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Abstract

Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside 

the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions 

and topologically associating domains (TADs) - require computational methods to analyze 

genome-wide contact probability maps. We quantitatively compared the performances of 13 

algorithms for the analysis of Hi-C data from 6 landmark studies and simulations. The comparison 

revealed clear differences in the performances of methods to identify chromatin interactions and 

more comparable results of algorithms for TAD detection.

The identification of the three dimensional structure of chromatin inside the nucleus is 

crucial to decipher how the spatial organization of DNA affects genome functionality and 

transcription. Methods based on Chromosome Conformation Capture (3C)1 such as Hi-C 

combine proximity-based DNA ligation with high-throughput sequencing to assess spatial 

proximity of potentially any pair of genomic loci2. These techniques investigate chromatin 

structures, as interactions and topologically associating domains (TADs)3. Chromatin 

interactions are contacts between regions far from each other on the linear DNA sequence, 
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but close in the 3D space4. TADs are structural domains consisting of highly self-interacting 

chromatin regions, with limited interaction with regions in other domains5–7.

Hi-C produces hundreds of millions of read-pairs that are used to generate genome-wide 

maps containing millions of contacts between genomic loci pairs8–10. The analysis of this 

enormous amount of genomic data required the development of ad-hoc algorithms and 

computational procedures. Different bioinformatics tools have been recently implemented to 

efficiently preprocess sequence reads (quality control, alignment, and filtering), remove 

biases (normalization of contact matrices), and infer chromatin structures10,11. To ensure 

the reproducibility of results it would be desirable to assess how the various tools perform 

relative to one another, as algorithmic choices severely impact the identification of 

chromatin structures and most approaches require heuristic selection of parameters9,12,13.

We quantitatively compared the performances of Hi-C data analysis methods for the 

identification of chromatin interactions9,14–19 and topological domains5,9,14,20–24 using 

experimental and simulated data. We also addressed tool usability including running time 

and computational requirements. In general we see that, depending on the tool, identified 

structures vary in terms of quantity and characteristics and are more reproducible for TADs 

than for interactions.

Results

Tools and data preprocessing

We compared thirteen methods for the analysis of Hi-C data (Table 1; Supplementary Notes 

1 and 2), using experimental and simulated data. Experimental data have been obtained from 

6 landmark studies2,5,7–9,25 selecting 9 datasets with 41 samples covering multiple 

protocol variations, data resolutions, and cell types (Table 2 and Supplementary Table 1). We 

generated simulated data with a modified version of the model proposed by Lun and 

Smyth19 (Supplementary Note 3). The various methods preprocess Hi-C data using different 

alignment and filtering strategies (Fig. 1a and Supplementary Table 2). Most interaction 

callers do not include an alignment step and we used Bowtie26, a full-read approach, for 

read mapping. Instead, HIPPIE, HiCCUPS, and diffHic use chimeric alignment that allows 

mapping also reads spanning the ligation junction. Each interaction caller adopts a specific 

filtering method, with the exception of Fit-Hi-C for which we used GOTHiC filtering. Most 

TAD callers require, as input, a fully preprocessed interaction matrix and thus they do not 

provide specific approaches for alignment and filtering - TADbit and Arrowhead are the two 

exceptions. Thus, to maximize comparability, we applied a uniform preprocessing procedure 

(i.e., Bowtie for alignment and hicpipe for filtering) to create the interaction matrix for TAD 

identification.

Methods implementing chimeric alignment aligned on average 18.4% (chimeric STAR27 in 

HIPPIE), 27.4% (chimeric BWA28 in HiCCUPS), and 40.1% (chimeric Bowtie229 in 

diffHic) more reads than Bowtie. The difference in alignment rate between chimeric and 

full-read became more evident as the read length increased, ranging from 30.9% (at 36bp) to 

55.4% (at 101bp) of additionally aligned reads (chimeric Bowtie2, Fig. 1b).
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After the filtering step, HiCCUPS retained the largest number of aligned reads (Fig. 1c), 

although it is worth noting that it filters only PCR duplicates without discarding other 

potential artifact reads. diffHic generally filtered the highest proportion of aligned reads 

(from 27% to 94% depending on the dataset), but, given its higher alignment rate, still 

retained a large number of reads (Supplementary Table 3). The different experimental 

protocols severely affected the percentage of filtered reads, with in situ Hi-C resulting in 

more reads passing the filtering step (>76%; Fig. 1c). The smaller fraction of retained reads 

observed in data generated with the simplified Hi-C protocol was mostly due to a larger 

amount of PCR duplicates (Supplementary Table 3).

Hi-C read counts are usually summarized at the level of genomic bins with a fixed width 

larger than the size of individual restriction fragments. For each dataset, we used the same 

bin size (resolution) of the original publication to call interactions, whereas we used bins of 

at least 40kb for TADs calling (Table 2).

When a method required a normalization step, we used its original normalization procedure, 

while we applied hicpipe to normalize the matrices for DomainCaller, InsulationScore, 

Arrowhead, Armatus, and TADtree (Fig. 1a). In all cases, we did not evaluate the effect of 

different normalization strategies as thorough comparisons of normalization methods have 

already been addressed30–32.

Identification of chromatin interactions

On experimental data, the total number of interactions called by each method increased with 

the number of reads retained by the filtering step, for all tools at any resolution, although the 

rate of increase varied from tool to tool (Fig. 2a). Consistent with the expectation that 3D 

interactions mostly occur within chromosomes (cis) rather than between chromosomes 

(trans), all methods detected more cis than trans interactions. In most datasets, GOTHiC 

called the highest number of cis interactions (Supplementary Fig. 1a) and, in general, diffHic 

found the largest number of trans interactions (Supplementary Fig. 1b). For all tools, the rate 

of increase of the number of interactions with the number of retained reads was higher for 

cis than for trans interactions (Supplementary Fig. 1c). HiCCUPS, aggregating nearby peaks 

into a single interaction, identified fewer interactions than all other tools.

When considering the distance between the interacting points in cis, GOTHiC found 

interactions at shorter mean distance, at both 5 and 40kb resolutions (Fig. 2b and 

Supplementary Fig. 2). At 5kb, Fit-Hi-C called interactions at an average distance of more 

than 10Mb, as expected being designed to call mid-range interactions. At a resolution of 

1Mb, with the exception of HIPPIE, all tools detected interactions with an average distance 

comprised between 10 (HiCCUPS and GOTHiC) and 53 (diffHic) Mb (Supplementary Fig. 

2).

The differences in the number of interactions and in the distance between the interacting 

points identified by the various methods are immediately evident in the visual representation 

of the contact matrices (Fig. 2c).
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To compare the reproducibility of interactions called in different replicates, we calculated 

the similarity coefficient of Jaccard (Jaccard Index, JI), as a measure of the overlap between 

sets of interactions. In general, the reproducibility among replicates of the same data set 

(intra-dataset) was low at all resolutions (Fig. 2d and Supplementary Fig. 3a), yet 

significantly higher than random sets of interactions (p-values≤0.001; Supplementary Fig. 

3b). Surprisingly, the concordance was higher for trans (median JI of 0.19) than for cis 

interactions (median JI<0.03). At low resolution GOTHiC had the highest concordance, 

most likely due to the fact that it called a large number of short-range interactions in every 

sample replicate. Conversely, in almost all datasets at high resolution, the interactions found 

by HiCCUPS were the most conserved among replicates. The quantification of the Jaccard 

Index considering only the top 1,000 cis interactions (called by each method in each 

replicate of Rao IMR90) resulted, with the exception of Fit-Hi-C, in no overall significant 

improvement of the concordance (q-value>0.05 in a one-tail Wilcoxon test with Benjamini-

Hochberg correction; Supplementary Fig. 4a). Instead, when grouping samples based on 

increasing number of reads, the reproducibility increased with the number of reads 

especially for HiCCUPS and GOTHiC (Supplementary Fig. 4b). The interactions identified 

by HiCCUPS and GOTHiC were the most reproducible also when using the overlap 

coefficient, a similarity measure more robust to imbalanced number of interactions between 

the compared replicates (Supplementary Fig. 4c).

The intra-dataset reproducibility remained similar when comparing replicates of the same 

cell line processed using different restriction enzymes (Supplementary Fig. 5). Instead, the 

inter-dataset reproducibility, i.e., the concordance between interactions called in samples of 

the same cell line in different datasets (using different protocols and enzymes), was much 

lower (median JI<4×10-4; Supplementary Fig. 6).

We then evaluated the performance of each tool in detecting interactions associated to 

chromatin states related to transcriptional regulation. In particular, for each dataset and cell 

type, we classified interactions based on the respective chromatin states at their anchoring 

points33,34. Considering all methods and the data at 5kb resolution, on average 16% of all 

detected cis interactions were classified as promoter-enhancer, 23% as interactions 

connecting heterochromatin or quiescent states, and 3% as biologically less expected, i.e., 

connecting promoter or enhancer to heterochromatin or quiescent states (Fig. 2e). At this 

resolution, HiCCUPS and HOMER called the highest proportion of promoter-enhancer 

interactions, although not the highest absolute number (Supplementary Fig. 7a). In datasets 

at 40kb resolution, all methods detected larger proportions of promoter-enhancer 

interactions due to the higher probability for larger bins to contain an enhancer or a promoter 

(Supplementary Fig. 7b). On the contrary, the proportion of trans interactions, classified as 

promoter-enhancer, was very low for all tools in almost all datasets (Supplementary Table 

5). diffHic returned the highest quantity and percentage of interactions connecting 

heterochromatin or quiescent states, even though, in some datasets, the proportion of this 

type of interaction was extremely high for all tools. Irrespective of the method and of the 

resolution, less than 8% of all cis interactions were classified as biologically less expected. 

For all tools, the enrichment of the number of promoter-enhancer interactions over random 

expectation tends to be higher in datasets at higher resolution (p-value≤0.01 in a 

hypergeometric test for most datasets at 5kb; Supplementary Table 6).
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All methods identified large proportions of convergent orientation of CTFC motifs, a 

distinctive feature of specific type of interactions9, among interactions with a single CTCF-

binding motif in each of the two interacting bins (Supplementary Note 4).

When comparing the power to recall validated cis interaction evidences (Supplementary 

Table 7), GOTHiC recovered the largest amount of true-positive interactions. HOMER and 

Fit-Hi-C performed comparably to GOTHiC, although calling a smaller number of total 

interactions (Fig. 2f). In high-resolution datasets, the best performance was achieved by 

diffHic although HOMER identified more true-positives than any other tool, at comparable 

numbers of called interactions (Supplementary Fig. 7c). All tools recalled low proportions of 

true negatives in almost all datasets, albeit GOTHiC resulted more prone to false positives in 

datasets at 40kb (Supplementary Fig. 7d).

To assess sensitivity and precision of the methods, we modified the model of Lun and 

Smyth19 to generate simulated interaction matrices and analyzed the simulated data with 

HiCCUPS, HOMER, diffHic, and Fit-Hi-C, the only tools that can take as input the sole 

interaction matrix. For a set of 40 samples, at 8 levels of base interaction strength, all tools 

called a much larger number of interactions than the 1,000 true interactions (Supplementary 

Fig. 8a). As for experimental data, Fit-Hi-C called interactions at larger mean distance 

(Supplementary Fig. 8b-c). The highest sensitivity was achieved by Fit-Hi-C, although all 

tools displayed an extremely high FDR (i.e., a low precision) (Supplementary Fig. 8d-e).

Identification of Topologically Associating Domains

For TAD calling, we analyzed all experimental data at a resolution of 40kb, with the 

exception of Lieberman-Aiden for which we used the original 1Mb resolution. Differently 

from interaction callers, the number of TADs was not increasing with the number of reads 

retained after filtering for all tools, with the sole exception of Arrowhead (Fig. 3a). The 

number of identified TADs varied from tool to tool and was, generally, inversely 

proportional to their size (Fig. 3b). In all datasets at 40kb, on average TADtree called the 

largest (7638) and Arrowhead the smallest (636) number of TADs. Conversely, at 1Mb, 

InsulationScore returned the largest number of TADs (Supplementary Table 8). The 

characteristics of the identified TADs are exemplified in the heatmap representation of the 

contact matrices (Fig. 3c). Note that some methods partition chromosomes in a continuous 

set of TADs (HiCseg, TADbit, InsulationScore), whereas the others allow gaps between 

TADs. Arrowhead and TADtree, which adopt multi-scale approaches, returned nested TADs.

To compare TADs reproducibility, we calculated the Jaccard Index as a measure of the 

overlap between TAD boundaries across biological replicates. At all resolutions, HiCseg had 

the highest reproducibility among replicates of the same data set (intra-dataset; Fig. 3d and 

Supplementary Fig. 9a). In general, the reproducibility of TAD boundaries was higher 

(median JI of 0.25) than what observed for chromatin interactions. The reproducibility 

increased with the number of reads for all methods when grouping samples based on 

increasing number of reads (Supplementary Fig. 9b). TADs identified by HiCseg were the 

most reproducible also when using the overlap coefficient (Supplementary Fig. 9c).
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The intra-dataset reproducibility remained similar for most tools when using different 

restriction enzymes for the same cell line (Supplementary Fig. 10). Instead, the inter-dataset 

concordance (i.e., between TAD boundaries called in replicates of the same cell line in 

different datasets obtained using different protocols and enzymes) was lower than the intra-

dataset reproducibility, with TADtree showing the highest and Arrowhead the lowest inter-

dataset concordance (Supplementary Fig. 11).

The various tools called TADs with consistent enrichment of insulators (e.g. CTCF or 

BEAF32; Supplementary Table 9) at the TAD boundaries. In almost all datasets, more than 

50% of TAD borders overlapped CTCF peaks (Supplementary Table 10). Moreover, all tools 

identified TADs with an enrichment of CTCF peaks at the TAD borders with Armatus and 

TADtree returning domains with a stronger CTCF enrichment at their borders 

(Supplementary Fig. 12a). In Sexton dataset, most tools returned TADs with a clear 

enrichment, at TAD borders, of BEAF32, an architectural protein reported to be more 

enriched than CTCF at TAD boundaries in Drosophila7 (Supplementary Fig. 12b).

When using synthetic data, DomainCaller, TADbit and InsulationScore identified a number 

of TADs comparable to the number of simulated not overlapping TADs, irrespectively of the 

noise (Supplementary Fig. 13a). As with experimental data, HiCseg called a small number 

of large TADs, whereas TADtree identified a large number of small domains 

(Supplementary Fig. 13b). The ability of both methods to identify the correct structures was 

strongly affected by the noise present in the data (Supplementary Fig. 13c-d). TADbit and 

Armatus had the highest sensitivity in recovering TAD boundaries, although TADbit 

displayed a higher precision (low FDR) at all noise levels. These results hold similar when 

simulating a hierarchy of nested TADs, while the precision of TADtree, specifically 

designed to identify nested domains, ameliorated in the latter case (Supplementary Fig. 13e-

g).

Other analyses

In additional analyses, we compared the performances of interaction callers using a common 

preprocessing procedure (Supplementary Note 5 and Supplementary Fig. 14) and the 

computational requirements, running time, and usability of all tools (Supplementary Note 6 

and Supplementary Fig. 15).

Discussion

The performances of algorithms for the identification of chromatin interactions and 

Topologically Associating Domains from Hi-C data have been, in most cases, compared 

using semi-quantitative approaches19,20,23,24. Indeed, a robust quantification of 

performance in terms of specificity and sensitivity is hindered by the lack of ground truth 

positive and negative controls for chromatin architecture and by conceptual difficulties in 

designing simulators of Hi-C data. To overcome these limitations, we adopted a framework 

that uses a large set of experimental and synthetic data and exploits various metrics to 

quantitatively compare the performance of several tools currently available for the analysis 

of Hi-C data.
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Based on this comparison framework, our results indicate that there is no algorithm that can 

be considered the gold standard to identify chromatin interactions. Independently of the data 

resolution, the choice of the method impacts the quantity and characteristics of the identified 

interactions.

Here, to quantitatively assess the concordance of identified interactions, we kept replicates 

separated while Hi-C replicates are commonly pooled before the analysis to generate a 

unique sample with higher number of reads. Surprisingly, interactions called in one replicate 

were poorly conserved in other replicates from the same cell type of the same study. The 

overall low reproducibility may be partly explained by the fact that biological replicates, 

being an ensemble of cells in different states and phases of the cell cycle, are not necessarily 

identical in terms of chromatin contacts, as hypothesized when quantifying reproducibility 

in terms of the co-occurrence of the same point interaction. Notwithstanding the limited 

reproducibility, all methods detected comparable, statistically significant proportions of cis 

promoter-enhancer looping interactions and a very small quantity of interactions classified 

as biologically less plausible.

In agreement with what recently reported by Dali and Blanchette35, TAD callers returned 

different numbers of TADs with different mean size. However, predicted TADs were more 

comparable than loops among replicates and were characterized by enrichment in binding 

sites of known architectural proteins.

Overall, this comparison suggests that, although no single method outperforms others in all 

situations, TAD callers are methodologically more mature than interaction callers. Among 

TAD callers, TADbit, Armatus, and TADtree had balanced performances for most metrics in 

experimental and simulated data. For interaction callers, HOMER and HiCCUPS yielded the 

highest proportion of interactions with a potential biological significance, although 

HiCCUPS potentialities (e.g., in terms of absolute number of called interactions) could be 

fully exploited only in the analysis of very high-resolution datasets.

We observed a difficulty in reconciling the results obtained from experimental and synthetic 

data, especially for interaction callers. This can be most likely ascribed to the complexity of 

designing sound strategies to simulate Hi-C datasets with predefined features that represent 

well-defined and unambiguous true positives and negatives. Although several promising 

approaches are available from the biophysics of polymer folding modeling36, no algorithm 

has been proposed so far to generate reads that fully mimic the distribution and biases 

observed in real Hi-C data. The availability of synthetic data will be essential to rationally 

tune any algorithm parameter, thus limiting the heuristics currently inherent in the choice of 

the best setting.

The various tools greatly differed in terms of usability, interoperability, stability of the 

implementation, and computing resources required to complete the analysis. Considering the 

pace of data production, priorities for developers should be the deployment of methods able 

to analyze larger and higher resolution datasets with reasonable amounts of computational 

resources and the adoption of common data formats to easily exchange inputs and outputs 

among the various tools37.
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Online Methods

Hi-C data analysis tools

We chose algorithms that (i) were specifically designed for the identification of chromatin 

interactions and TADs and (ii) had a publicly available implementation at the time of our 

survey (July 2016). An extended description of the methods is provided in Supplementary 

Notes 1 and 2.

Among the tools to identify chromatin interactions, Fit-Hi-C15 uses spline models to 

estimate the expected contact probabilities as a function of distance. Statistical significance 

of interactions is calculated using a binomial distribution and p-values corrected for multiple 

testing. Fit-Hi-C requires as input a raw count interaction file and a bias file calculated with 

an implementation of ICE, the iterative correction from Imakaev et al.31. In output, Fit-Hi-C 

returns only cis interactions characterized by contact count, p-value, and FDR. Significant 

interactions have been selected based on the FDR.

In GOTHiC16 significant chromatin interactions are identified using a binomial test 

followed by Benjamini-Hochberg multiple testing correction. GOTHiC takes aligned reads 

as input and perform read-pair level filtering and square root of vanilla coverage 

normalization (a type of implicit normalization). For all interactions (cis and trans), the 

algorithm outputs the log2 ratio of observed to expected interactions, p-value, FDR, and the 

number of supporting read pairs. Here, we used FDR and contact counts to identify 

significant interactions38.

HOMER17 performs a binomial test to find significant interactions. The input file is in the 

form of aligned reads; filtering is at read and read-pair level; the implicit normalization 

method is based on region coverage and distance between regions. All interactions (cis and 

trans) are characterized in terms of p-value, FDR, number of supporting read pairs (both 

observed and expected), and interaction distance. Significant interactions are called setting a 

threshold on the p-value.

HIPPIE18 implements an approach similar to the one presented in Jin et al.8 to call 

interactions. Significant interactions are detected by fitting a negative binomial distribution, 

where the expected random contact frequency (mean) is estimated from GC content, 

mappability, fragment length, and distance, and the overdispersion parameter is fixed and 

derived from Jin et al.8. HIPPIE starts from sequencing reads and performs chimeric 

alignment, read, read-pair and fragment level filtering, and explicit normalization without 

binning. The output is a set of restriction fragment-based interactions (inter- and intra-

chromosomal) with an associated p-value. Significant interactions have been selected setting 

a threshold on the p-value.

diffHic19 takes raw sequencing data as input and performs chimeric alignment, read and 

read-pair level filtering. Significant interactions (cis and trans) are identified from the raw 

contact matrix using a local approach, i.e. searching for bin pairs that have substantially 

more reads than their neighbors, an approach conceptually similar to HiCCUPS9,14. The 

enrichment value for each interaction is calculated as the log-fold change between the 
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abundance (number of read pairs) of the target bin pair and the region of the neighborhood 

with the largest abundance. Here, we set thresholds on the enrichment, on the number of 

supporting reads, and on the distance from the diagonal to call interactions. When calling 

interactions on individual samples, no statistical test is performed and no significance value 

is returned.

HiCCUPS9,14 is part of the Juicer software suite, a pipeline to process and analyze Hi-C 

data starting from the raw sequencing files and generating normalized contact matrices at 

several resolutions. The pipeline aligns raw reads from FASTQ files using Burrows-Wheeler 

Aligner (BWA) algorithm, pairs the reads, handles chimeras, and merges and sorts the reads 

to filter out PCR duplicates. Juicer Tools Pre is used to create the normalized Hi-C contact 

matrix (.hic file) from the filtered read pairs. HiCCUPS takes as input the normalized Hi-C 

contact matrix to identify chromatin interactions. Specifically, HiCCUPS calls only cis 

interactions detecting pixels enriched with respect to four neighboring areas given the width 

of the peak and the window size as described in Rao et al.9. It returns the centroid of the 

clusters of significant peaks called using a modified Benjamini-Hochberg FDR.

Since most of the tools to identify Topologically Associating Domains lack the 

preprocessing steps, to maximize comparability we used a common pipeline based on the 

scripts of hicpipe30 to align, filter, and normalize the data used in input to the TAD callers.

HiCseg20 performs a 2D-segmentation based on a maximum likelihood approach to 

partition each chromosome in its constituent TADs directly from raw or normalized contact 

matrices. Here, we applied HiCseg to the raw Hi-C data.

TADbit21 implements a breakpoint detection algorithm that identifies the optimal 

segmentation of the chromosome under a Bayesian information criterion (BIC)-penalized 

likelihood. TADbit requires in input the observed read counts, which are then normalized 

using a modified implementation of ICE31. Although we used hicpipe for alignment and 

filtering also for TADbit, this tool contains an alignment module (based on the Genome 

Multitool (GEM) mapper for iterative alignment) and implements several filters.

DomainCaller5 is a single scale algorithm that identifies TADs using a Hidden Markov 

Model on the Directionality Index. The Directionality Index is a score quantifying the bias 

in downstream, as compared to upstream, contact probabilities for each bin, within a user-

defined window of maximum distance. No preprocessing step is directly implemented by 

DomainCaller, which thus requires an external preprocessing tool to prepare the normalized 

contact matrix.

The InsulationScore22 is a segmentation algorithm that identifies TAD within normalized 

Hi-C matrices using a sliding square (insulation square). It combines contact signals inside 

the square and assigns an insulation score to each bin along the diagonal, thus obtaining a 

one-dimensional insulation vector. TAD boundaries are then identified based on the 

insulation vector.

Arrowhead9,14 is part of Juicer suite of tools for Hi-C data analysis and visualization. The 

tool is based on the Arrowhead transformation of Hi-C contact matrix, which results in 
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translating the patterns of TAD domains from “squares” along the diagonal to “triangles” of 

high or low signal. For each pair of loci, potential TAD boundaries, the algorithm computes 

specific scores for the “triangles” designed around the pair of loci, thus exploring the 

definition of TADs at multiple scales.

As Arrowhead, also TADtree23 can identify nested TADs. It is based on a 1D boundary 

index similar to the one developed by Sauria et al.32. The algorithm is based on the 

observation that the average enrichment of intra-TAD contacts grows linearly with distance, 

but when a TAD lies inside another one, its enrichment grows at a faster rate. The best TAD 

hierarchy is determined using a dynamic programming algorithm. No preprocessing step is 

directly implemented in TADtree, which thus requires an external preprocessing and 

normalization pipeline.

Armatus24 adopts a multiscale approach that can identify a consensus set of domains across 

various resolutions. It is based on a score function that quantifies the quality of a domain 

based on its local density of interactions. Since Armatus does not directly implement a 

preprocessing step, it requires a complete preprocessing pipeline to generate the normalized 

contact matrix.

For each method, we used the default statistical thresholds or the values suggested in the 

accompanying documentation to identify chromatin interactions or TADs (p-values or FDR). 

Only in the case of HIPPIE, to guarantee a statistical significance comparable to that of the 

other tools, we adopted a threshold (p-value<0.01) more conservative than the one suggested 

in the original publication (p-value<0.1; see Supplementary Note 1).

GOTHiC and HiCseg were run in R-3.1.3 while for diffHic (that requires at least R-3.2.0) 

we used R-3.2.0. We used version 2.7 for Python.

Experimental Hi-C data

We selected 9 Hi-C datasets from 6 studies obtained with 3 protocols at different resolutions 

(primarily determined by the restriction enzyme and sequencing depth) in overlapping cell 

types (n=41 samples; Table 2 and Supplementary Table 1). Data have been generated using 

dilution Hi-C, i.e., the original Hi-C protocol published in Lieberman-Aiden et al.2, 

simplified Hi-C introduced in Sexton et al.7, and in situ Hi-C developed by Rao and 

colleagues9. Samples comprise human cell lines from various tissues (embryonic stem cells: 

H1-hESC; fetal lung fibroblasts: IMR90; lymphoblastoid cell lines (LCL): GM12878 and 

GM06990) and D. melanogaster embryos. All data have been obtained using 6bp or 4bp 

cutter restriction enzymes. Some replicate samples from Lieberman-Aiden and Rao 

GM12878 have been processed with both restriction enzymes.

All biological replicates have been analyzed separately. In particular, the Rao GM12878 

dataset contained 26 samples obtained with in situ protocol and MboI restriction enzyme and 

divided into a primary (16 technical replicates of 1 sample) and a replicate experiment (10 

biological and technical replicates; see Supplementary Table 1 of Rao et al.9). Here, we 

selected the replicate with the highest number of sequenced reads from the primary 

experiment (i.e., SRR1658572, originally labeled as HIC003 and renamed here as replicate 
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H) and all the in situ samples of the replicate experiment. Moreover, we analyzed as separate 

samples the technical replicates of the replicate experiment since the authors defined 

technical replicates also those samples for which cells were cross-linked together but 

processed independently (Supplementary Table 1 and Supplementary Table 1 of Rao et al.9). 

In the Jin study, it has to be noted that the H1-hESC sample, originally composed of 

SRR639047, SRR639048, and SRR639049 and here renamed as replicate A, is the same 

sample of Dixon 2012 H1-hESC, composed of SRR442155, SRR442156, and SRR442157 

and here renamed as replicate B (Supplementary Table 1). Both H1-hESC samples from Jin 

and Dixon 2012 were analyzed with chromatin interaction callers at their original 

resolutions (5 and 40kb, respectively), while we used only the H1-hESC sample from Dixon 

2012 for the TAD analysis, conducted at 40kb for all datasets.

Preprocessing of experimental data

For most of the interaction callers we used the specific preprocessing procedure incorporated 

in the tool. Instead, with the only exception of TADbit and Arrowhead, all TAD callers 

require in input a fully preprocessed interaction matrix. For this reason, to maximize the 

comparability among the various methods, we used the same preprocessing procedure to 

prepare the data for all tools.

Reads were aligned to the hg19 build of the human genome or dm3 of the fly genome using: 

i) Bowtie26 (v.1.1.1) in single-end mode with parameters: -m 1 -a --best --strata --chunkmbs 

200; ii) Bowtie 229 (v2.2.4) as implemented by diffHic, iii) STAR27 (v2.4.0) as 

implemented by HIPPIE, and iv) BWA28 (v0.7.15) as implemented by HiCCUPS. Bowtie 

performs full read alignment whereas diffHic, HIPPIE, and HiCCUPS implement different 

approaches for chimeric alignment (Supplementary Note 1). Reads aligned with Bowtie 

were used as input to those interaction callers lacking a specific aligner and to all TAD 

callers. In particular, for interaction callers, this choice was dictated by constraints in the 

type of input required by GOTHiC and HOMER that hampered the use of chimeric aligners. 

After alignment, samples composed of more than one run were merged with SAMtools39.

Most interaction callers implement their own filtering, binning, and normalization strategy 

(Supplementary Note 1). The filtering step is used to remove low quality reads, reads that 

may originate from unspecific ligation events or which are not informative. We grouped 

filters in three major categories: read-level, read-pair level, and fragment-level. Read-level 

procedures filter reads based on read mapping quality (AQ) and restriction site proximity 

(RSP). Read-pair level filters remove PCR duplicates (PD), spikes, i.e. reads aligning on a 

region with an abnormally high quantity of reads (S), and read pairs that derive from 

undigested chromatin (UC). This latter filter can also consider strand orientation to identify 

potential self-ligation or no ligation events (UC+SLF). Restriction site proximity filter can 

also be performed at read-pair level. Finally, fragment level filters (FLF) discard fragments 

based on the restriction site proximity of their reads. Reads have been filtered according to 

the strategy implemented by each tool. We also filtered out reads aligning on chrY and chrM 

for hg19 and on chr4, chrY, and all heterochromatic chromosomes for dm3.

In almost all cases, we set the bin size equal to the highest resolution reported in the original 

publications. However, due to severe computational requirements, we analyzed Jin dataset 

Forcato et al. Page 11

Nat Methods. Author manuscript; available in PMC 2017 December 12.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



and GM12878 samples of Rao at 5kb with interaction callers and all datasets originally 

binned at less than 40kb (Jin, Rao, and Dixon 2015) at 40kb with TAD callers.

All tools were run using default or suggested values for preprocessing parameters, filters, 

and normalization type. In some cases parameters were adjusted according to the adopted 

resolution, following suggestions from the software documentation or directly from the 

developers (Supplementary Notes 1 and 2). Some of the steps in the preprocessing workflow 

have been adapted to the requirements of the specific tools. In particular, since Fit-Hi-C 

requires in input raw interactions, we used GOTHiC, whose output format can be easily 

adapted to Fit-Hi-C input, to perform filtering and binning. The binning step was not 

required for HIPPIE, which calls interactions directly at the restriction fragment level. 

Whereas when using diffHic for calling interactions in individual samples the normalization 

step was not performed, since it is not required.

For all TAD callers, we used hicpipe for filtering and binning. hicpipe was also used for 

normalization in all TAD tools, with the exceptions of TADbit that requires the use of its 

internal normalization method and HiCseg that was applied to the raw interaction matrix 

(see Supplementary Note 2).

Simulated Hi-C data

We generated the simulated data using a modification of the procedure proposed by Lun and 

Smyth19 for a total of 65 samples obtained by varying the level of base interaction strength 

(for interactions only) and of noise (for TADs only; Supplementary Note 3). The simulated 

Hi-C count matrices were used as input to the interaction callers (HiCCUPS, HOMER, 

diffHic, and Fit-Hi-C) and to HiCseg and TADbit that require raw count as input. For all 

other TAD callers, requiring observed over expected normalized data, the raw count matrices 

were converted to Vanilla Coverage matrices, as described in Lieberman-Aiden et al2.

Performance metrics

To assess the performance of interaction callers, we considered several metrics including: 

the total number of called interactions; the distance between the interacting points in cis; the 

concordance of results within and between datasets when analyzing different biological 

replicates; and the type of associated chromatin states. To determine a further basis for 

comparison, we searched the literature for interactions that had been demonstrated to be 

present (or absent) in the same cell types of the Hi-C datasets. Namely, we selected 

interactions validated using other 3C techniques (e.g., 3C, 5C, ChIA-PET) and 3D-FISH, or 

reported in the literature to be specific of given cell types at a given physiological state 

(interaction evidences). Moreover, we calculated the sensitivity (true positive rate) and 

precision of the methods in identifying interactions from simulated data.

To compare TAD callers on experimental data we considered the total number of called 

TADs, the TAD size, the concordance of TAD boundaries within and between datasets when 

analyzing biological replicates, and the enrichment at TAD boundaries of known boundary 

elements (i.e., CTCF and BEAF32).
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Comparative analyses

The intersection of the results from different replicates has been generated using the R 

package ChIPpeakanno.

For both interactions and TAD boundaries, the Jaccard Index of two replicates has been 

defined as the ratio between the size of the intersection and the size of the union of 

interactions and TAD boundaries called in the replicates. Jaccard Index empirical p-values 

were estimated with random permutations of interactions. Namely for each dataset, cell type, 

and data analysis method, we defined, for each sample, a random set of cis interactions by 

keeping constant the sample-specific number of interactions and the sample-specific 

distribution of distances between anchoring points. The first of the two anchoring points for 

each interaction was randomly selected from the pool of detectable anchoring points, 

defined as any genomic bin that was called as anchoring point in any sample from the same 

dataset and cell type. The second anchoring point was randomly defined by sampling from 

the observed distribution of anchoring point distances. The resulting sets of random 

interactions were then used to compute random Jaccard Index values in pairwise 

comparisons. The random sampling of interactions was repeated 1000 times to obtain a null 

distribution of randomly expected Jaccard Index values for each pairwise comparison. The 

empirical p-value is estimated as the probability of observing a random Jaccard Index value 

larger than or equal to the observed one.

Rao GM12878 replicates were divided into 4 groups of samples with increasing number of 

filtered read pairs. Specifically, replicates B2, B1, A2, A1, G1 constituted the group of 

samples with less than 40 million reads; A3, D, B, and G2 the group with more than 40 and 

less than 100 million reads; C2, C1, F, and A the group of samples with a number of filtered 

reads comprised between 100 and 180 millions; E1 and E2 constituted the group of samples 

with more than 180 million reads. Replicate H was not included in any of the above groups.

The overlap coefficient of two replicates was defined as the ratio between the size of the 

intersection and the size of the minimum set of interactions or TAD boundaries called in the 

replicates.

For interactions and TAD boundaries identified in simulated data, we defined sensitivity as 

the ratio of correctly identified features to all true features and precision as the ratio of 

correctly identified features to all called features (1 minus False Discovery Rate).

All comparative analyses were run using R-3.1.3. All box plots have been generated with the 

R boxplot function and default parameters.

Selection of validated interaction evidences

From the literature, we constructed a list of interactions that had been demonstrated to be 

present (or absent) in the same cell types of the Hi-C datasets using other 3C techniques 

(e.g., 3C, 5C, ChIA-PET) and 3D-FISH or that are known to exist in specific cell types at a 

given physiological state (interaction evidences). Altogether, we selected 2439 validated 

true-positive cell specific interactions, 389 validated true-negatives, 61 true positive 

evidences, and 138 true negative evidences (Supplementary Table 7). True positive and true 
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negative interactions were mapped to the bin level (at 40kb and 5kb resolution) and counted 

only if between not adjacent bins.

Integration with genomic data

Chromatin states for IMR90, H1-hESC and GM12878 (15-states model) were downloaded 

from Roadmap Epigenomics Consortium33 and chromatin states for fly late embryos (16 

states) from modENCODE34 (details in Supplementary Note 7). CTCF and BEAF32 ChIP-

seq peaks were retrieved from ENCODE40 and modENCODE34 (Supplementary Table 9). 

In particular, we considered peaks generated by the uniform analysis pipeline of the 

ENCODE Analysis Working Group and peaks obtained from combined replicates for 

modENCODE data.

We used the R package ChIPpeakanno to compare chromatin interactions with chromatin 

states and TAD boundaries with CTCF and BEAF32 peaks.

Code availability

Examples of how to run each tool, functions to analyze results, calculate general statistics, 

and performance metrics have been deposited in https://bitbucket.org/mforcato/

hictoolscompare.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

Six tools to call chromatin loops and seven tools for TAD calling are systematically 

compared with real and simulated data. The strengths and weaknesses of each tool are 

discussed.
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Figure 1. Tools for Hi-C data analysis used in the comparison and performances in data 
preprocessing.

a) Tools for the identification of chromatin interactions and TADs from Hi-C data and key 

analysis steps (orange arrows). Blue boxes detail the strategy used in each analysis step by 

each tool. A grey box is used when an external tool is required for a preprocessing step. 

Since most tools perform filtering and binning together, a blue or grey box spanning both 

steps is used in the schematic workflow. For filtering the following abbreviations are used: 

read level filtering (R); read-pair level filtering (R-pair); fragment level filtering (Fr.).
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b) Percentage of aligned read pairs (alignment rate) for all datasets ordered by read length 

(grey arrows at the bottom). Data are shown as mean±standard error of the mean. Samples 

with different or mixed read length were not used when calculating the alignment rate.

c) Percentage of mapped reads retained after filtering (fraction of usable reads) in each 

dataset, ordered by experimental protocol (grey arrows at the bottom). Data are shown as 

mean±standard error of the mean. GOTHiC could not be applied to Dixon 2015 since the 

read-pairing step required an amount of memory larger than 1 TB of RAM.
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Figure 2. Comparative results of methods for the identification of chromatin interactions.

a) Scatter plot of total number of cis interactions called by each method as a function of the 

number of reads retained by the filtering step in all datasets at 5kb resolution (i.e., Jin H1-

hESC, Jin IMR90, Rao GM12878, Rao IMR90, and Dixon 2015 H1-hESC; n= 32). 

Different points represent sample replicates. Linear interpolation for each method is shown 

as a solid line.

b) Boxplot of average distances between anchoring points in cis interactions (log scale) in 

sample replicates considering all datasets analyzed at 5kb resolution (n= 32).
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c) Heatmap of the contact matrix of Rao GM12878 replicate H 

(chr21:35,000,000-36,000,000) at 5kb resolution. Identified peaks are marked in different 

colors for the various methods.

d) Box plots of the Jaccard Index for concordance of cis (upper) and trans (lower) 

interaction calls between sample replicates (intra-dataset concordance) for all datasets with 

at least 2 replicates (n=39; Supplementary Table 1). For Fit-Hi-C and HiCCUPS, the Jaccard 

Index was calculated only for cis interactions since these tools do not return trans 

interactions.

e) Proportion of cis interactions classified on the base of the chromatin states at their 

anchoring points (promoter-enhancer, upper; heterochromatin/quiescent to heterochromatin/

quiescent, middle; less expected, lower) in all datasets at 5kb. With the exception of Jin H1-

hESC (that contains a single replicate), only cis interactions conserved in at least 2 replicates 

within each dataset were classified using the chromatin states (Supplementary Table 4).

f) Performances in the identification of true positive validated evidences of cis interactions. 

Each row represents the comparison between a list of true positives and the interactions 

called by each method in each dataset. The dot size is proportional to the percentage of 

recalled true positives and the dot color accounts for the number of total called interactions. 

The validation technique and the name of true positive lists are displayed on the left side. 

The dataset used to call interactions are on the right and shaded in grey if at 40 kb 

resolution. True-positive interactions were searched among cis interactions conserved in at 

least 2 replicates within each dataset, with the exception of Jin H1-hESC and Sexton (both 

containing a single replicate). GOTHiC was not applied to Dixon 2015 (see legend of Fig. 

1c).
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Figure 3. Comparative results of methods for the identification of TADs.

a) Scatter plot of total number of TADs called by each method as a function of the number 

of reads retained by the filtering step in all datasets except Lieberman-Aiden and Jin H1-

hESC (n=36; Supplementary Table 1). Different points represent sample replicates. Loess 

interpolation for each method is shown as solid line.

b) Boxplot of median TAD size in all replicates of all datasets (analyzed at 40kb) except 

Lieberman-Aiden and Jin H1-hESC (n=36).
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c) Heatmap of the contact matrix of Rao GM12878 replicate H 

(chr1:153,000,000-155,500,000) at 40kb resolution. Identified TADs are framed in different 

colors for the various methods.

d) Box plots of the Jaccard Index for concordance of TAD boundaries between sample 

replicates of all datasets with at least 2 replicates (n=39).
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Table 1

Methods for Hi-C data analysis used in this comparison.

Method Availability Programming language

Chromatin interactions Fit-Hi-C15 noble.gs.washington.edu/proj/fit-hi-c Python

GOTHiC16 http://bioconductor.org/packages/release/bioc/html/GOTHiC.html R

HOMER17 homer.ucsd.edu/homer/download.html Perl, R

HIPPIE18 wanglab.pcbi.upenn.edu/hippie Python, Perl, R

diffHic19 https://bioconductor.org/packages/release/bioc/html/diffHic.html R, Python

HiCCUPS9,14* github.com/theaidenlab/juicer/wiki/Download Java

TADs HiCseg20 https://cran.r-project.org/web/packages/HiCseg/index.html R

TADbit21 github.com/3DGenomes/TADbit Python

DomainCaller5 http://chromosome.sdsc.edu/mouse/hi-c/download.html Matlab, Perl

InsulationScore22 github.com/dekkerlab/crane-nature-2015 Perl

Arrowhead9,14* github.com/theaidenlab/juicer/wiki/Download Java

TADtree23 compbio.cs.brown.edu/projects/tadtree/ Python

Armatus24 github.com/kingsfordgroup/armatus C++

*
HiCCUPS and Arrowhead are the algorithms for interaction and TAD calling of the Juicer software suite.
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