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Abstract— The Archimedes Wave Swing (AWS) is a a fully-
submerged Wave Energy Converter (WEC), that is to say,
a device that converts the kinetic energy of sea waves into
electricity. A first prototype of the AWS has already been
built and tested. This paper presents simulation results of the
performance of several control strategies applied to this device,
including PID control, reactive control, phase and amplitude
control, latching control, feedback linearisation control, internal
model control, switching control, and combinations thereof.
Linear, white-box nonlinear, and neural network models were
employed. Significant (above threefold) increases in yearly
energy production were found to be possible with properly
designed control strategies.

I. INTRODUCTION

Sea waves are a source of renewable energy. They rep-
resent an estimated power of 2 TW worldwide, and it is
possible to convert part of this wave power into electricity.
Several devices for this purpose, known as wave energy
converters (WECs), are under development, using different
working principles and designed for different types of lo-
cations. Modelling and control play an important role in
improving the efficiency achieved.

This paper addresses a particular WEC, the first proto-
type of the Archimedes Wave Swing (AWS). It sums up
simulation results, obtained with different identification and
control techniques, already published elsewhere, comparing
their relative performances.

II. THE ARCHIMEDES WAVE SWING

The first-generation AWS is an off-shore submerged WEC,
with a diameter neglectable when compared to a typical
wave length (thus termed a point absorber), consisting in
two main cylindrical and hollow parts, the floater and the
silo, mounted in a structure to keep them together, with
air trapped within floater and silo. The silo is fixed to the
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structure and thereby to the sea-bottom; the floater is free
to heave up and down, within the range of mechanical end-
stops. The working principle is simple: when a wave crest
passes over the AWS, the height of water increases, so does
the pressure compressing the air within, and the floater moves
down; when a wave trough passes over the AWS, the height
of water decreases, so does the pressure, the air expands
and the floater moves up. (This is depicted in Fig. 1.) The
heaving motion of the floater is converted into electricity
by an electrical linear generator (ELG). Water dampers are
mounted in the AWS structure, outside silo and floater, and
become active when the floater gets close to the mechanical
end-stops, providing an additional damping force, to prevent
any strong collision.

A prototype of the AWS has already been built and
tested in Portugal, near Leixões, 5 km away from the coast,
where it was 43 m under water. After the tests in 2004,
this prototype was decommissioned. A second-generation,
improved prototype is currently under development.

Fig. 1. The AWS working principle and the first prototype before
submersion

A. Wave models

The wave climate of the test site may be statistically
characterised with data from the ONDATLAS software [1].
The location available nearer to the test site is Leixões–
buoy, 41o12.2′ N, 9o5.3′ W. Table I gives for this location
average significant values of the wave height Hs (from
trough to crest) and maximum and minimum values of
the wave energy period Te. In this paper simulations are
performed using regular and irregular waves. The first are
sinusoidal, with values for amplitude and period congruent
with Table I. For the latter, thirteen waves were used, one
for each month of the year and one for the whole year
data. These irregular waves were generated using Pierson-
Moskowitz’s spectrum [2], that models the behaviour of



North-Atlantic sea waves, and is given by

S(ω) =
A

ω5
exp

(

−
B

ω4

)

(1)

Here, the wave energy spectrum S is a function such
that

∫ +∞

0
S(ω)dω is the mean-square value of the wave

elevation (equal to one half of Hs). The numerical values
A = 0.780 (SI) and B = 3.11/H2

s were used. Values for
Hs and for Te (from which the limits of the frequency
range were then found) were provided by Table I. There
are significant variations in wave characteristics along the
year, and it is useful to divide months according to the
average energy content of waves, that depends on Hs. In
what follows, “summer” refers to those months when Hs is
above average (the May–September period), and “winter” to
the rest of the year.

B. Nonlinear model of the AWS

Applying Newton’s law to the floater, we get

fpi−fhs−frad+fexc−wf −fn−fv−fm−fwd−flg = mξ̈
(2)

The floater’s mass is m and its vertical acceleration is ξ̈.
The force acting thereupon is the sum of the forces due
to internal air pressure fpi, to the hydrostatic impulse fhs,
to wave radiation frad (this being the force exerted on the
AWS by the wave that the floater creates by its movement),
to wave excitation fexc (this being the force exerted on the
AWS by the incident sea waves assuming that the floater is
not moving), to the weight of the floater wf , to a nitrogen
cylinder extant inside the AWS fn, to the hydrodynamic
viscous drag fv, to mechanical friction fm, to the water
dampers fwd, and to the ELG flg . The last two are the
forces we can control, and their sum will be called control
force fu. Since the water dampers are only sporadically used,
most of the time fu = flg +fexc ≈ flg (though not when the
floater gets close to the end-stops). In (2), positive values are
given to the most natural direction; hence most forces point
downwards. Small-case letters are being used for variables in
the time-domain; their Laplace transforms (in the frequency
domain) will be denoted using the corresponding capitals.
(Hence Ξ(s)

def
= L [ξ(t)], Flg(s)

def
= L [flg(t)], and so on.)

The expressions of most forces in (2) are nonlinear; they
are given in [3], [4]. They were implemented in a Simulink-
based simulator of the AWS, the AWS Time-Domain Model
(TDM), that was used for the simulations presented in this
paper1. Data provided by this nonlinear model was also used
to identify the other models in this section, because extant
data from the prototype is scant and insufficient.

1When preparing this paper, several parameters and significant values of
the model have been altered, due to industrial protection reasons. Thus
results below should not be construed as indicative of the AWS first
prototype actual performance. Nevertheless, they are significant as they
reveal the efficacy of control strategies, and are deemed useful for the
development of the second-generation prototype.

C. Linear model of the AWS

In spite of the significant nonlinearities present, from the
description above the AWS can be expected to behave like a
mass–spring–damper system. Applying Levy’s identification
method [5] to AWS simulation outputs, a second-order linear
approximate model is found [6], [7]:

Ξ(s)

Fexc(s) + Flg(s)
=

2.259× 10−6

0.6324s2 + 0.1733s + 1
(3)

It is usual [2] to define an impedance Zi(ω) given by

1

Zi(s)
=

Ξ̇(s)

Fexc(s) + Flg(s)
⇔ Zi(s) =

S + Rs + ms2

s
(4)

Comparing (3) with (4) it is seen that m = 2.7995 × 105,
R = 7.6715× 104 and S = 4.4267× 105.

D. Neural network models of the AWS

Artificial NNs appeared as an attempt to find mathematical
models of how the human nervous system works. They
were found to be too simple for that, but they proved able
to model nonlinear plants, static or dynamic. Algorithms
were developed to adjust (or train) the parameters of a NN
according to a given collection of input-output data. Thus a
black-box model is found. The basics of NNs fall outside the
scope of this paper; see for instance [8] and other references
below.

Among possible architectures for dynamic NNs [8], [9],
it has been found [10] that the best for the AWS is the one
known as locally recurrent network (LRN) models, using
neurons arranged in two layers (the hidden layer and the
output layer). NN inputs are fed to the hidden layer; this
layer’s outputs are fed to the output layer, and are also
delayed and fed back as NN inputs (known as context units).
The output layer’s outputs are the NN’s outputs. Fig. 2 shows
a LRN; x is the NN’s input (here a 2-element vector), ŷ is the
NN’s output (here as a 1-element vector), Nh is the number
of neurons in the hidden layer, and c denotes the context
units. LRNs with only two layers, using activation functions
f(ζ) = tanh(ζ) in the hidden layer and f(ζ) = ζ in the
output layer are called Elman NNs [11]. For AWS LRN
models the activation function f(ζ) = logsig(ζ) = 1

1+e−ζ

was also used.

Fig. 2. Scheme of an Elman dynamic neural network



TABLE I
CHARACTERISTICS OF SEVERAL IRREGULAR WAVES ACCORDING TO ONDATLAS

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Whole year
Hs / m 3.2 3.0 2.6 2.5 1.8 1.7 1.5 1.6 1.9 2.3 2.8 3.1 2.3

Te,min / s 5.8 5.8 5.2 5.5 5.0 4.7 4.6 5.0 5.2 5.3 5.5 5.3 4.6
Te,max / s 16.1 14.5 13.7 14.8 12.2 9.7 11.1 10.5 12.0 12.6 13.3 14.2 16.1

The backpropagation algorithm, together with
Levenberg-Marquardt optimisation [12], was used as
the NN training algorithm. Its performance depends heavily
on the training data. The data should reflect all possible
working conditions of the system. Too few data may be less
than enough to train the NN properly. Too much data may
overtrain it, so that it will just reproduce the training set and
be unable to give meaningful outputs for new situations. It
may also exhaust available memory, and cause numerical
problems.

Direct and inverse NN models of the AWS were built using
Matlab’s Neural Network Toolbox. In such cases it may be
useful to reuse input structures from existing linear models
[8]. So the wave excitation force fexc and the force exerted
by the ELG flg were selected as inputs, and the floater’s
vertical velocity ξ̇ as output. For the AWS inverse model, the
inputs were fexc and ξ̇, and the output flg . Strictly speaking,
the inverse model obtained is a partial inverse model, because
fexc is always considered an input (because it is not created
by the AWS; it is better viewed as a perturbation).

A 600 s wave corresponding to the parameters of the
whole year was fed to the AWS TDM; the values of fexc,
flg and ξ̇ obtained were used to train the NNs (see details
in [10]). After some trial and error (sometimes necessary
in similar cases), the NNs with the characteristics given in
Table II were chosen. Direct models are denoted with a D
and inverse models with a I. Models D1 and I1 have a good
performance all over the year; models D2 and I2 (the latter
equal to I1) achieve better results during winter; models D3
and I3 achieve better results during summer.

III. CONTROL STRATEGIES

A. The original AWS controller

If the floater is left heaving freely, the ELG still exerts a
residual force, from which some electricity is produced. This
situation without any control is clearly undesirable. Thus a
controller was provided for the AWS prototype, exerting a
control force fu given by

|fu| =
∣

∣

∣
ξ̇
∣

∣

∣
kp

∣

∣

∣
ξ̇ − ξ̇stp1

∣

∣

∣
(5)
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1 −
(

ξ
3.5

)2

if |ξ| < 3.5 m

0 if |ξ| ≥ 3.5 m
(6)

In (5), ξ̇stp1 is a reference value for ξ̇, and kp

is the gain of a proportional controller, given by
kp = 5 × 106. Constant 3.5 m shows up in (6) because
it is the position of the floater’s end-stops. Constant 10 s
shows up because it is a reasonable value for the period of
an incoming wave.

B. Reactive control

It is possible to show [2] that a WEC with a dynamic be-
haviour described exactly by a second-order transfer function
without zeros will maximise energy absorption if

Fu(ω)

Ξ̇(ω)
= −Z∗

i (ω) (7)

where ∗ denotes the complex conjugate. This is called reac-
tive control and was implemented with the AWS TDM re-
placing the noncausal transfer function −Z∗

i (s) with −Z∗

i (s)
s+1 ,

the extra pole placed at −1 ensuring causality. Several
locations have been tested for the pole, and the one leading to
a larger absorption of wave energy was kept. An alternative
procedure would have been to identify from the frequency
response of −Z∗

i a causal, stable, approximate transfer
function with a similar response in the frequency range of
interest; this approach was pursued, but led to no acceptable
results [7], [13].

C. Phase and amplitude control

It is also possible to show that when (7) is satisfied ξ̇ is in
phase with fexc. An optimum value for the proportionality
constant can also be found. The enforcement of these two
conditions by a suitable controller is called phase and am-
plitude control. For the AWS TDM a proportional controller
was used, obtained maximising the absorbed wave energy
with MatLab function fminsearch (simplex direct search
method), the optimum being 5.1348 × 104. Integral and
derivative terms (forming a PID controller) did not improve
results. Internal model control was also used, as seen below
in subsection III-D. Since the AWS is nonlinear and (3)
is just an approximation, phase and amplitude control is
not necessarily optimum [7], [13]. Indeed simulations have
shown that modifying the proportionality constant leads to
a higher energy production. The resulting set-point is given
by

ξ̇stp2 =
2.2

max |fexc|
fexc (8)

Constant 2.2 appears because the nominal value for the
floater’s vertical velocity that the AWS should work with
is 2.2 m/s [14].

D. Internal Model Control

The internal model control (IMC) methodology [15] men-
tioned above makes use of the control scheme of Fig. 3.
In that control loop, G is the plant to control, G′ is a
model of G, G∗ is an inverse of G′ (or at least a plant
as close as possible to the inverse of G′), and F is some
judiciously chosen filter. If G′ were exact, G∗ were the
exact inverse of G′ (and hence also of G), and F were



TABLE II
LINEAR AND NEURAL NETWORK MODELS OF THE AWS

(3) D1 I1 D2 I2 D3 I3
Inputs fexc + flg fexc , flg fexc, ξ̇ fexc, flg fexc , ξ̇ fexc, flg fexc , ξ̇

Outputs ξ̇ ξ̇ flg ξ̇ flg ξ̇ flg

Type Linear, Elman NN, Elman NN, Elman NN, Elman NN, LRN, LRN,
direct direct inverse direct inverse direct inverse

Hidden layer — 8 neurons 10 neurons 10 neurons 10 neurons 20 neurons 10 neurons
Activation — tanh tanh tanh tanh logsig tanh
functions — linear linear linear linear logsig logsig
Training — 7 epochs 5 epochs 3 epochs 5 epochs 8 epochs 4 epochs

unity, control would be perfect. Since no models are perfect,
the error will not be exactly the disturbance. That is also
why F exists and is usually a low-pass filter: to reduce the
influence of high-frequency modelling errors. It also helps
ensuring that product FG∗ is realisable. The AWS TDM
was controlled with IMC using reference (8) and employing
two types of models: linear models and NN models. The NN
models employed were D1 and I1 [10], [16]. When linear
models were used [17], G′ was (3) multiplied by s (this
additional zero at the origin serving to have the floater’s
vertical velocity—and not its position—as the output), and
G∗ = 1

G′
. Since G∗ is not causal, the filter F had to

have more poles than zeros. It was found by trial and error
that a second-order filter without zeros was the best option.
The position of the poles was adjusted so as to maximise
the absorbed wave energy for the simulation that uses an
irregular wave with parameters corresponding to the month
of March (deemed to be a significant month). The values
found were

F =
600

(s + 23)(s + 20)
(9)

This is reasonable since it corresponds to a low-pass filter
that preserves the frequencies where waves are expected to
appear, while cutting off higher ones. Because of this, the
product FG∗ has an integral action. Since the signal it acts
upon (labelled e in Fig. 3) has a residual non-null average,
this lead to an ever-increasing (or ever-decreasing) control
action, something that was not intended. To prevent this,
the control action had to be corrected, by subtracting its
average, computed from the beginning of the simulation and
actualised on-line.

E. Switching control

During summer, when waves have less energy, IMC with
NN models D1 and I1 performs poorly when compared with
winter. This can be improved switching control between
different controllers [18] according to whether waves are
more or less energetic. For that purpose two IMC controllers
were implemented, one with models D2 and I2 and one
with models D3 and I3 [16]. NN models are expected to
cope with nonlinearities, but it is not surprising that different
models should perform better for rather different inputs. The
use of three different controllers was attempted, but was not
profitable, as this resulted in no significant improvement in
performance.

To know which controller is to be used in each instant,
the power density spectrum of the wave, calculated from the

Fig. 3. Block diagram for Internal Model Control
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Fig. 4. Example of months detected

previous 100 s of simulation, is obtained and compared to
those typical of each month. This is done every 10 s, so that
no controller ever works for less time; this option was taken
lest switching more often should lead to instability problems,
and also because the computation of the spectrum takes some
time and it would not do to perform it every 0.02 s. (During
the first 10 s, January is assumed as output by default.) Since
every wave, whatever the month, has more calm and more
agitated periods, the month identified will often be incorrect;
but this poses no problem, since all that is intended is to
distinguish between summer and winter; that sometimes,
when the wave is unusually calm or unusually agitated, a
different controller is used, is not cause of concern, since this
may even help improve the performance. Fig. 4 shows the
month detected when a wave typical for January is employed.



The month identified is often correct, but clearly not always;
yet the summer controller is only used during a 20 s period
during which, as the evolution of fexc shows, the wave
amplitude is small and the period high.

F. Feedback linearisation

Feedback linearisation is a control strategy which aims
to provide a control action judiciously chosen to cancel
the nonlinear dynamics of the plant, so that the closed-
loop dynamics will be (as much as possible) linear [19].
We assume that the ELG and the water dampers, which
are to generate fu, can respond immediately and without
restrictions. This is really not the case (both devices saturate
and have internal dynamics), but is an assumption good
enough for our purposes. Hence

−fu = mξ̈ − fpi + fhs +

+frad − fexc + fn + fv + fm + wf (10)

Let us provide a control action given by

fu = fpi − fhs − frad − fn − fv − fm −

−wf − mΞ̈ + Ξ̇
max |fexc|

2.2
(11)

This is possible because there are explicit (nonlinear) ex-
pressions for all the forces involved in the right-hand side of
(11). We will end up with a dynamic behaviour equal to (8)
[20], [7].

G. Latching control

To have the floater’s velocity in phase with the wave
excitation force, latching control latches the floater when its
velocity vanishes, and then releases it when it is predicted
that its maximum (or minimum) velocity will coincide (in
time) with the maximum (or minimum) of the wave excita-
tion force. This is a highly nonlinear control strategy, that
does not employ an amplitude setpoint for velocity. An ideal
depiction of latching control is shown in Fig. 5. The floater
of the AWS can be latched using both the ELG and the
water dampers. The algorithm implemented was as follows
[7]. When the floater is latched, the duration of the last
unlatched period is obtained. The next unlatched period is
assumed to be going to last the same as the previous one.
The floater’s velocity is assumed to have its maximum (or
minimum) precisely at the centre of that time interval. So
the latching time is reckoned for that velocity maximum (or
minimum) to coincide in time with the next maximum (or
minimum) of the wave excitation force. The force required
to latch the floater depends on the amplitude and period of
the incoming wave, larger waves requiring a larger force
and smaller waves requiring a smaller force. The forces for
each wave amplitude and period are those necessary to latch
effectively the floater when the incident wave is regular and
has the required amplitude and period; suitable values were
obtained beforehand with the AWS TDM for some regular
waves, and then interpolated and extrapolated as needed.

time

velocity

excitation
force

Fig. 5. Ideal evolution of the excitation force and of the floater’s velocity
with latching control
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IV. RESULTS AND COMMENTS
Power extraction values for simulation results of all the

control strategies above are given in Table III and represented
in Fig. 6. Increases are reckoned against the performance of
the original controller. These results call for the following
comments.

Control strategies are given in Table III by increasing order
of performance. The most striking result is that the best
performing one leads to an energy production over three
times larger than that of the worst performing one. This
shows how important the optimisation of a control algorithm
is for a WEC.

NN models are stable, and so are each the IMC control
loops considered separately; switching controllers, however,
might lead to abrupt changes in the control action, possibly
leading to instability. This, however, is not the case; Fig. 7
(taken from a simulation with a wave typical for April) shows



TABLE III
POWER IN kW OBTAINED UNDER SEVERAL IRREGULAR WAVES (FIGURATIVE DATA)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Whole year
Original controller 44.9 35.6 22.7 21.0 6.5 4.6 3.2 3.9 7.8 14.9 27.9 38.8 19.2
phase & ampl. control with P controller 83.5 67.9 45.4 40.8 10.3 6.6 4.5 5.2 12.6 27.8 56.3 73.4 36.2
% increase 86 91 100 95 59 43 42 34 62 86 102 89 87
Reactive control 79.1 65.5 50.1 45.3 18.9 14.2 10.8 12.2 21.8 35.5 55.4 73.5 40.2
% increase 76 84 120 116 193 207 238 210 181 138 99 90 108
IMC with linear model 87.5 68.1 50.6 48.3 18.1 12.5 9.6 10.2 21.0 33.5 57.4 78.3 41.3
% increase 95 91 122 131 180 169 202 160 169 125 106 102 114
IMC with NN models D1 and I1 115.7 92.6 63.0 55.4 6.9 4.7 3.2 3.9 8.7 42.5 76.2 103.1 47.8
% increase 158 160 177 165 6 0 0 0 12 185 173 166 148
IMC switching between NN models 111.7 94.8 60.4 50.2 17.7 12.8 9.4 10.5 17.9 37.6 80.0 100.6 50.1
% increase 149 166 166 139 174 177 194 169 130 153 187 159 160
latching control 88.1 91.9 67.5 64.7 24.4 15.1 11.3 15.8 30.5 49.7 77.7 88.5 52.1
% increase 96 158 197 209 277 227 254 302 292 234 179 128 170
feedback linearisation 115.1 96.2 73.6 68.9 27.7 20.4 15.0 18.3 32.6 53.2 81.8 106.4 59.1
% increase 156 170 224 229 328 340 371 366 318 258 193 175 206

two transitions, wherefrom no control actions arise harsher
than those taking place without switching, and this is always
the case. Thus it was not necessary to increase the number of
controllers, to employ a filter (smoothing down the transition
of control actions during a suitable period of time), or take
any other measure (see for instance [21]). This is also likely
because of the significant inertia of the moving parts of the
AWS, and to its low-pass filter behaviour, as can be seen
from linear model (3).

Better models mean better performing control strategies.
Control strategies using NN models perform better than those
using linear ones, and the best performing strategy (feedback
linearisation) uses knowledge of the nonlinear behaviour of
the plant.

All controllers based upon phase and amplitude control
require knowing in advance the excitation force, and so
do strategies for latching, switching and linearisation as
well. In simulation this is simple; in practice, this must
be predicted from measurements performed by a buoy (or
buoys) judiciously placed near the AWS. Poor predictions
will cause worst control performances.

All control strategies are liable to have poorer perfor-
mances when implemented in a prototype (rather than simu-
lated as above); in particular, feedback linearisation is most
prone to deteriorate its achievements, because, in practice,
nonlinear forces will never be so accurately cancelled as
in simulations (from that point of view, controllers based
upon NN models will be in advantage, since NN training
is to be based upon experimental data). This means that the
final choice of the control strategy always ought to take into
account experimental results of controller performance.

These strategies may also be employed in other similar
WECs.
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