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Abstract

Comparisons are made between two computational methods 
for associated Legendre functions across truncation wave numbers 
between 39 and 10239. One of the two methods uses the four-
point recurrence in double precision (the Fourier method) and the 
other uses the three-point recurrence in the extended arithmetic 
(the X-number method). Both methods avoid the shortcomings of 
the traditional method using the three-point recurrence in double 
precision and generate values accurate enough to enable stable 
Legendre transforms at large truncation wave numbers (> 1700). 
The errors for the Fourier method are found to be much smaller 
than those for the X-number method and have little latitudinal 
dependencies. The errors for the Fourier method, however, are 
found to grow rapidly with large degrees n > 2048. Two alterna-
tives are proposed to calculate the scaling factor of the Fourier 
coefficients of the associated Legendre functions accurately with 
errors in O(√n ).

(Citation: Enomoto, T., 2015: Comparison of computational 
methods of associated Legendre functions. SOLA, 11, 144−149, 
doi:10.2151/sola.2015-033.)

1. Introduction

The spectral transform method (Orszag 1970; Bourke 1972, 
1974; Hoskins and Simmons 1975) is widely used in numerical 
weather prediction (NWP) and climate models. The horizontal 
resolution of spectral models are indicated by the truncation wave 
number or the largest wave number in the expansion by spherical 
harmonics. Usually the zonal and total (zonal plus meridional) 
wave numbers are truncated at a same truncation wave number to 
give a uniform resolution over the globe. Recent increase in com-
puting power allows the use of a large truncation wave number. 
With the advent of the Earth Simulator in 2002, simulations with 
T1279 (T for triangular truncation) using AFES (atmospheric 
general circulation model for the Earth Simulator) were conducted 
(Ohfuchi et al. 2004). The relation between the number of the 
grid in the zonal direction I and the truncation wave number in 
AFES is I ≥ 3N + 1 due to the nonlinear advection terms (the 
quadratic grid) and for the above resolution I = 3840 and N = 
1279, corresponding to 10-km resolution. Currently horizontal 
resolutions of 13−21 km are used in the operational NWP. The 
Japan Meteorological Agency increased the truncation wave 
number of the Global Spectral Model (GSM) for the deterministic 
forecasts from TL319 (L for the linear grid, where I ≥ 2N + 1, 
63 km) to TL959 (21 km) in 2007. Similarly, the European Centre 
for Medium-range Weather Forecasts increased from TL799 
(50 km) to TL1279 (16 km) in 2010 and the National Centers for 
Environmental Prediction (NCEP) from T574 (23 km) to TL1534 
(13 km) in 2015.

During the development of AFES, the AFES team became 
aware of the degradation of the Legendre transforms with 
increasing the truncation wave number: transforms with T1279 
deteriorate to single precision and those with truncation wave 
numbers larger than 1700 fail. Enomoto et al. (2008) addressed 
this problem by using the four-point recurrence (Belousov 1962; 
Nehrkorn 1990; Swarztrauber 1993; Wedi et al. 2013) in place of 

the traditional three-point recurrence to compute the associated 
Legendre functions (ALFs).

Fukushima (2011) proposed an alternative method to compute 
ALFs using the three-point recurrence method in the extended 
arithmetic (X-number) based on Smith et al. (1981). Fukushima 
(2011) succeeded in reducing the overhead of the extended 
arithmetic to be additional 10% only by fusing the extended arith-
metic addition and multiplication and embedding the X-number 
operations in the recurrence. The new method allows computation 
of ALFs at astonishingly large wave numbers up to 2

32 ≈ 4 × 109
, 

which corresponds to a horizontal resolution of 3 and 5 mm on the 
quadratic and linear grids, respectively, for the Earth. 

In this study, the four-point recurrence in double precision are 
compared with the three-point recurrence in the extended arithme-
tic in a practical range of T39−T10239. The three- and four-point 
recurrences are described in the next section. The results from 
computational tests are shown in Section 3. Finally, concluding 
remarks are given in Section 4.

2. Computational methods

In the spectral models, prognostic variable are expanded with 
spherical harmonics
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The unnormalized ALF Pn
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(cos q) is defined by Rodrigues’ for-
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where x = cos q. The values of P̃n

m
(cos q) are computed using one 

of recurrences described in the following two subsections at J = 
I/2 colatitudes q, which are the zeros of PJ (cos q).

2.1 The three-point recurrence
The three-point recurrence may be written as
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This recurrence involves the terms with the same zonal wave 
number but with different total wave numbers and requires two 
starting values for each zonal wave number
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(a normalized form of (17) of Hobson 1931). The fact that P̃n(cos q)  
is an even (odd) function for even (odd) n is consistent with this 
expansion composed of cosines of even (odd) multiples of q. The 
values at n = 1 (P̃n

1
(cos q)) are computed with the same coeffi-

cients in (12) using
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and the ratio of the normalizing factors of P̃n

1
 and P̃n

0
, 1 1/ ( )n n+  

(Belousov 1962).

The coefficient of cos nq may be written as
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It follows immediately from an,n /an −1,n−1
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Swarztrauber (2002) suggested to calculate an,n with (15). The 
starting value is a1,1 = √3/2 for the normalization factor of 1. 
However 1/4n

2
 in (15) quickly falls towards the machine epsilon 

(2.2204 × 10−16
 for double precision) compared against 1. This 

problem can be avoided by rewriting (15) as
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Alternatively, (14) can be expressed in terms of the Gamma func-
tion G(n + 1) ≡ n! as suggested by Swarztrauber (2002)
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Here the following asymptotic expansion is used
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Once an,n is obtained the remaining an,k are solved backwards with

l n l a l n l a
n n l n n l
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where l = n − k and l = 2, 4, ¼, n for even n and l = 2, 4, ¼, n − 1 
for odd n (Swarztrauber 2002).

The errors are compared among the original form (15) in 
Swarztrauber (2002), the one rewritten (16) and the one using the 
Gamma functions (17, 18) for n = 2

i
, i = 5, 6, ¼, 20 (Fig. 2). The 

error is measured by the maximum relative error
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The starting value P̃0

0
(cos q) = 1/√2  for the normalization factor 

of 1. The recurrence (5) is illustrated in Fig. 1a. The value at the 
white circle is computed from the starting values at the filled 
circles. The starting values along the yellow lines (n = m and n = 
m + 1) are pre-computed with (7) and (8), respectively.

Near the poles, the sectional harmonics (m = n) often have 
insufficient magnitude to be represented in floating-point formats. 
This is because a factor sin q is multiplied recursively whenever m 
gets larger in (7). Once the underflow occurs, it degrades all of the 
computed values of the successors in (5), (7) and (8), even if the 
true values of the successors in (5) have sufficient magnitudes.

2.2 The four-point recurrence
Swarztrauber (1993) suggested an alternative four-point recur-

rence (Fig. 1b). Its normalized version may be written as
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This recurrence does not rely on the values at smaller degrees 
only but the values at a different order m − 2. As a consequence 
even when the values are growing with n and the values at small n 
are smaller than the minimum represented in double precision, the 
values are computed correctly because of the contribution from 
the terms at m − 2. Another consequence is that the values at n − 2 
can be traced back to P̃n

0
(cos q) for even m and P̃n

1
(cos q) odd m.

The values at m = 0 (P̃n

0
(cos q)) can be computed very accu-

rately with the Fourier expansion of Legendre polynomials.
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Because of this expansion, the four-point recurrence is referred to 
as the Fourier method hereafter. 

The first few terms of this expansion can be obtained by 
expanding (1 + 2h cos q + h

2
)

−1 and collecting the coefficients of 
h

n
 to be

Fig. 1. Computation of associate Legendre functions with the (a) three- 
and (b) four-point recurrences. The values along the yellow lines are pre- 
computed before applying the recurrences.
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where xi is a vector component and  (xi) its component error. The 
values computed with quadruple precision are regarded as the 
truth. The errors of the original form in black are in O(√n ) up to 
2

11
, but suddenly grow rapidly in O(n

3
) between 2

11
 and 2

14
 and 

become proportional to O(n) with n ≥ 215
. The errors in the rewrit-

ten form in red consistently follow O(√n ), but the errors are often 
larger than those in the original form before the rapid increase. 
The errors in the form using the Gamma functions are smallest at 
many resolutions and comparable at the others except at small n, 
where the assumption of large n is inappropriate. It is suggested 
that the combination of the original form for small n and the form 
using the Gamma functions for large n should give the smallest 
errors.

2.3 The extended arithmetic
A non-zero floating-point number X is represented by a float-

ing-point number x and an integer i as Fukushima (2011)

X xB
i=  (21)

where B is a large power on the base 2. Here B = 2
960

 for double 
precision and B = 2

1600
 for quadruple precision, proposed by 

Fukushima (2011), are used.
We call X normalized when

1/ | |B x B≤ <  (22)

and weakly normalized when

1/ | | .B x B≤ <  (23)

Normalization is applied to all the values in arithmetic operations 
when they are weakly normalized by dividing (multiplying) B and 
incrementing (decrementing) i to avoid overflow (underflow).

The extended arithmetic operations are applied to the three-
point recurrence (5). The values are computed with the extended 
arithmetic and then stored in an array with double or quadruple 
precision. A small value (x/B) is used to represent the underflow 
values. Hereafter the three-point recurrence using the extended 
arithmetic is called the X-number method.

3. Computational tests

In this section, the X-number and Fourier methods are com-
pared. The triangular truncation (signified by letter ‘T’ in front of 
the truncation wave number) and the quadratic grid are used in 
this study. The tests are conducted with various truncation wave 
numbers between T39 and T10239.

The Gaussian latitudes are computed as the zeros of PJ as a 
function of q rather than that of cos q using the Newton method 
(Swarztrauber 2002). The Legendre polynomials are computed 
using the Fourier expansion (11, 12) without the scaling factor, 
which is irrelevant in finding the zeros. The Gaussian weights are 
obtained with
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where P̃J¢ (cos q) = dP̃J (cos q)/dq (Yakimiw 1996; Swarztrauber 
2002). The Gaussian weights are computed using the Legendre 
polynomial and its derivative without scaling factor and are scaled 
so that åJ/2

j = 0 wj = 1. As discussed in Enomoto et al. (2008), the 
errors of the Gaussian latitudes and weights are smaller with 
Legendre polynomials from the Fourier method described above 
than with those from the unnormalized version of the three-point 
recurrence (5) even at moderate resolutions (say T119).

3.1 Synthesis−analysis tests
In order to obtain the error for each wave number, synthesis−

analysis tests are conducted. The initial value (and the truth) for 
each harmonics is 1. A Legendre synthesis followed by a Legendre 
analysis are conducted and the error is defined by
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where P̃n

m
(cos q) is normalized to 1.

The errors for the X-number and Fourier methods are shown 
in Fig. 3. For T5119 both X-number and Fourier methods enable 
the accurate transforms at large n (Figs. 3a, b, respectively). 
Although the errors become larger with T10239 the X-number 
method seem to work robustly (Fig. 3d). The Fourier method, by 
contrast, (Fig. 3e) has large errors in small m increasing with n 
with the mean error 1.7 times larger than that of the X-number 
method. It is found that the cause of the errors is the original form 
for the scaling factor of the Fourier coefficient an,n (15). Fortu-
nately these error can be avoided with the modified form (16) or 
with the combination of (15) for n ≤ nc and the Gamma functions 
(17, 18) for n > nc of an,n. Figure 3c and f show the tests using the 
latter with nc = 128, which have slightly smaller errors than the 
modified form of (16).

With the fix of the scaling factor, the mean and maximum 
errors are smaller with the Fourier method than with the X-number  
method. This is probably because of the absence of the error accu-
mulation in n due to the recurrence.

In the histograms of the errors with the X-number and Fourier 
methods (not shown), the most populated bins for the X-number 
and Fourier methods are 2−5 × 10−14 and 1−2 × 10−14

, respectively. 
The errors are consistently smaller with the Fourier method in 
the maxima (the errors with Fourier method is 0.076−0.61 of 
those of the X-number method), means (0.48−0.63) and medians 
(0.42−0.67) of error (Table 1). Thus the errors with the Fourier 
method are roughly a half of those with the X-number method in 
the synthesis−analysis tests.

In order to complement the synthesis−analysis test, the 
orthogonality is measured for n¢ ≠ n
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Due to enormous resource required for the computation of the 
orthogonality errors with a large truncation wave number, the 
errors computed for all m, n ≥ m and n¢ ≠ n for T1279 (Fig. 4) and 
an arbitrary combination of m and n for T2559. Figure 4 shows 
that the maximum of eo does not have distinct dependency in m 
and the both methods are comparable in orthogonality although 
the Fourier method have slightly smaller errors. This is also the 
case for T2559; eo for n = 2500 and m = 1200 are 3.22 × 10−14

, 1.81 

Fig. 2. The maximum relative error in the Fourier coefficients an,k as com-
puted from (15) in black, (16) in red and (17, 18) in blue. Thin black lines 
represent the slope for n

3
, n and √n .
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× 10−14 and 1.51 × 10−16
 for the X-number and Fourier methods 

and the three-term recurrence in quadruple precision, respectively.

3.2 Relative precision and identity error
Before examining the latitudinal distributions of errors, the 

numerical values for some combinations of n and m are com-
pared (Supplement 1). The ALFs normalized to 1 are doubled in 
order to enable direct comparisons against those on Table 4 of 
Fukushima (2011) that shows the fully normalized ALF P

–
n

m
(cos q), 

normalized to 2 at m = 0 and to 4 at m > 0. The values computed 
using Maxima with 35 significant digits exactly agree with those 
computed using Mathematica by Fukushima (2011). The values 
computed using Fukushima (2011)’s and our implementations of 
the X-number method do not agree although the number of digits 
that agrees with the fixed precision calculation using Maxima or 
Mathematica is the same between the two implementations. In 
the combinations of m and n shown here, the values from the X- 
number and Fourier methods agree with those from Maxima in 
10−12 digits. The agreements are extended to 30−31 digits with 
quadruple precision.

Now the relative precision against quadruple precision is 
examined. The relative precision is defined as

Fig. 3. Distribution of the error in the synthesis−analysis tests at T5119 (a, b, c) and at T10239 (d, e, f) with the X-number (a, d) and Fourier methods with 
the original form of the scaling factor an,n (b, e) and the original form for total wave number for n ≤ 128 and the form using the Gamma functions for n > 128  
(c, f ). The abscissa and ordinate denote order (zonal wave number) m and degree (total wave number) n, respectively.

Fig. 4. The common logarithm of the maximum of the orthogonality errors 
for each m (ordinate) with the X-number (red), Fourier (blue) methods and 
the three-point recurrence in quadruple precision (black, not shifted) with 
T1279.

Table 1. The maxima, means and medians of error in the synthesis−analysis tests at various resolu-
tions with the X-number and Fourier methods

resolution
maximum mean median

X-number Fourier X-number Fourier X-number Fourier

T39
T79
T119
T159
T239
T319
T639
T1279
T2559
T5119
T10239

7.77e-15
1.13e-14
1.04e-14
1.20e-14
3.93e-14
2.84e-14
5.97e-14
1.21e-13
1.76e-13
6.89e-13
1.30e-12

2.66e-15
3.77e-15
6.22e-15
7.33e-15
7.77e-15
1.11e-14
1.62e-14
3.04e-14
4.15e-14
8.46e-14
9.90e-14

1.14e-15
1.66e-15
1.76e-15
1.89e-15
2.71e-15
2.76e-15
4.49e-15
6.73e-15
1.34e-14
1.51e-14
2.70e-14

5.92e-16
8.08e-16
1.11e-15
1.18e-15
1.24e-15
1.60e-15
2.28e-15
3.59e-15
7.38e-15
7.85e-15
1.17e-14

8.88e-16
1.33e-15
1.33e-15
1.55e-15
2.00e-15
2.22e-15
3.55e-15
5.11e-15
1.13e-14
1.18e-14
2.13e-14

4.44e-16
6.66e-16
8.88e-16
8.88e-16
9.99e-16
1.33e-15
1.89e-15
2.66e-15
6.77e-15
6.66e-15
8.88e-15
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where P̂n

m
(cos q) is computed with the X-number method in 

quadruple precision, used as the proxy for the true value. The 
Kahan summation algorithm in quadruple precision is used in (28) 
and (29) to prevent the accumulation of round-off errors. Figure 
5a shows the latitudinal distributions of relative precision for 
T10239. Both methods have relative precision of 12 digits except 
near the pole. The values at the closest point to the pole are 7.52 
× 10−10 and 4.08 × 10−12

 for the X-number and Fourier methods, 
respectively.

The relative precision may contain the systematic errors due 
to the properties of the recurrences. To supplement the relative 
precision, the accuracy is evaluated using an identity
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Again the Kahan summation algorithm is used in (30). The error 
is defined as
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(Holmes and Featherstone 2002).
The identity errors are oscillating around 1 × 10−15

 with the 
Fourier method (Fig. 5b). The errors are larger with the X-number 
method by two orders of magnitude. In addition, there is a sharp 
increase of error near the pole. The latitudinal distribution of 
identity error suggests that even when the extended arithmetic is 
used the the three-point recurrence are less accurate than the four-
point recurrence, especially near the pole. This is due to the three-
point recurrence as suggested by the similar curve of quadruple 
precision (note the shift by 20 digits). It is worth restating that the 
X-number method is used to avoid underflow or overflow and it 
cannot change the characteristics of the recurrence. The identity 
errors might affect the relative precision of the Fourier method 
near the pole.

Figure 6 shows the resolution dependency of the relative pre-
cision and identity error. The maximum relative precision (solid) 
is increasing is faster than the mean (broken), suggesting the influ-
ence of error near the pole. The X-number methods in double and 
quadruple precision share the similar rates of growth in identity 
error. The Fourier methods, by contrast, shows a remarkably slow 
growth in identity error.

4. Concluding remarks

The associate Legendre functions (ALFs) cannot be computed 
accurately with the three-point recurrence in double precision 
for large degrees and orders. Two alternatives are the three-point 
recurrence using the extended arithmetic (the X-number method) 
and the four-point recurrence in double precision with Legendre 
polynomials P̃n(cos q) expanded in the Fourier series (the Fourier 
method). Both methods allow stable Legendre transforms at high 
resolutions. The Fourier method has been implemented in AFES 
(Enomoto et al. 2008) and in ECMWF IFS (Integrated Forecast 
System, Wedi et al. 2013). The X-number method has been 
implemented experimentally in NCEP GSM to result in a positive 
impact in forecast skills (Han-Ming Henry Juang 2012, pers. 
comm.) and adopted for operational use in TL1534.

In the Fourier method the scaling factor of the Fourier coeffi-
cients become less accurate at large degrees with the original form 
proposed by Swarztrauber (2002). Two alternatives are proposed 
and used in the computational tests in the present paper.

Computational tests show that Legendre transforms using the 
Fourier method are more accurate than those using the X-number 
method. In addition the errors with the X-number method have a 
sharp increase of error towards the pole.

Fig. 5. Latitudinal distribution of the common logarithms of (a) the rel-
ative precision against the X-number method in quadruple precision and 
(b) the identity errors (see the definition in the text) with the X-number 
(red) and with the Fourier (blue) methods with T10239. The black curve in 
(b) shows the common logarithm of the identity error with the X-number 
method in quadruple precision shifted by 20.

Fig. 6. As in Fig. 5 but the resolution dependency of the maximum (solid) 
and the mean (broken) of the common logarithms
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The X-number method has advantages in speed. The time 
in seconds required to compute ALF is compared with a serial 
program on Mac Pro 2013 with 3.5 GHz 6-core Intel Xeon E5 and 
32 GB memory (Supplement 2). The time grows in proportion to 
the cube of the truncation wave number. The X-number method is 
several time faster than the Fourier method, an order of magnitude 
faster than quadruple precision. The overhead due to extended 
arithmetic operations is negligible. Moreover, the three-point 
recurrence, which is independent in order m, allows the paral-
lelization in m. The four-point recurrence, on the hand, requires 
the values at m − 2 and cannot be parallelized in m. As a result the 
computation can be slower although it has to be done only once in 
the initialization step.

The Fortran modules to compute ALFs used in this study are a 
part of enomo, available from http://github.com/tenomoto/enomo.
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