used to build S̃D and ÕD are superimposed

in order to highlight the pairs of shifted edge pixels.

From the two binary maps S̃D and ÕD, we compute the rates of sub- and over-

detected unshifted edge pixels as :

S̃D% =
100

XY
Card

{
P(x,y) | S̃Dx,y 6= 0

}
, (114)

ÕD% =
100

XY
Card

{
P(x,y) | ÕDx,y 6= 0

}
. (115)

These rates are used to evaluate precisely the quality of edge detection in demosai-

ced images.

4.6. Conclusion

In this section, we have presented the techniques of objective evaluation of demo-

saicing quality. For this purpose, we have first presented the most occurred artifacts

caused by demosaicing. Blurring, false colors and zipper effect damage the quality of

the demosaiced images.

Then, we have presented classical criteria which total the errors between the origi-

nal and estimated colors through the image. These criteria have some limits since they

provide a global estimation of the demosaicing quality and do not reflect the judgment

of an observer. Indeed, they do not quantify the occurrences of artifacts which can be

identified by an observer. Therefore, we have described measurements dedicated to

three kinds of artifacts.

In the computer vision context, most images are acquired by color mono-sensor ca-

meras in order to be automatically processed. So, the quality of demosaicing affects the

quality of low-level image analysis schemes. That is the reason why we have proposed

criteria which are based on the quality of edge detection.
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5. Quality Evaluation Results

5.1. Results of Classical Criteria

The quality of demosaicing results, achieved by the ten methods detailed in sec-

tion 2, has been first evaluated thanks to classical criteria. For this purpose, the twelve

mostly used images of Kodak benchmark database are considered (see figure 37)8.

These images, all of size 768× 512 pixels, have been selected in order to present a

significant variety of homogeneous regions, colors and textured areas.

Table 3 displays the results obtained with criteria which measure the fidelity of each

demosaiced image to its corresponding original image, namely the mean absolute er-

ror (MAE, expression (82)), the peak signal-to-noise ratio (PSNR, expression (85)) and

the correlation criterion (C, expression (87)). Table 4 shows, for the same images and

demosaicing schemes, the results obtained with perceptual criteria, namely the estima-

tion error in CIE L∗a∗b∗ color space (∆EL∗a∗b∗ , expression (92)), the estimation error

in S-CIE L∗a∗b∗ color space (∆ES-L∗a∗b∗) and the criterion of normalized color diffe-

rence (NCD, expression (97)) between the demosaiced image and its original image.

These two tables show that for a given method, the performances measured with

a specific criterion vary from an image to another one. This confirms that obtaining

a good color estimation from the CFA image is all the more difficult as the image is

rich in high spatial frequency areas. For instance, the PSNR of images demosaiced by

bilinear interpolation ranges from 24.5 dB for image 4 (“House”), which contains a

lot of high frequency areas, to 36 dB for image 1 (“Parrots”), which contains a lot of

homogeneous regions.

It can be noticed that the two methods which chiefly use the frequency domain

provide better results than those which only scan the spatial domain. Moreover, the

method proposed by Dubois (2005) achieves the best average results over the twelve

images, whatever the considered criterion. We also notice that the different criteria

provide similar performance rankings for the methods on a given image.

5.2. Results of Artifact-sensitive Measurements

5.2.1. Zipper Effect Measurements

In order to compare the relevance of the results provided by the two zipper effect

measurements described in section 4.4.2, we propose to use the following procedure.

First, a ground truth is built for the zipper effect by visually examining the demosaiced

image and defining whether each pixel is affected by zipper effect or not. Then, the

two measurements are applied, in order to provide binary maps where pixels which are

affected by zipper effect are labeled as white. A final comparison step of these binary

maps with the ground truth quantifies the performance of each objective measurement,

by counting pixels where zipper effect is correctly detected, sub-detected and over-

detected.

Figure 38 displays the results on four image extracts of size 10×10 pixels. It shows

that the directional alternation measurement generally fits better with the ground truth

8This database is available at http://www.math.purdue.edu/~lucier/PHOTO_CD
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1. Parrots 2. Sailboat 3. Windows

4. Houses 5. Race 6. Pier

7. Island 8. Lighthouse 9. Plane

10. Cape 11. Barn 12. Chalet

FIG. 37: The twelve benchmark images picked up from Kodak database. Images 5

and 8 are presented vertically for illustration purpose, but have been analyzed in land-

scape orientation.
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Image Criterion Bilinear Cst. Hue Hamilton Wu Cok Kimmel Li Gunturk Dubois Lian

1

MAE 1.542 1.358 0.938 0.949 1.257 1.784 1.379 0.877 0.879 0.796
PSNR 36.256 38.082 42.868 42.984 39.069 31.883 38.132 43.186 43.259 44.199

C 0.9966 0.9978 0.9993 0.9993 0.9982 0.9912 0.9978 0.9993 0.9993 0.9995

2

MAE 4.352 3.381 1.829 1.565 2.897 2.241 2.515 1.339 1.154 1.415

PSNR 28.956 31.396 36.324 37.831 32.561 34.418 33.499 39.951 41.433 39.303

C 0.9830 0.9905 0.9970 0.9978 0.9928 0.9952 0.9942 0.9987 0.9990 0.9984

3

MAE 1.978 1.578 0.980 0.994 1.407 1.264 1.484 0.907 0.900 0.786
PSNR 34.454 36.779 41.773 41.641 37.915 38.620 37.111 42.713 43.062 43.832

C 0.9909 0.9946 0.9983 0.9982 0.9958 0.9965 0.9950 0.9987 0.9987 0.9989

4

MAE 7.329 5.655 2.629 2.607 3.986 3.077 4.130 2.055 2.022 1.975
PSNR 24.551 27.350 33.409 33.535 29.885 31.858 29.588 36.452 36.479 36.445

C 0.9596 0.9799 0.9950 0.9951 0.9888 0.9928 0.9881 0.9975 0.9975 0.9975

5

MAE 2.276 1.822 1.112 1.078 1.591 1.230 1.556 0.896 0.895 0.860
PSNR 33.611 36.120 41.430 41.795 37.701 39.659 37.515 43.237 43.354 43.785

C 0.9863 0.9926 0.9978 0.9980 0.9949 0.9967 0.9946 0.9985 0.9986 0.9987

6

MAE 3.589 2.857 1.605 1.511 2.404 1.949 2.370 1.247 1.167 1.215

PSNR 30.191 32.400 37.353 37.748 33.579 35.344 33.372 40.409 40.894 40.399

C 0.9783 0.9874 0.9960 0.9963 0.9905 0.9935 0.9900 0.9980 0.9982 0.9980

7

MAE 2.880 2.264 1.263 1.084 1.931 1.518 1.652 0.964 0.826 1.022

PSNR 32.341 34.719 39.713 41.613 36.141 37.788 37.451 42.913 44.680 42.144

C 0.9861 0.9921 0.9975 0.9984 0.9944 0.9961 0.9958 0.9988 0.9992 0.9986

8

MAE 3.849 3.079 1.571 1.546 2.344 1.874 2.284 1.234 1.164 1.195

PSNR 29.186 31.716 38.419 38.594 34.663 36.172 34.708 42.913 41.547 41.072

C 0.9775 0.9875 0.9973 0.9974 0.9936 0.9956 0.9938 0.9985 0.9987 0.9986

9

MAE 2.362 1.929 1.306 1.318 1.769 1.394 1.802 1.043 1.114 0.994
PSNR 32.565 34.931 39.462 39.347 35.985 38.181 35.601 42.030 41.735 42.353

C 0.9973 0.9984 0.9995 0.9994 0.9988 0.9993 0.9987 0.9997 0.9997 0.9997

10

MAE 3.772 2.936 1.840 1.801 2.661 1.969 2.739 1.311 1.290 1.319

PSNR 29.557 31.960 36.542 36.643 32.891 35.202 32.549 40.220 40.172 39.972

C 0.9769 0.9870 0.9955 0.9955 0.9895 0.9939 0.9887 0.9981 0.9981 0.9980

11

MAE 3.164 2.497 1.701 1.741 2.346 1.971 2.535 1.442 1.368 1.326
PSNR 31.433 33.718 37.746 37.455 34.560 35.995 33.802 39.217 39.575 39.963

C 0.9849 0.9909 0.9964 0.9962 0.9925 0.9949 0.9913 0.9975 0.9977 0.9979

12

MAE 4.366 3.317 2.057 1.965 3.091 2.244 3.310 1.530 1.453 1.469

PSNR 27.564 29.938 33.381 34.237 29.957 32.196 29.333 36.630 37.690 36.687

C 0.9752 0.9859 0.9936 0.9948 0.9859 0.9915 0.9838 0.9970 0.9976 0.9970

Avg.

MAE 3.455 2.723 1.569 1.513 2.307 1.876 2.313 1.237 1.186 1.198

PSNR 30.889 33.259 38.202 38.619 34.575 35.610 34.388 40.823 41.157 40.846

C 0.9827 0.9904 0.9969 0.9972 0.9930 0.9947 0.9926 0.9983 0.9985 0.9984

TAB. 3: Demosaicing quality results, for twelve color images from Kodak database,

according to fidelity criteria : mean absolute error (MAE), peak signal-to-noise ratio

(PSNR, in decibels), and correlation (C) between the original image and the demo-

saiced image. For each image and each criterion, the best result is written in bold

typeface. The tested methods are : 1. Bilinear interpolation – 2. Constant-hue-based

interpolation (Cok, 1987) – 3. Gradient-based method (Hamilton and Adams, 1997) –

4. Component-consistent scheme (Wu and Zhang, 2004) – 5. Method based on tem-

plate matching (Cok, 1986) – 6. Adaptive weighted-edge method (Kimmel, 1999) –

7. Covariance-based method (Li and Orchard, 2001) – 8. Alternating projection me-

thod (Gunturk et al., 2002) – 9. Frequency selection method (Dubois, 2005) – 10. Me-

thod based on frequency and spatial analyses (Lian et al., 2007).
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Image Criterion Bilinear Cst. Hue Hamilton Wu Cok Kimmel Li Gunturk Dubois Lian

1

∆EL∗a∗b∗ 1.439 1.289 1.002 1.010 1.229 1.655 1.387 0.969 0.952 0.899

∆ES-L∗a∗b∗ 2.605 2.605 2.318 2.268 2.682 5.701 3.537 2.193 1.967 2.007

NCD 0.0098 0.0089 0.0067 0.0068 0.0083 0.0119 0.0094 0.0064 0.0064 0.0060

2

∆EL∗a∗b∗ 3.382 2.562 1.538 1.335 2.275 1.772 2.078 1.196 1.078 1.223

∆ES-L∗a∗b∗ 6.477 5.965 3.756 2.954 5.360 4.653 4.578 3.079 2.440 3.021

NCD 0.0251 0.0194 0.0113 0.0099 0.0169 0.0136 0.0152 0.0089 0.0079 0.0091

3

∆EL∗a∗b∗ 2.048 1.663 1.132 1.148 1.492 1.491 1.653 1.108 1.066 0.981

∆ES-L∗a∗b∗ 3.715 3.483 2.659 2.615 3.339 4.283 3.990 2.594 2.280 2.229
NCD 0.0140 0.0114 0.0077 0.0078 0.0101 0.0102 0.0112 0.0074 0.0072 0.0066

4

∆EL∗a∗b∗ 5.467 4.246 2.167 2.099 3.138 2.356 3.315 1.735 1.676 1.652

∆ES-L∗a∗b∗ 11.293 10.635 5.729 5.166 7.918 6.125 7.886 4.850 4.507 4.327
NCD 0.0441 0.0338 0.0172 0.0169 0.0249 0.0193 0.0261 0.0140 0.0136 0.0132

5

∆EL∗a∗b∗ 1.780 1.474 0.965 0.931 1.273 1.040 1.299 0.861 0.843 0.816

∆ES-L∗a∗b∗ 3.925 3.824 2.753 2.661 3.401 3.462 3.344 2.437 2.361 2.304
NCD 0.0139 0.0114 0.0074 0.0072 0.0099 0.0082 0.0100 0.0065 0.0064 0.0062

6

∆EL∗a∗b∗ 3.511 2.762 1.729 1.641 2.419 1.943 2.485 1.393 1.334 1.343

∆ES-L∗a∗b∗ 6.883 6.417 4.333 3.809 5.781 4.806 5.675 3.589 3.209 3.323

NCD 0.0261 0.0209 0.0128 0.0122 0.0179 0.0151 0.0183 0.0104 0.0099 0.0100

7

∆EL∗a∗b∗ 2.671 2.047 1.259 1.088 1.789 1.407 1.592 1.021 0.895 1.051

∆ES-L∗a∗b∗ 5.231 4.808 3.135 2.496 4.254 3.563 3.580 2.597 1.991 2.635

NCD 0.0206 0.0161 0.0096 0.0083 0.0138 0.0113 0.0121 0.0079 0.0068 0.0081

8

∆EL∗a∗b∗ 3.338 2.629 1.561 1.526 2.170 1.806 2.195 1.260 1.188 1.224

∆ES-L∗a∗b∗ 6.474 5.984 3.811 3.465 5.039 4.404 4.857 3.208 2.860 2.963

NCD 0.0243 0.0193 0.0111 0.0110 0.0156 0.0133 0.0157 0.0090 0.0085 0.0087

9

∆EL∗a∗b∗ 2.155 1.725 1.221 1.208 1.613 1.277 1.709 0.996 1.005 0.959

∆ES-L∗a∗b∗ 4.568 4.136 3.175 2.984 3.909 3.346 4.663 2.791 2.697 2.478
NCD 0.0150 0.0122 0.0086 0.0086 0.0113 0.0093 0.0119 0.0071 0.0072 0.0068

10

∆EL∗a∗b∗ 3.259 2.524 1.705 1.652 2.356 1.696 2.517 1.273 1.261 1.278

∆ES-L∗a∗b∗ 6.239 5.839 4.234 3.826 5.555 4.060 5.694 3.321 3.107 3.140

NCD 0.0251 0.0197 0.0131 0.0128 0.0182 0.0137 0.0192 0.0099 0.0097 0.0098

11

∆EL∗a∗b∗ 2.724 2.152 1.584 1.602 2.065 1.822 2.284 1.416 1.319 1.303

∆ES-L∗a∗b∗ 5.175 4.747 3.898 3.738 4.852 4.690 5.371 3.631 3.157 3.191

NCD 0.0195 0.0157 0.0114 0.0116 0.0149 0.0133 0.0165 0.0101 0.0095 0.0093

12

∆EL∗a∗b∗ 3.402 2.620 1.736 1.655 2.482 1.814 2.730 1.380 1.318 1.317

∆ES-L∗a∗b∗ 6.286 5.870 4.341 3.920 5.965 4.384 6.371 3.564 3.135 3.193

NCD 0.0258 0.0200 0.0132 0.0127 0.0188 0.0142 0.0206 0.0105 0.0101 0.0100

Avg.

∆EL∗a∗b∗ 2.931 2.308 1.467 1.408 2.025 1.673 2.104 1.217 1.161 1.170

∆ES-L∗a∗b∗ 5.739 5.359 3.678 3.325 4.838 4.456 4.962 3.154 2.809 2.901

NCD 0.0219 0.0174 0.0108 0.0105 0.0150 0.0128 0.0155 0.0090 0.0086 0.0086

TAB. 4: Demosaicing quality results, for twelve color images from Kodak database,

according to perceptual criteria : estimation error in CIE L∗a∗b∗ color space (∆EL∗a∗b∗),

estimation error in S-CIE L∗a∗b∗ color space (∆ES-L∗a∗b∗ ), and criterion of normalized

color difference (NCD). For each image and each criterion, the best result (i.e. lowest

value) is written in bold typeface. Images and tested methods are the same as in table 3.

The illuminant used for (X ,Y,Z) transform is the standard CIE D65, which corresponds

to daylight.
73



(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

FIG. 38: Zipper effect detection in four Kodak image extracts, according to two mea-

surements.

(a1)–(a4) : original extracts. (b1)–(b4) : demosaiced extracts. Last two columns : pixels

affected by zipper effect, according to Lu and Tan’s criterion (c1)–(c4) and to the di-

rectional alternation (d1)–(d4).

Pixels affected by zipper effect are labeled as ×. They correspond to ground truth in

images (b1)–(b4). In images (c1)–(d4), the ground truth is reproduced as gray-labeled

pixels. So, pixels where the zipper effect is well detected are both labeled as × and gray.

Pixels where the zipper effect is sub-detected (respectively, over-detected) are labeled

only as × (respectively, only as gray). Images (b1) and (b2) are estimated by bilinear

interpolation, (b3) and (b4) by Hamilton and Adams’ (1997) gradient-based method.
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Image
Well-detected Sub-detected Over-detected

Lu and
Tan

Directional
alternation

Lu and
Tan

Directional
alternation

Lu and
Tan

Directional
alternation

(a1) 100 100 0 0 0 0

(a2) 58 83 2 1 40 16

(a3) 72 86 1 9 27 5

(a4) 7 94 0 0 93 6

Total 237 363 3 10 160 27

TAB. 5: Comparison between the measurements quantifying zipper effect, proposed

by Lu and Tan (2003) and based on the directional alternation. Values correspond to

the numbers of well-detected, sub-detected and over-detected pixels affected by this

artifact in the four image extracts of figure 38.

than Lu and Tan’s measurement does. This remark is confirmed numerically by com-

paring the numbers of well-detected, sub-detected and over-detected pixels affected by

zipper effect in the four images. The results in table 5 show that the measurement based

on directional alternation generally provides higher well-detected pixel rates than the

one proposed by Lu and Tan. Indeed, the latter over-detects zipper effect whereas the

measurement based on directional alternation tends to slightly sub-detect this artifact.

Finally, we have compared the demosaicing schemes according to the measure-

ment based on directional alternation. Table 6 shows that the results are similar to

those obtained with classical criteria, presented in tables 3 and 4 : bilinear interpolation

always generates the highest amount of zipper effect, whereas the scheme proposed

by Lian et al. (2007) is overall the most efficient. However, by examining table 6 in

detail, we notice that in images with few high spatial frequencies (number 2-“Sailboat”

and 7-“Island”), the method proposed by Dubois tends to generate less zipper artifact

than Lian et al.’s method does. Generally speaking, these results show that the methods

which analyze the frequency domain generate less zipper effect than those which scan

the image plane (Menon et al., 2006).

5.2.2. False colors

As described in section 4.4.3, the estimated color at a pixel is taken as false when

the absolute difference between an estimated color component and the original one

is higher than a threshold T (see equation (107)). Since adjusting this threshold is

not easy, we compare the performance reached by a set of ten demosaicing schemes

applied to twelve images of the Kodak database, when T varies from 10 to 25 with an

incremental step of 5. Figure 39 shows both the evolution of the average rate of false

colors with respect to T for a given scheme, and the rates of false colors generated by

the considered schemes for a given value of T . As expected, the rate of false colors

decreases when T increases. More interestingly, the relative ranking of demosaicing

methods with respect to the number of false colors is consistent with both rankings

provided by classical fidelity criteria and by measurements based on zipper effect.
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Image Bilinear Cst. Hue Hamilton Wu Cok Kimmel Li Gunturk Dubois Lian

1 4.317 1.939 0.623 0.822 0.735 4.408 3.068 0.893 0.861 0.345
2 22.567 12.761 2.656 2.082 4.903 2.464 7.157 0.682 0.487 0.590

3 8.793 4.581 1.257 1.626 1.374 1.795 4.093 1.664 1.278 0.546
4 35.932 25.164 4.485 5.393 7.214 5.023 14.031 2.402 2.351 1.610
5 9.023 4.226 0.610 0.581 1.110 0.658 2.069 0.664 0.482 0.192
6 19.876 10.707 2.955 3.405 3.986 2.797 7.868 1.562 1.441 0.826
7 18.483 10.124 1.954 1.213 3.730 1.990 4.579 0.391 0.177 0.436

8 18.216 11.672 2.369 3.051 3.811 2.122 7.213 0.850 0.727 0.617
9 9.459 5.618 1.695 2.192 2.367 1.537 5.335 0.714 0.709 0.422

10 15.425 9.976 3.021 3.473 4.003 2.475 8.548 0.984 0.967 0.685
11 12.816 6.331 1.809 2.726 2.840 1.835 7.083 1.166 0.962 0.510
12 18.729 10.107 2.735 3.461 3.761 2.269 9.256 1.285 1.076 0.803

Avg. 16.136 9.434 2.181 2.502 3.319 2.448 6.692 1.105 0.960 0.632

TAB. 6: Rates ZE% of pixels affected by zipper effect, according to the measurement

based on directional alternation. The images and tested methods are the same as in

table 3.
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FIG. 39: Average rates of false colors FC% with respect to the detection threshold T .

The twelve considered images and ten tested methods are the same as in table 3.
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5.3. Discussion

The most widely used criteria for the evaluation of demosaicing quality are MSE

and PSNR, the latter being a logarithmic form of the MSE criterion. Several reasons

explain why most of the authors use these criteria (Wang and Bovik, 2006). First, these

functions are easy to be implemented and their derivatives can be estimated. They may

therefore be integrated into an optimization scheme. Second, the PSNR criterion has a

real physical meaning – namely, the maximal energy of the signal with respect to errors

generated by demosaicing –, which can also be analyzed in the frequency domain.

However, the PSNR criterion provides a general estimation of the demosaicing qua-

lity, but does not really reflect the human judgment. For example, an observer would

prefer an image containing a large number of pixels with estimated colors close to

the original ones, than an image containing a reduced number of pixels affected by vi-

sible artifacts. But MSE and PSNR criteria could provide identical values in both cases,

since they do not discriminate the characteristics of different artifacts in the demosaiced

image. These objective measurements have been criticized (Wang and Bovik, 2009)

since they cannot evaluate the image alteration as a human observer does (Eskicioglu and Fisher,

1995).

The alternative criteria ∆E of estimation errors in the CIE L∗a∗b∗ and S-CIE L∗a∗b∗

color spaces are the most widely used perceptual criteria (Zhang and Wandell, 1997).

They are based on perceptually uniform color spaces as an attempt to represent the

human perception, but require prior knowledge about the illuminant and the reference

white used during image acquisition. Since the acquisition conditions are not always

known, the quality of these measurements may be biased.

5.4. Experimental Results for Edge Detection

The demosaicing performance has been evaluated with respect to the quality of

edge detection thanks to measurements detailed in section 4.5. Table 7 displays the

average rates of sub-detected (SD%), over-detected (OD%) and erreneously detected

(ED% = SD% + OD%) edge pixels. These values have been computed over the twelve

Kodak images previously considered, and for the ten classical demosaicing schemes.

Moreover, this table displays the average rates S̃D%, ÕD% and ẼD% which take into ac-

count only unshifted edge pixels. The lowest values correspond to the best demosaicing

quality according to these edge-dedicated measurements.

By examining the average rates ED% and ẼD%, similar conclusions can be drawn

about the performances of demosaicing schemes. The methods which privilege the

frequency domain allow to obtain better edge detection quality than the other methods

do. Besides, the methods proposed by Dubois and by Lian et al. provide the lowest

error rates in both edge and unshifted edge detection. These demosaicing schemes are

therefore the most apt to be coupled with edge detection procedures based on color

gradient.

Moreover, we notice that the ranking of the ten tested demosaicing schemes with

respect to OD% and SD% is relatively consistent with the ranking obtained with mea-

surements ÕD% and S̃D%. However, the rate of over-detected unshifted pixels is the

lowest for bilinear interpolation. This suprising performance result can be explained
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Meas. Bilinear Cst. Hue Hamilton Wu Cok Kimmel Li Gunturk Dubois Lian

SD% 3.673 2.090 1.528 1.561 1.882 1.983 2.265 1.422 1.278 1.323

OD% 2.257 1.945 1.504 1.522 1.818 1.802 2.319 1.242 1.199 1.263

ED% 5.930 4.035 3.032 3.083 3.700 3.785 4.584 2.664 2.477 2.586

S̃D% 1.945 1.109 0.881 0.877 1.032 1.077 1.094 0.888 0.774 0.803

ÕD% 0.663 0.979 0.855 0.842 0.974 0.912 1.156 0.713 0.697 0.748

ẼD% 2.608 2.088 1.736 1.719 2.006 1.989 2.250 1.601 1.471 1.551

TAB. 7: Average rates of sub-detected edge pixels (SD%), of over-detected edge pixels

(OD%) and erreneously detected pixels (ED% = SD% + OD%). Average rates of sub-

detected unshifted edge pixels (S̃D%), of over-detected unshifted edge pixels (ÕD%)

and of unshifted edge pixels that are erreneously detected (ẼD% = S̃D% + ÕD%). The

low and high thresholds used for hysteresis thresholding are set to 1 and 6, respectively.

The twelve considered images and ten tested methods are the same as in table 3.

by both strong blurring and zipper effect generated by this demosaicing method. In-

deed, blurring induces fewer detected edge pixels, and zipper effect mainly induces

pairs of shifted edge pixels.

For each of the other methods, the rates of sub- and over-detected edge pixels are

overall similar. Moreover, their ranking is almost the same as the one obtained with the

previous criteria.

In table 7, we also notice that more than the half of sub- and over-detected edge

pixels according to measurements SD% and OD% are not retrieved with measure-

ments S̃D% and ÕD%. That means that shifted edges strongly contribute to the dis-

similarity between edges detected in the original and demosaiced images.

Edge pixels are sub-detected because the color gradient module used to detect edges

decreases with blurring in demosaiced images. The over-detected edge pixels corres-

pond to an increase of the color gradient module in case of zipper effect or false colors.

These new rates of sub- and over-detected pixels S̃D% and ÕD% are able to reflect

the artifacts caused by demosaicing. From table 7, we can evaluate the influence, on

edge detection, of the demosaicing strategies implemented in the tested methods. Both

methods using bilinear interpolation and hue constancy estimate the pixel colors wi-

thout exploiting spatial correlation. Hence, they generate more artifacts than the three

other methods which exploit spatial correlation, and provide higher rates of sub- and

over-detected edge pixels.

All in all, sub- and over-detected edge pixels often coincide with artifacts. Figure 40

shows images which are demosaiced by two different schemes, and the respective maps

of sub- and over-detected unshifted edge pixels (S̃D and ÕD). We notice that demosai-

cing influences the edge detection more significantly in areas with high spatial frequen-

cies and that the artifacts are also mainly located in these areas.

Zipper effect often decreases the variation of levels in transition areas between

homogeneous regions. Hence, zipper effect tends to decrease the gradient module, so

that the norm of local maxima becomes lower than the high threshold Th used by the
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(a) Image demosaiced by bilinear interpolation (b) Image demosaiced by Hamilton and Adams

(c) Sub-detected edge pixels S̃D in image (a) (d) Sub-detected edge pixels S̃D in image (b)

(e) Over-detected edge pixels ÕD in image (a) (f) Over-detected edge pixels ÕD in image (b)

FIG. 40: Sub- and over-detected unshifted edge pixels, for two demosaicing schemes :

bilinear interpolation and the gradient-based method proposed by Hamilton and Adams

(1997).
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(a) Original image I (b) Demosaiced image Î (c) Comparison between detected edge

pixels (green : coinciding ; blue : sub-

detected ; red : over-detected)

FIG. 41: Example of edge pixels which are not modified by pixels affected by false co-

lors, on an image demosaiced by the scheme proposed by Hamilton and Adams (1997).

hysteresis thresholding (see page 65). This explains why zipper effect causes edge sub-

detection. Since a lot of pixels are affected by zipper effect, the rate of sub-detected

edge pixels is generally lower than that of over-detected ones.

Isolated pixels affected by false colors do not always change the location of detec-

ted edge pixels. Figure 41 shows that pixels affected with false colors do not change the

quality of edge detection, on an extract of the image “Houses”. At these pixels indeed,

the gradient module increases, whereas the location of edge pixels remains unchanged.

On the other hand, when the local density of pixels affected by false colors is high,

they cause edge over-detection. In textured areas with thin details, most demosaicing

schemes generate a lot of neighboring pixels affected by false colors. The gradient mo-

dule at these pixels increases since its computation takes into account several neigh-

boring false colors. The gradient module at local maxima increases, so that it may

become higher than the high threshold Th used by the hysteresis thresholding. In that

case, new edge pixels are detected. For example, figure 40 shows that edge pixels are

over-detected in textured areas which correspond to the shutters and to the tiles of the

house roofs.

Finally, we notice that statistics about sub-detected edge pixels can be exploited to

measure the blurring effect caused by demosaicing, and that over-detected pixels are

located in areas with a high density of false colors.
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6. Conclusion

This paper is related to the majority of digital color cameras, which are equipped

with a single sensor. The surface of this sensor is covered by a color filter array which

consists in a mosaic of spectrally selective filters, so that each sensor element samples

only one of the three color components Red, Green or Blue. We focus on the Bayer

CFA which is the most widely used. To estimate the color (R,G,B) of each pixel in

a true color image, one has to determine the values of the two missing color compo-

nents at each pixel in the CFA image. This process is commonly referred to as CFA

demosaicing, and its result as the demosaiced image.

Demosaicing methods may exploit the spatial and/or frequency domains. The spa-

tial domain has been historically used first, and many methods are based on assump-

tions about spectral and/or spatial correlation. More recently, works have appeared that

exploit the frequency domain, which opens wide perspectives.

We have compared the performances reached by ten demosaicing schemes applied

to twelve images extracted from Kodak database, with respect to three kinds of quality

measurements : classical fidelity criteria, artifact-sensitive measurements and measu-

rements dedicated to edge detection. The rankings between the demosaicing schemes

established thanks to these measurements are consistent.

This detailed evaluation highlights that the methods which primarily analyze the

frequency domain outperform those which only scan the spatial domain. More preci-

sely, the methods proposed by Dubois (2005) and by Lian et al. (2007) provide the best

demosaicing results whatever the criterion used.

The implementation of demosaicing schemes has to respect real-time constraints.

Indeed, the time required for image demosaicing has to be lower than the image acqui-

sition time. Hence, it would be useful to look for a compromise between the processing

time and the performance reached by the examined demosaicing schemes. This study

would allow to select the best methods which are less time-consuming.

Thanks to a visual comparison of the results, we have described the relationships

between artifacts and edge detection quality. Zipper effect causes edge sub-detection,

whereas a high density of pixels affected with false colors tends to cause over-detection

of edge pixels. These preliminary conclusions are worth being generalized to the rela-

tionships between artifacts and the detection quality of other features in the demosaiced

images.
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