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ABSTRACT: In this study we compared 3.7 million rawinsonde observations from 232 stations over Europe and North

America with proximal vertical profiles from ERA5 and MERRA-2 to examine how well reanalysis depicts observed

convective parameters. Larger differences between soundings and reanalysis are found for thermodynamic theoretical

parcel parameters, low-level lapse rates, and low-level wind shear. In contrast, reanalysis best represents temperature and

moisture variables, midtropospheric lapse rates, andmean wind. Both reanalyses underestimate CAPE, low-level moisture,

and wind shear, particularly when considering extreme values. Overestimation is observed for low-level lapse rates, mid-

troposphericmoisture, and the level of free convection.Mixed-layer parcels have overall better accuracy when compared to

most-unstable parcels, especially considering convective inhibition and lifted condensation level. Mean absolute error for

both reanalyses has been steadily decreasing over the last 39 years for almost every analyzed variable. Compared to

MERRA-2, ERA5 has higher correlations and lower mean absolute errors. MERRA-2 is typically drier and less unstable

over central Europe and the Balkans, with the opposite pattern over western Russia. Both reanalyses underestimate CAPE

andCINover theGreat Plains. Reanalyses aremore reliable for lower elevation stations and struggle along boundaries such

as coastal zones and mountains. Based on the results from this and prior studies we suggest that ERA5 is likely one of the

most reliable available reanalyses for exploration of convective environments, mainly due to its improved resolution. For

future studies we also recommend that computation of convective variables should use model levels that provide more

accurate sampling of the boundary layer conditions compared to less numerous pressure levels.

KEYWORDS: Severe storms; Thunderstorms; Climatology; Soundings; Forecast verification/skill; Reanalysis data

1. Introduction

Understanding the spatiotemporal climatology of severe con-

vective storm environments has primarily been achieved through

atmospheric reanalyses (Brooks et al. 2003, 2007; Gensini and

Ashley 2011; Grams et al. 2012; Tippett et al. 2012;Allen et al. 2015;

Rädler et al. 2018; Chen et al. 2020; Taszarek et al. 2020). Reanalysis

products provide a four-dimensional (x, y, z, t) best guess of the

atmospheric state, incorporating rawinsonde measurements,

satellite retrievals, surface observations, and other sources as-

similated with short-term forecasts from a frozen state model.

Data from atmospheric reanalyses have a finer horizontal grid

spacing and temporal frequency when compared to sparsely

distributed rawinsonde observations (Potvin et al. 2010) and

thus offer significant advantages for understanding convective

profiles and the past atmospheric state. This is especially im-

portant for parameters that are sensitive to the small spatial

and temporal variations in atmospheric profile, such as storm-

relative helicity (SRH) or CAPE (Markowski et al. 1998;

Thompson et al. 2003). The gridded nature of reanalysis data

also makes for an excellent source of initial and lateral

boundary condition information for use in regional weather

and climate modeling (Trapp et al. 2007, 2011; Robinson et al.

2013; Gensini and Mote 2014). However, given the limitations

of the advanced assimilation andmodeling process, it is unclear

whether all reanalyses are capable of capturing reliable ther-

modynamic and kinematic profiles critical to understanding

local convective environments. Thus, evaluation of reanalysis

products is needed to provide researchers guidance as to the

strengths and limitations of these datasets.

Although reanalyses have been commonly used in a large

number of studies, only a limited number of elaborationsDenotes content that is immediately available upon publica-

tion as open access.
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evaluated the accuracy of reanalysis for studying convective

environments (Lee 2002; Allen and Karoly 2014; Gensini et al.

2014; Taszarek et al. 2018; King and Kennedy 2019; Li et al.

2020). Lee (2002) showed that NCEP–NCAR proximity pro-

files even at coarse resolutions provide a reasonable approxi-

mation of the convective environment when compared with

collocated soundings. Kinematic variables were found to be

best represented by reanalysis whereas thermodynamic pa-

rameters contained large differences that resulted from errors

in low-level moisture fields. Thompson et al. (2003) compared

149 observed soundings with collocated Rapid Update Cycle 2

(RUC2; Benjamin et al. 2004) profiles in regional supercell

environments, which revealed the largest errors in temperature

and mixing ratios near the surface. Allen and Karoly (2014)

examined ECMWF ERA-Interim reanalysis and compared

proximity profiles with 3700 soundings over Australia. They

found similar weaknesses in low-level moisture fields to Lee

(2002) and noted issues in low-level wind profiles. At higher

resolutions, the North American Regional Reanalysis (NARR)

had higher correlations but similar limitations, along with a sensi-

tivity of profiles to shallow convective schemes (Gensini et al. 2014).

Taszarek et al. (2018) examined over 1 million soundings across

Europe in comparison toERA-Interim and found that vertical wind

shear was consistently underestimated, especially in the 0–1-km

layer. In addition, they also found that biases in CAPE demonstrate

regional patterns with underestimation over eastern Europe and

overestimation across Mediterranean area. Intercomparison by

King and Kennedy (2019) evaluated profiles from several rean-

alyses against RUC2 proximity soundings considering only su-

percell thunderstorm events. Each of the evaluated reanalyses

showed strengths and weaknesses, but broadly, they were found

to adequately replicate the background convective environment

for severe weather climatological research.

Although convective parameters from the recently released

ERA5 have not been comprehensively evaluated yet, a few

studies have already confirmed this reanalysis seems to perform

well. Tarek et al. (2020) assessed the use of ERA5 as a potential

reference dataset for hydrological modeling using two hydro-

logical models over 3138 North American catchments. They

concluded that ERA5 temperature and precipitation biases are

reduced consistently, and provide the accuracy needed for hy-

drologicmodeling, as compared toERA-Interim. There is also a

significant improvement fromERA-Interim toERA5 in surface

fields as compared to remotely sensed and in situ observations

(Balsamo et al. 2018). Lei et al. (2020) concluded that ERA5

has a considerable improvement compared to ERA-Interim in

sampling cloud cover over the Tibetan Plateau and eastern

China. The performance of ERA5 and MERRA-2 in modeling

wind generation in five different countries has also been tested

by Olauson (2018). Comparison to measured wind speed values

suggests that ERA5 performs better than MERRA-2 with

higher correlations, 20% lower mean absolute error, and a

better representation of diurnal cycle. Li et al. (2020) compared

climatological aspects of a few sounding-derived variables with

Community Atmosphere Model version 6 (CAM6) and ERA5

over a period of 1980–2014 and concluded that both CAM6 and

ERA5 successfully reproduced environmental climatology, but

with strong spatiotemporal correlations, and overall lower biases

in ERA5. Coffer et al. (2020) also concluded that ERA5

was able to represent tornado environments across the United

States with a similar skill to the RUC2. A detailed evaluation of

ERA5 accuracy has been performed by Hersbach et al. (2020).

Comparison of ERA5 with gauge measurements, SYNOP,

METAR, radar, upper-air, and buoy data yielded improved

correlation to tropospheric temperature, wind, humidity, ocean

wave height, and precipitation versus prior ECMWF reanalyses.

These results suggest that the enhanced temporal and spatial

resolution of ERA5 allows for an excellent representation of

weather systems; however, these have yet to be explored for

convective environments.

To assess which parameters should be evaluated, earlier

studies using representative upper-air soundings and prior cli-

matologies provide a range of candidates. Past research has

examined environmental conditions favorable for severe con-

vective storms by mining historical observed upper-air sound-

ings representative of the near-storm and/or preconvective

environment. Rasmussen and Blanchard (1998) developed a

baseline climatology of environmental parameters favorable

for the development of deep moist convection. At climatolog-

ical aggregations, CAPE and vertical wind shear were found to

be prudent discriminators between significant severe and severe

thunderstorms, a result later confirmed by Brooks et al. (2003),

Thompson et al. (2003), Craven and Brooks (2004), Thompson

et al. (2007), and Trapp et al. (2007) for the United States; by

Allen et al. (2011) for Australia; and by Pú�cik et al. (2015) and

Taszarek et al. (2017, 2020) for Europe. Research on thunder-

storms producing tornadoes yielded the additional importance

of lifting condensation level (LCL) and low-level wind shear

(e.g., Brooks et al. 2003;Rasmussen 2003; Thompson et al. 2003;

Craven and Brooks 2004; Groenemeijer and van Delden 2007;

Thompson et al. 2007, 2012; Coffer et al. 2019, 2020; Coniglio

and Parker 2020). These results suggest that in the context of

tornadic storms, performance for CAPE, LCL, and low-level

wind shear is important, while deep layer shear is also relevant

for storm mode and severe hazards more generally.

Convective inhibition (CIN) has also been found useful for

describing the potential for convective initiation with low

(high) values being associated with higher (lower) chances for

severe thunderstorm development (Rasmussen and Blanchard

1998; Bunkers et al. 2010;Westermayer et al. 2017; Hoogewind

et al. 2017; Taszarek et al. 2020). Isobaric level data can also

provide effective discriminants; for example, Grams et al.

(2012) found that wind speeds at 500 and 850 hPa, along with

500-hPa geopotential or surface to 850-hPa dewpoint, are

useful provided the stormmode is known. Other authors found

that the combination of individual convective parameters into

composite indices, such as the significant tornado parameter

(STP; Thompson et al. 2003, 2007; Coffer et al. 2019, 2020),

significant hail parameter (SHIP; NOAA Storm Prediction

Center; https://www.spc.noaa.gov/), supercell composite param-

eter (SCP; Thompson et al. 2003, 2007; Gropp and Davenport

2018), energy helicity index (EHI; Hart and Korotky 1991;

Davies 1993), or the product of CAPE and 0–6-km wind shear

(Brooks et al. 2003; Allen et al. 2011; Taszarek et al. 2017, 2020;

Rodríguez and Bech 2021) can be useful in recognizing and

forecasting specific types of convective storms. The combinative
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effect of these parameters can have both desirable and undesir-

able properties (Doswell and Schultz 2006); given that their co-

variate nature multiplicatively magnifies the errors of individual

components, these also warrant investigation.

The main motivation of this study is to evaluate convective

parameters derived from hybrid-sigma model levels from

ERA5 and MERRA-2 with a large number of high-quality

sounding measurements and examine how well reanalysis can

reconstruct convective climatologies. To better evaluate this

skill, we use hybrid-sigma terrain-following model levels for

computation of convective parameters instead of interpolated

pressure levels. From the initial database of 5.1 million

soundings derived from 232 European and North American

stations from years 1980–2018, we use 3.7 million cases that

meet strict quality-control criteria (Fig. 1; see appendix A).

The main focus is on parameters and ingredients (Johns and

Doswell 1992; Brooks et al. 2003; Doswell and Schultz 2006)

supporting development of severe convective storms. For each

sounding parameter we look at statistics that describe biases,

variations in performance as a function of annual cycle, and

changes in quality over the length of the dataset. We also

present spatial climatologies of selected convective ingredients

to assess how they vary between the datasets. Results pre-

sented in this study may increase awareness of limitations as-

sociated with applying reanalysis datasets for modeling, case

studies, and climate research. In addition, the ERA5 dataset

evaluated in this study was previously used in Taszarek et al.

(2020, 2021) for analyzing climatological aspects of severe

convective storms and their trends across Europe and the

United States.

2. Dataset and methodology

a. Sounding database and quality-control assumptions

Vertical atmospheric profiles were derived from the University

of Wyoming upper-air observations database (http://weather.

uwyo.edu/upperair/). For years 1980–2018 all available mea-

surements were downloaded from 232 stations from Europe

and North America that accounted for 5.1 million soundings.

However, to ensure that biases obtained by comparing sound-

ing and reanalysis data are not originating from poor-quality

sounding data (appendix B), strict quality-control assumptions

were applied. Each measurement was evaluated by 48 different

FIG. 1. (a) Sounding stations used in the study and (b) number of available sounding measurements over the years

(including those that passed the quality-control phase) and a mean number of levels in 0–2- and 4–6-km layers.
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functions designed to detect various data issues within the profile.

Focusing on the most important of these filters, as a first step we

excluded all cases that had a first measurement higher than 10m

or a highest measurement lower than 6000m (justified by a pos-

sibility of computation 0–6-km wind shear and mean wind) and

fewer than 10 levels over the depth of the entire sounding. Up to

6000m all levels needed to have complete measurements of u

and y wind, temperature, moisture, height, and pressure. In

higher levels, only missing moisture measurements were deemed

acceptable (a common problem for soundings in the 1980s and

1990s) as it was nonessential for parcel parameter computations.

If any other variable (height, pressure, temperature,u and y wind)

was missing, then that level was removed from the sounding. If

a profile had CAPE exceeding 0 J kg21, this required that a

sounding have a definable equilibrium level (EL); that is, the

CAPE calculation was completed.

Other evaluations were aimed at detecting unrealistic changes

in temperature, moisture, and the wind profile (appendix B).

Differences between sounding levels with temperature gradients

exceeding 12Kkm21 between 0 and 2000m and 10Kkm21

above 2000m, were removed from the sounding to correct for

potentially erroneous levels within a sounding. Levels consisting

of saturated air (dewpoint depressions lower than 18C)while also

having dry-adiabatic gradients (at least three consecutive mea-

surements) were also removed (e.g., appendix B; Stuttgart,

sounding E). Levels in the lowest 500m with temperature gra-

dients exceeding 12Kkm21 (e.g., appendix B; Erzurum, sound-

ing B) were corrected to 12Kkm21 by adjusting temperature

values (as this issue may significantly affect most-unstable parcel

calculations). Profiles with unrealistic changes in boundary layer

moisture profile, such as spikes in dewpoints (e.g., appendix B;

Tucson, sounding C) or reaching unreliable surface ue values

relative to local climatology (e.g., appendix B; Brindisi and

Munich, soundings D and G), were excluded as well. Soundings

with amean dewpoint depression (considering the entire profile)

lower than 28C were also removed (e.g., appendix B; Edwards,

sounding I). For selected temperature, moisture, and wind pa-

rameters, we removed all soundings that had values higher than

the 0.999 99th or lower than the 0.000 01th percentile of the

dataset distribution. Although we are aware that this technique

may remove some portion of tail distribution of good-quality

profiles, a random manual check of several dozen examples in-

dicated that the majority of these profiles had errors that were

not detected in the preliminary quality-control phase. As it is not

possible to manually investigate each profile in the dataset, we

are aware that no perfect computational solution will provide a

database free from erroneous soundings. However, the approach

used here ensures that the data are of high quality, and the small

fraction of poor-quality soundings should have a negligible in-

fluence on the results.

In the initial database, a number of soundings had a CAPE

exceeding 10 000 J kg21, mostly due to major errors in the

profile such as spikes in low-level temperature and/or moisture

(e.g., appendix B; Edwards, sounding I). After the quality-

control phase, the largest CAPE sounding for the United

States was 9413 J kg21 at 0000UTC 3 July 1999 in North Platte,

whereas forEurope it was 6216 J kg21 at 0000UTC13 September

2008 in Trapani (Fig. 2). Both of these soundings do not feature

any major errors, which partially confirm our filters to be suc-

cessful in removing poor-quality profiles. The ERA5-equivalent

grid for theNorth Platte sounding indicatedCAPEof 5639 J kg21

and for MERRA-2 5226 J kg21, while for Trapani CAPE was

4698 J kg21 for ERA5 and 3610 J kg21 for MERRA-2. This

comparison further highlights the poor ability of reanalyses to

represent the localized rare and extreme convective environ-

ments, especially those characterized by high CAPE and/or ver-

tical wind shear.

In total, 3.7 million cases, including 1.6 million for the United

States and 2.1 million for Europe, met quality-control assump-

tions. Measurements from 0000 and 1200 UTC were the most

frequent (92%of all profiles); 0600 and 1800UTChad a share of

7.5%. Soundings performed at 0300, 0900, 1500, and 2100 UTC

were sporadic and accounted only for 0.5% of the overall

sample (Table 1).

b. ERA5 and MERRA-2 reanalyses

ERA5 is the fifth-generation ECMWF global atmospheric

reanalysis (Hersbach et al. 2020) openly available through the

Copernicus Climate Change Service (2017). It has a 0.258 3

0.258 horizontal grid spacing with hourly temporal steps and

137 terrain-following hybrid model vertical levels, contrasting

many prior reanalyses with lower spatial, temporal, and verti-

cal resolution. One of the significant advantages of ERA5 is the

28 levels through the 0–2-km layer at hourly steps, allowing the

possibility to more accurately sample boundary layer condi-

tions and study diurnal cycles of convective environments in

ways not possible before (e.g., compared to 6-h steps in ERA-

Interim, NCEP–NCAR, and 20CR, and 3-h steps in NARR

and MERRA-2; Mesinger et al. 2006; Saha et al. 2010; Dee

et al. 2011; Compo et al. 2011; Gelaro et al. 2017). The ERA5

analysis is computed using 4D-VAR data assimilation in

CY41R2 of the Integrated Forecast System. Further details on

the parameterizations are available in the Climate Data Store

(https://cds.climate.copernicus.eu/).

MERRA-2 is the global reanalysis developed by NASA’s

Global Modeling and Assimilation Office based on a period of

regular conventional and satellite observations era starting in

1980. This reanalysis has a 0.58 3 0.6258 horizontal grid spacing

with 3-h steps and 72 terrain-following hybrid model levels

including 14 layers in the 0–2-km layer. The analysis is com-

puted using a 3D-VAR algorithm based on the GSI under 6-h

update cycle and first guess at the appropriate time (FGAT)

procedure. Further details on this reanalysis are available in

Gelaro et al. (2017), Randles et al. (2017), and Bosilovich

et al. (2017).

For each sounding used in this study, we collocated corre-

sponding ERA5 and MERRA-2 atmospheric profiles by tem-

poral and spatial proximity (the same time step in the closest

reanalysis grid to the sounding site). To ensure soundings and

reanalysis profiles were comparable, 10m was used as the first

level for each dataset.

c. Parameters evaluated

The choice of parameters evaluated in this study was based on

indices commonly applied in studies focusing on severe thun-

derstorm environments and their corresponding climatologies
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over both Europe and the United States (Rasmussen and

Blanchard 1998; Thompson et al. 2003; Craven and Brooks

2004; Groenemeijer and van Delden 2007; Kaltenböck et al.

2009; Gensini and Ashley 2011; Thompson et al. 2012, 2013;

Allen et al. 2015; Tang et al. 2019; Liu et al. 2020; Taszarek

et al. 2020, 2021). For each sounding and reanalysis-

collocated profile, we used temperature, humidity, pressure,

height, and u and y wind. Parcel parameter calculations were

performed for two versions. The first used ameanmixed-layer

parcel from the 0–500-m layer (ML) to account for shallower

moisture layers in Europe (Taszarek et al. 2020,2021), while

the second was a most-unstable parcel with the highest ue over

the 0–3000-m layer (MU). For both approaches, a virtual

temperature correction (Doswell and Rasmussen 1994) was

applied. For computations of 0–1- and 0–3-km SRH we used

the right-moving storm motion following Bunkers et al.

(2000). Wind shear parameters were computed by taking into

account a difference between wind vectors at 10m and the

wind profile interpolated to the desired height (1, 3, or 6 km).

To compute SCP and STP, we used the most recent

formulas from Gropp and Davenport (2018) and Coffer et al.

(2019). For computing the significant hail parameter (SHIP),

FIG. 2. Soundings with the highest measured (left) most-unstable and (right) mixed-layer CAPE for (top) the United States and

(bottom) Europe that passed a quality-control phase in our study (1980–2018). Most-unstable parcel curves are indicated by orange lines,

temperatures by red lines, and dewpoints by green lines. Generated with thundeR R language package.
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the formula used was as described by the NOAA Storm

Prediction Center (https://www.spc.noaa.gov), also available

in appendix A of Taszarek et al. (2020). In addition to severe

weather parameters, we also evaluated temperature, mois-

ture, and wind speed at 10m and at standard pressure levels

throughout the profile (500, 700, and 850hPa) as these are often

used in the operational forecasting and climatological studies

(Grams et al. 2012). It is also important to highlight that exactly

the same computational script was used to derive convective pa-

rameters from sounding, ERA5, and MERRA-2 vertical profiles

to ensure this did not cause differences in the calculated param-

eters. The aforementioned script has been under development

over the last 4 years and allows us to compute over 130 vari-

ables in less than 0.02 s per profile. This kind of efficiency is

crucial in processing large reanalysis datasets with a reason-

able amount of time [the same script was also applied in

ERA5 climatologies in Taszarek et al. (2020, 2021)]. The

authors plan to make this script publicly available in 2021 as

an R language CRAN library called ‘‘thundeR.’’

d. Limitations

The most significant limitation of the approach used herein

is that some of the soundings that passed quality-control

check may still contain issues with the vertical profile of

temperature, humidity, or wind. We also note that the quality

of sounding data has changed throughout time, which may

influence results; however, similar issues are likely to impact

the reanalysis. In such cases it is uncertain whether soundings

evaluate quality of the reanalysis or rather reanalysis is test-

ing the credibility of sounding measurements. To address this

potential limitation, we focus part of our analysis on showing

how the mean absolute error (MAE) and correlation coeffi-

cient have changed over the years. The increased vertical

resolution of soundings is also an important factor, with the

number of available sounding levels in the lower troposphere

and midtroposphere constantly increasing over time, with

major changes in 1996 for Europe and 2006 for the United

States (Fig. 1b).

Profiles may also have issues due to the grid size of the re-

analysis (0.258 3 0.258 in ERA5 and 0.58 3 0.6258 inMERRA-2),

which average the vertical profile of the atmosphere over a certain

area. This can produce differences as compared to sounding

profiles that are not a reflection of reanalysis performance but are

rather due to the grid size poorly representing regional processes.

Thismay be especially evident over areaswith complex orography

and strong horizontal gradients such as coastal zones, islands,

mountains, or valleys; thus, we also explore whether reanalysis

performance varies for stations located within these sharp

gradients.

Caveats regarding numerical formulation of reanalysis may

also influence the results. The horizontal grid spacing of ERA5

andMERRA-2 requires convective parameterization schemes

that may lead to errors in the vertical profile of temperature

and moisture, potentially creating biases in thermodynamic

parameters like CAPE or CIN. Similarly, low-level conditions

may be impacted by the presence of boundary layer parame-

terization schemes. The spatial location of profile extraction is

also of great importance (e.g., before or after a cold front) and

can lead to dramatic changes in sensible conditions over small

spatiotemporal scales. Differences in the reanalysis timing of

such boundaries may be responsible for large differences in

thermodynamic or kinematic variables when compared to ob-

servations. The temporal interval of the ERA5 and MERRA-2

as well as data assimilationwindowsmay lead to slower or faster

development of convection in the model and subsequent con-

tamination of the profile (Allen and Karoly 2014; King and

Kennedy 2019). Reanalysis parameterization schemes and data

assimilation issues have been discussed as likely candidates re-

sponsible for biases in the low-level thermodynamic fields (Gensini

et al. 2014; Allen and Karoly 2014; Tippett et al. 2014; Taszarek

et al. 2018; King and Kennedy 2019). Although it is beyond the

scope of this paper to diagnose the source of the errors, the

aforementioned issues provide a caveat on the presented results.

3. Results

a. Parcel parameters

Thermodynamic parcel-related parameters are better rep-

resented by ERA5, with higher correlations and lower MAE

compared to MERRA-2 (Fig. 3, Table 2). As CAPE is highly

spatially variable, this partly accounts for the discrepancy be-

tween soundings and reanalysis (Figs. 3 and 4). However, this

discrepancy is generally lower than in previous studies (Allen

and Karoly 2014; Gensini et al. 2014; Taszarek et al. 2018).

Among parcel types, ML CAPE has slightly better perfor-

mance metrics compared toMUCAPE (Table 2). MAE is lower

for ML CAPE (283 and 331 J kg21 for ERA5 and MERRA-2),

compared to the MU version (378 and 414 J kg21), which can be

explained by climatologically higher values of the latter. Both

reanalyses tend to underestimate CAPEwith respect to observed

profiles as reflected by the negative mean error (ME) and dis-

tribution of percentiles, especially when considering extreme

values (Fig. 4).

Overall parcel parameters had some of the lower correla-

tions for all parameters, with ML parcels generally providing

higher correlations but little improvement to MAE. The lifted

index (LI) has a generally high correlation but, similar to

CAPE, both reanalyses underestimate parcel buoyancy with

TABLE 1. Number of soundings (after quality-control phase) used in the study.

Number of soundings for specific hour

Domain 0000 UTC 0300 UTC 0600 UTC 0900 UTC 1200 UTC 1500 UTC 1800 UTC 2100 UTC Total

North America 756 218 1278 9549 3156 791 577 5487 25 602 3928 1 596 795

Europe 989 331 617 142 332 1591 938 300 704 104 966 4114 2 181 955
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MAE of around 1.58C (Table 2). CIN correlations for ML

parcels are generally higher (0.82 for ERA5 and 0.77 for

MERRA-2) compared to MU (0.71 and 0.63), while the MAE

for both parcel types is around 30 J kg21. Better overall per-

formance of ML compared to MU parcels is also observed

within the lifted condensation level (LCL), level of free con-

vection (LFC), and equilibrium level (EL), where in all of them

ERA5 is superior to MERRA-2 in terms of correlations and

MAE (Fig. 3, Table 2). From all parameters in this group, LFC

and LCL for the MU parcel are characterized by the lowest

correlations. Although both reanalyses tend to overestimate

LFC height, differences are found for LCL, which is slightly

underestimated in ERA5 (ME is 224 and 230m for MU and

ML parcels) and overestimated in MERRA-2 (86 and 78m for

MU and ML). A similar pattern can also be seen in the dis-

tribution of percentiles (Fig. 4).

b. Moisture parameters

Atmospheric moisture is also better represented in the re-

analysis by ML compared to MU parcels, although for both

parcel types correlations are high. The ML mixing ratio

(MIXR) has a correlation of 0.97 and 0.96, respectively, for

ERA5 and MERRA-2, while for MU MIXR the correlations

are smaller (0.94 and 0.91; Table 2). QuantifyingMAE for MU

MIXR also shows larger errors as compared to ML MIXR

(0.74 and 0.94 g kg 21 for ERA5 andMERRA-2, respectively).

Both reanalyses perform equally for less extreme values of

ML MIXR, but ERA5 has better accuracy for larger values as

FIG. 3. Comparison of sounding observations with collocated ERA5 and MERRA-2 proximity profiles for (a) 0–1-km lapse rate,

(b) 500–700-hPa lapse rate. (c) mixed-layer mixing ratio, (d) mixed-layer CAPE, (e) mixed-layer lifted condensation level, and (f) mixed-

layer convective inhibition. The gray line denotes a one-to-one ratio. The red line denotes locally estimated scatterplot smoothing

(LOESS). Value in the top-left corner of each plot denotes Pearson correlation coefficient.
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indicated by the locally estimated scatterplot smoothing line [lo-

cally estimated scatterplot smoothing (LOESS)with a span of 0.75;

Wickham 2016] in Fig. 3c. Box-and-whisker plots show similar

distributions of 10th and 25th percentiles for reanalysis and ob-

servations, both for MU and ML MIXR (Fig. 4). Differences be-

tween analyzed datasets are seen for the high percentiles.

Precipitable water (PWATER) shows high correlations for

ERA5 (0.98) and MERRA-2 (0.97). However, ERA5 has a

smaller MAE of 1.4mm compared to 1.8mm in MERRA-2

(Table 2). Evaluating dewpoint at 10m and pressure levels

(850, 700, and 500 hPa), we note decreasing correlation and

increasingMAEwith height in both reanalyses.At 10-mdewpoint

correlations are 0.97 and 0.96 (ERA5 and MERRA-2), whereas

by 500hPa the correlations drop to 0.86 and 0.81. For 10-m

dewpoint, MAE is below 28C (for both reanalyses), whereas for

500hPa it increases to as much as 3.78C for ERA5 and 4.58C for

MERRA-2 (Table 2).

c. Temperature parameters

Overall, temperature-related parameters are better per-

formers thanmoisture andwind in the reanalyses (Figs. 3 and 5,

Table 2). Air temperatures at fixed levels (10m; 850, 700, and

500 hPa) are well represented by both reanalyses with slightly

better accuracy for ERA5 as evidenced by correlations (Table 2).

Contrary to dewpoints, MAE for temperature is the highest near

the surface (1.368C for ERA5 and 1.748C for MERRA-2) and

decreases with height to 0.478C for ERA5 and 0.618C for

MERRA-2 at 500hPa. ME is close to zero for temperature var-

iables. This suggests that one of the primary factors driving errors

in instability is low-levelmoisture, which has higher uncertainty in

reanalyses compared to temperatures.

In contrast with the increasing errors with height in mois-

ture, the low-level (0–1 km) lapse rate is characterized by the

smallest correlations (0.89 for ERA5 and 0.85 for MERRA-2)

and MAE of 1.4K km21 (ERA5) and 1.8K km21 (MERRA-

2). Correlations are consistent in height for lapse rates within

0–3 km, 3–6 km, and 500–700 hPa with 0.94 for ERA5 and 0.90

for MERRA-2. Mean errors are around zero while MAE

ranges from 0.22Kkm21 for the 3–6-km layer in ERA5 up to

0.61Kkm21 for the 0–3-km layer in MERRA-2 (Table 2). As

evidenced by LOESS in Fig. 3, both reanalyses have lower

accuracy in sampling temperature inversions (negative values).

FIG. 4. Box-and-whisker plots for soundings (blue), ERA5-collocated profiles (red), and MERRA-2-collocated profiles (turquoise) for

(a) most-unstable mixing ratio, (b) most-unstable CAPE, (c) most-unstable convective inhibition, (d) most-unstable lifted condensation

level, (e) most-unstable level of free convection, (f) most-unstable equilibrium level, (g) mixed-layer mixing ratio, (h) mixed-layer CAPE,

(i) mixed-layer convective inhibition, (j) mixed-layer lifted condensation level, (k) mixed-layer level of free convection, and (l) mixed-

layer equilibrium level. The median is represented as a horizontal line inside the box and the edges of the box represent the 25th and 75th

percentiles, whereas whiskers represent the 10th and 90th percentiles.
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Similar to other thermodynamic parameters MERRA-2 pro-

vides a greater spread of values for lapse rates compared to

ERA5 (Fig. 3). Relatively good agreement is observed on the

interquartile spread among all lapse rate variables (Fig. 5).

d. Wind parameters

Statistical analysis of wind parameters reveals that there is

greater sensitivity to how layers and quantities are defined,

with bulk measures being closest to those observed. The

smallest correlation is for effective shear (0.74 for ERA5 and

0.70 MERRA-2; Table 3), reflecting the dependence of this

parameter on the vertical structure of instability (Thompson

et al. 2007), which can vary considerably between reanalysis

and sounding, as also noted by King and Kennedy (2019).

Underestimation of CAPE is related to a lower EL height

and a shallower depth for the effective shear calculation

(Table 2), which tend to reduce values of this parameter in a

baroclinic environment with winds increasing with height.

Effective shear, as well as wind shear of 0–1, 0–3, and 0–6 km,

are underestimated by both reanalyses (Table 3, Figs. 5 and 6).

Effective shear has MAE of 2.93m s21 for ERA5 and 3.25m s21

for MERRA-2 while fixed layer wind shear parameters have

MAE of around 2ms21 for ERA5 and 2.5ms21 for MERRA-2.

However, correlation increases alongwith shear layer height with

0–1km having correlations of 0.81 and 0.76, and 0–6km having

correlations of 0.96 and 0.94 for ERA5 and MERRA-2, respec-

tively. As indicated in the scatterplots in Fig. 6, low-level wind

variables such as 0–1-km wind shear and 10-m wind exhibit

greater statistical spread of values. This result is broadly consis-

tent with other reanalyses that were compared with soundings

(Allen andKaroly 2014; Gensini et al. 2014; Taszarek et al. 2018).

ERA5 performance is once again superior to that of MERRA-2,

which tends to have a slightly bigger magnitude of wind shear

underestimation (Table 3, Figs. 5 and 6).

SRH is an important parameter for characterizing the en-

vironments associated with both supercells and tornadoes,

particularly for 0–1- and 0–3-km layers (Thompson et al. 2003,

2012; Anderson-Frey et al. 2016; Coffer et al. 2019, 2020;

Coniglio and Parker 2020). ERA5 tends to overestimate SRH

with ME of around 5m2 s22, whereas for MERRA-2 ME is

close to zero, while MAE for both reanalyses is around

30m2 s22 (Table 3, Fig. 5). Reanalysis performance for mean

wind speed over 0–1-, 1–3-, and 0–6-km layers is similar to the

results for wind shear, where a greater accuracy is observed for

the midtroposphere. However, contrary to underestimation of

0–1-km wind shear, both reanalyses overestimate 0–1-km mean

wind (ME of 0.35 and 0.89m s21 for ERA5 and MERRA-2).

High correlations are observed for 0–6-km mean wind (0.98 for

FIG. 5. As in Fig. 4. but for (a) effective shear, (b) 0–1-kmwind shear, (c) 0–3-km wind shear, (d) 0–6-km wind shear, (e) 0–1-km storm-

relative helicity, (f) 0–3-km storm-relative helicity, (g) 0–1-km lapse rate, (h) 0–3-km lapse rate, (i) 500–700-hPa lapse rate, (j) 0–1-km

mean wind speed, (k) 1–3-km mean wind speed, and (l) 0–6-km mean wind speed.
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ERA5 and 0.96 forMERRA-2) withMEof20.05 and 0.26m s21

for ERA5 and MERRA-2, respectively.

Analysis of wind speeds at fixed levels suggests that the

reanalyses handle wind fields typically well except for the near-

surface level (Table 3, Fig. 6). MAE for ERA5 over all layers is

in the range between 1.31 and 1.40m s21 and slightly higher for

MERRA-2 at 1.62–1.92m s21. Mean errors reflect small un-

derestimates for all wind speed variables (around 20.3m s21),

with the exception of 10-m wind of MERRA-2 where ME in-

dicates overestimation of 0.29m s21. Wind speed at 10m also

has the lowest correlation (0.71 for ERA5 and 0.67 for

MERRA-2), reflecting the limitations of boundary layer and

topographical representation in the reanalysis, also found in

prior studies (Thompson et al. 2003; Allen and Karoly 2014;

Gensini et al. 2014; Taszarek et al. 2018;King andKennedy 2019).

e. Composite parameters

Composite parameters, by their design, seek overlapping

quantification of the likelihood for severe hazards, meaning

that any limitation of the reanalysis components can be exac-

erbated or minimized by the combination. This leads to a

correlation no greater than 0.8 considering all composite pa-

rameters (Table 3). Performance for parameters that involve

SRH and effective shear (SCP and STP) is worse (Table 3,

Fig. 7) than a simple combination of CAPE and fixed vertical

wind shear (WMAXSHEAR; Taszarek et al. 2017, 2020;

Rodríguez and Bech 2021). However, even in this case the

lower correlations of CAPE lead to a decrease in the perfor-

mance of the covariate quantity. In comparison to the indi-

vidual parameters, differences between the reanalyses are also

more stark. For STP both reanalyses have similar correlations

(0.63 and 0.61), whereas for SCP and SHIP there are noticeably

higher correlations for ERA5 (0.67 and 0.71) compared to

MERRA-2 (0.56 and 0.59) (Table 3). However, despite these

differences, MAE are similar between reanalyses (Table 3). In

contrast, for WMAXSHEAR there is generally a slight advan-

tage to ERA5, although the difference is relatively small (Fig. 7).

The parameter phase space of ML CAPE and 0–6-km wind

shear indicates that both reanalyses tend to underestimate high

values of instability (.3000 J kg21; Fig. 8). However, it can be

also noted that MERRA-2 has overall better performance in

sampling high-shear, low-CAPE environments (HSLC; Sherburn

and Parker 2014; Anderson-Frey et al. 2019; Gatzen et al. 2020)

than ERA5. Compared to observations, both reanalyses have

more frequent situationswithmarginal both instability andwind

shear. The best overall agreement is obtained for CAPE 500–

1000 J kg21 and 0–6-km wind shear of 10–20m s21, but these

cases are also themost frequent and thusmake it less sensitive to

changes in fractions. Focusing on low-level moisture and wind

shear yields that especially extreme values (ML MIXR .

18 g kg21 and 0–1-km wind shear . 25m s21) are not well rep-

resented by both reanalyses. Conversely, very low values of 0–1-km

TABLE 3. As in Table 2, but for wind and composite parameters. Here, an asterisk indicates that only cases exceeding 0 are considered in

computations.

Pearson

correlation

coefficient (R)

Spearman

correlation

coefficient (Rs) Mean error (ME)

Mean absolute

error (MAE)

Root-mean-square

error (RMSE)

ERA5 MERRA-2 ERA5 MERRA-2 ERA5 MERRA-2 ERA5 MERRA-2 ERA5 MERRA-2

Wind parameters

Effective shear (m s21)* 0.74 0.70 0.68 0.64 21.06 21.27 2.93 3.25 4.05 4.40

0–1-km shear (m s21) 0.81 0.76 0.76 0.71 20.32 20.98 1.95 2.30 2.62 3.02

0–3-km shear (m s21) 0.91 0.86 0.89 0.71 20.46 20.85 1.94 2.41 2.60 3.18

0–6-km shear (m s21) 0.96 0.94 0.95 0.93 20.31 20.53 2.07 2.61 2.83 3.50

0–1-km SRH (m2 s22) 0.83 0.77 0.80 0.74 5.21 21.44 28.02 30.96 42.21 46.37

0–3-km SRH (m2 s22) 0.85 0.79 0.82 0.76 4.82 20.61 32.99 38.16 49.70 56.52

0–1-km mean wind

(m s21)

0.90 0.86 0.88 0.84 0.35 0.89 1.38 1.77 1.93 2.44

1–3-km mean wind

(m s21)

0.97 0.95 0.96 0.94 20.15 20.09 1.00 1.29 1.42 1.77

0–6-km mean wind

(m s21)

0.98 0.96 0.97 0.96 20.05 0.25 0.80 1.04 1.12 1.43

10-m wind speed

(m s21)

0.71 0.67 0.67 0.60 20.19 0.29 1.40 1.62 1.90 2.12

850-hPa wind (m s21) 0.94 0.91 0.92 0.60 20.28 20.14 1.37 1.71 1.91 2.31

700-hPa wind (m s21) 0.96 0.93 0.95 0.92 20.31 20.27 1.31 1.72 1.83 2.30

500-hPa wind (m s21) 0.98 0.96 0.98 0.96 20.28 20.20 1.39 1.92 1.99 2.62

Composite parameters

STP* 0.63 0.61 0.57 0.52 20.07 20.04 0.16 0.17 0.35 0.37

SCP* 0.67 0.56 0.64 0.53 20.79 20.62 1.25 1.39 2.40 2.60

SHIP* 0.71 0.59 0.61 0.49 20.11 20.09 0.16 0.18 0.26 0.29

ML WMAXSHEAR* 0.80 0.73 0.73 0.68 247.39 252.57 118.65 134.02 181.53 207.99

MU WMAXSHEAR* 0.79 0.71 0.73 0.66 285.34 259.86 151.04 165.68 220.94 244.21
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wind shear are also overestimated, especially for MERRA-2

(Fig. 8).

f. Long-term changes

For a series of representative parameters, temporal changes

over the past 39 years associated with more frequent obser-

vations being available for the reanalyses have been reflected

in decreasing MAE and increasing correlations for both

reanalyses. Among wind parameters, the upper-level wind

speed and direction had smaller decreases to MAE, while near

the surface there were more significant changes to wind accu-

racy (Fig. 9). For the 0–1-km mean wind, MAE has dropped

considerably, particularly after 1991. Curiously, althoughMAE

of low-level wind shear has decreased over time for ERA5, an

increase was observed for MERRA-2, even though correlations

for both reanalyses have been consistently increasing (Fig. 9).

Changes inMERRA-2wind data over timemay be related to an

increasing number of assimilated observations, especially those

that started to rapidly increase in the 1990s, such as remotely

sensed upper-air measurements, aircraft data, and geostationary/

polar satellite observations (Koster et al. 2016). Similar increases

in quantity and quality of assimilated data are observed also

within ERA5 (Hersbach et al. 2020). This indicates that specific

variables in the reanalysis may be vulnerable for imhomogenities

in time and space, and thus the use of such data in studying long-

term climatological trends should be performed with caution.

Near-surface temperature and lapse rates have high corre-

lations for the whole dataset (Table 2), and this is matched by

smaller improvements in MAE and correlations over time as

compared to wind parameters (Fig. 10). Only a very slight

change was observed for 10-m temperature with a decrease in

MAE of 0.18C comparing the 1980s with the 2010s. Only slight

FIG. 6. As in Fig. 3 but for (a) 0–1-kmwind shear, (b) 0–6-kmwind shear, (c) 10-m wind speed, (d) 0–3-km storm-relative helicity, (e) 0–1-

km mean wind speed, and (f) 1–3-km mean wind speed.

3222 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 08/20/22 06:23 AM UTC



improvements were observed for mid- and lower-tropospheric

lapse rates, and the rate of change in the latter was smaller for

MERRA-2 compared to ERA5 (Fig. 10). The greatest im-

provements with respect to instability (using only environ-

ments with positive CAPE) relate to moisture parameters and

parcel properties. MAE for ML MIXR has decreased from a

mean of 0.75 and 1.05 g kg21 in the 1980s to 0.65 and 0.85 g kg21

after 2010 for ERA5 and MERRA-2, respectively (Fig. 11).

For ML CAPE, MAE has decreased from 350 J kg21 for

MERRA-2 and 300 J kg21 for ERA5 prior to 2004, and then to

around 275 J kg21 for MERRA-2 and 225 J kg21 for ERA5

over the past 5 years. However, the differences between the

reanalyses are small despite large differences in correlation.

MAE for ML CIN has remained relatively steady over time

(around 32 J kg21 for MERRA-2 and 22 J kg21 for ERA5);

however, there is a larger increase in correlation over the re-

cord, with notable difference between the two reanalyses, con-

sistent with the benefits of higher vertical resolution (Fig. 11).

Finally, we assess changes in the midtropospheric wind,

temperature, and dewpoint, which also show long-term de-

creases in MAE (Fig. 12). While relative changes in 500-hPa

temperature and dewpoint are equivalent for both reanalyses

(drop of MAE by 0.28C for temperature and 0.58C for dew-

point between the 1980s and 2010s), the change in MAE for

500-hPa wind speed is observed mainly for MERRA-2 (Fig. 12).

The highest slope of change of MAE for 500-hPa temperature

predominantly occurred prior to 2000, and since that time only

minor increases in accuracy have been observed. Despite the

larger changes in MAE, correlations for 500-hPa wind speed and

temperature remained stable. In contrast, correlations of 500-hPa

dewpoint have seen increases on the order of 15% for both

MERRA-2 and ERA5.

While significant quality control has been performed for the

sounding observations, it is uncertain whether observed long-

term changes are related to changes in the sounding quality

(e.g., the use of different sensors), the number of available

levels (Fig. 1b), or rather an increase in the accuracy of re-

analysis (Koster et al. 2016; Hersbach et al. 2020). Variables

such as 500-hPa wind speed, which change in MAE only in

MERRA-2, or 0–1-km wind shear, where MAE increases with

time in MERRA-2, suggest either greater sensitivity to as-

similated observations over time or a limitation in the under-

lying model to these changes in observations. However, it is

likely that changes in the quality of sounding data over time

may also be an important factor in assessing long-term changes

in the performance metrics of reanalyses.

g. Annual variability

Correlation and MAE also vary through the year as a

function of the annual cycle. Wind parameters are character-

ized by the highest MAE and correlation during the winter

months and conversely the lowestMAE and lower correlations

during the summer (Fig. 9). Similar annual cycles in MAE are

also observed for temperature and lapse rates, but the ampli-

tude is the largest near the surface and decreases with height

(Figs. 10 and 12). Differences between the reanalyses can be

FIG. 7. As in Fig. 3 but for (a) supercell composite parameter, (b) significant hail parameter, (c) significant tornado parameter, and

(d) mixed-layer WMAXSHEAR.
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found in the annual cycle of MAE for 10-m temperature

where MERRA-2 has a clear difference between summer

(1.68C) and winter (1.98C) while ERA5 errors are relatively

stable. Correlations for MERRA-2 0–1-km lapse rates are the

one exception, where a considerable decrease in MAE is ac-

companied by large increases in correlation from the spring

through fall (Fig. 10). This contrasts with the very consistent 0–

1-km lapse rates that are almost unchanged throughout the

year for ERA5.

The largest intra-annual differences are found for moisture

and instability parameters, where MLMIXR, CAPE, and CIN

peak inMAE during summer and are considerably lower in the

cool season, reflecting the annual cycle of these parameters

(Fig. 11). Correlations for ML CAPE peak in the spring and

fall for both reanalyses, and are similar in both summer and

winter, whereas ML CIN tends to have higher correlations for

the early part of the year through April (Fig. 11).

h. Spatial variability

In this section we explore the spatial distribution of con-

vective parameters in reanalysis relative to climatological dis-

tributions of the respective sounding stations to identify local

biases.We focus only on the 0000 and 1200UTC time steps due

to consistent availability of sounding observations in these

hours. Generally, ML MIXR (Fig. 13a) shows a strong corre-

lation between the reanalyses and observations over North

America with a clear peak over theGulf Coast (95th percentile.

18 gkg21) and the corridor of poleward moist advection with

enhanced values over the Southeast, Midwest, and Great Plains

(.14 gkg21). Despite this general agreement, there are a few

small differences between MERRA-2 and both ERA5 and the

soundings. Moisture values near the Gulf are generally lower,

while over the Great Plains the gradient is displaced eastward.

Both reanalyses underestimate the northward extent of moisture

FIG. 8. Fraction of reanalysis cases (ERA5 at left, MERRA-2 at right) among soundings in a given parameter

space of (top) mixed-layer CAPE and 0–6-km wind shear and (bottom) mixed-layer mixing ratio and 0–1-km wind

shear. A value of 0.5 indicates an equal ratio between soundings and reanalysis; ,0.5 indicates underestimation

while.0.5 indicates overestimation of reanalysis environments. Please note that a slight smoothing (33 3 grid focal

median) has been applied for better readability of results.
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over the East Coast close to the Gulf Stream. Over Europe

MERRA-2 has notably lower moisture over central Europe and

higher values over western Russia compared to ERA5 (Fig. 13a).

There is relatively good agreement between all datasets for

the midtropospheric lapse rates (Fig. 13b) with the highest

values observed over the Rocky Mountains over the United

States (95th percentile . 9K km21) with smaller peaks over

the northern Atlantic and northwestern Africa (.8Kkm21).

Peak values are slightly higher in both reanalyses; however,

there are no sounding stations near the lapse rate maximum

FIG. 9. (first and second columns) Long-term variability and (third and fourth columns) annual cycle of mean absolute error (MAE) and

Pearson correlation coefficient (R) for (a) 10-m wind speed, (b) 0–1-kmmean wind, (c) 0–1-kmwind shear, and (d) 0–6-kmwind shear for

ERA5 (red) and MERRA-2 (turquoise) in comparison with soundings.
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across central Colorado. For ML CAPE there are larger dif-

ferences, with lower 95th percentiles for both ERA5 and

MERRA-2 particularly over theGreat Plains and southeastern

United States (Fig. 14a). Over Europe these differences are

generally lower outside of stations that are close to coastal or

mountainous zones. Between the reanalyses, ERA5 overall has

better accuracy than MERRA-2. There are a few substantive

biases in MERRA-2, including underestimation over the Gulf

Coast, North Dakota, western and central Europe, the Iberian

Peninsula, and the Balkans. Conversely, over western Russia

and the Atlantic, MERRA-2 indicates higher instability.

Biases at locations for ML CIN are considerably lower com-

pared to ML CAPE across North America; however, magni-

tudes are still underestimated despite higher resolution of

ERA5 (Fig. 14b). Over Europe CIN underestimation can be

observed in both reanalyses across the entire continent.

Similar to results presented in the previous sections, 0–6-km

wind shear is represented well by both reanalyses (Fig. 15a).

From a climatological perspective, wind shear is considerably

stronger across northern parts of the United States (50th

percentile . 18m s21), compared to .15m s21 over north-

western Europe. However, combining the 0–6-km wind shear

with ML CAPE into a bivariate severe-thunderstorm proxy

of ML WMAXSHEAR illustrates that covariates can pro-

duce much larger differences, and are primarily related to

biases in ML CAPE. Both reanalyses notably underestimate

ML WMAXSHEAR (Fig. 15b) over the central and south-

eastern United States. Across Europe, ERA5 has much

better agreement with soundings for ML WMAXSHEAR,

while MERRA-2 has a notable underestimation over central

Europe and the Balkans, and an overestimation over the

coastal zones of the Atlantic.

Finally, we compare a mean correlation for all analyzed 45

variables for each sounding site (Fig. 16). The highest values

are typically observed for stations away from complex orog-

raphy (i.e., the central and eastern United States, and western,

central, and eastern Europe). Consistent with results discussed

in prior sections, ERA5 has clearly better accuracy over both

FIG. 10. As in Fig. 9, but for (a) 10-m temperature, (b) 0–1-km lapse rate, and (c) 500–700-hPa lapse rate.
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continents in representing atmospheric parameters. This per-

formance is generally higher everywhere except over the

mountainous western United States where topographic gradi-

ents play a significant role in the underlying meteorology. In

contrast, MERRA-2 shows more spatial biases and lower

correlations over a wider area.

One of the more intriguing results is obtained for mean

correlations computed between both reanalyses (Fig. 16c). The

best agreement between ERA5 and MERRA-2 can be found

over a broad corridor from the British Isles to Russia (mean

correlation from 45 variables . 0.9) with lower values over

southern Europe. Over North America, spatial patterns in this

parameter can be linked to orography, with the highest mean

correlation values exceeding 0.9 over central and eastern

United States and the lowest over the mountainous west and

Mexico. This result likely highlights that the decrease in grid

size to 0.258 for ERA5 can make a substantive difference in

performance for many areas, which may be a reason for the

spatial patterns in reanalysis performance. It may also suggest

that the lower density of sounding data entering data assimi-

lation in both reanalyses can be resolved in different ways

between the reanalyses and lead to contrasting performance.

4. Summary and concluding remarks

In this study we compared 45 observed sounding parameters

from 232 stations over Europe and North America (3.7 million

measurements) with collocated ERA5 andMERRA-2 profiles

to examine how well reanalysis depicts observed and derived

variables, specifically focusing on those relevant to convection.

The frequency of sounding measurements and number of

available levels has generally increased over time. The analysis

of temperature, moisture, wind, MU/ML parcel parameters,

and composite indices highlighted several findings of interest,

the most important of which are listed below.

d The largest differences between soundings and reanalysis

are found for low-level wind parameters (10-m wind speed,

FIG. 11. As in Fig. 9, but for (a) mixed-layer mixing ratio, (b) mixed-layer CAPE, and (c) mixed-layer convective inhibition.
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0–1-km wind shear, mean wind, SRH), MU and ML parcel

parameters (CAPE, CIN, LCL, LFC), low-level lapse

rates (0–1 km), and composite indices (STP, SCP, SHP,

WMAXSHEAR). In contrast, reanalyses do well in repre-

senting temperature and moisture variables (at 10m, 850,

700, and 500 hPa, and PWATER), midtropospheric lapse

rates (3–6 km, 500–700 hPa), and mean wind over deeper

layers such as 1–3 and 0–6 km.
d Both reanalyses tend to underestimate CAPE, EL, low-level

moisture, wind shear, wind speed, and all composite pa-

rameters. Slight overestimation is observed for low-level

lapse rates, midtropospheric moisture, and LFC. ERA5 un-

derestimates LCL and 10-mwind, while slightly overestimating

SRH.Both reanalyses have problems in characterizing extreme

environments, especially considering situations with CAPE

exceeding 3000 J kg21 and boundary layer–related parameters

(e.g., ML MIXR . 18 gkg21, 0–1-km shear . 25m s21).
d Among parcel parameters ML parcels are more accu-

rately represented in the reanalyses thanMU parcels with

lower mean absolute errors and higher correlations with

observations.
d In every analyzed variable, ERA5 had higher correlation

and lower mean absolute errors than MERRA-2.
d Over time, mean absolute errors between soundings and

reanalyses have decreased and correlations have increased

for almost every variable. An exception to this was 0–1-km

wind shear in MERRA-2 for which mean absolute error

has increased. The largest increases in accuracy were for

wind parameters, and the lowest for temperature vari-

ables. Notable temporal discontinuities were found in the

0–1-km mean wind and dewpoint at 500 hPa between 1991

and 1992.
d Mean absolute error and correlation have well-defined

annual cycles. Wind and temperature parameters typically

have their lowest mean absolute errors and correlation

during summer, and their highest values during winter.

Moisture and parcel (CAPE, CIN) variables typically

have the highest mean absolute errors during summer. The

FIG. 12. As in Fig. 9, but for (a) 500-hPa wind speed, (b) 500-hPa temperature, and (c) 500-hPa dewpoint.
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FIG. 13. Climatological distribution of 95th percentile of (a) mixed-layermixing ratio and (b) 500–700-hPa lapse rate for

sounding, ERA5, and MERRA-2. Only 0000 and 1200 UTC time steps over a period of 1980–2018 are considered. Only

sounding stations with at least 2000 measurements for both 0000 and 1200 UTC with a ratio between these two ranging

from 0.75 and 1.25 are considered.
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FIG. 14. As in Fig. 13 but for (a) mixed-layer CAPE, and (b) mixed-layer convective inhibition.
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FIG. 15. As in Fig. 13 but for (a) 50th percentile of 0–6-km wind shear and (b) 95th percentile of mixed-layer

WMAXSHEAR.
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correlation for CAPE is the highest during transitional sea-

sons, whereas CIN is maximized mainly during spring.
d Spatial analysis indicates that both reanalyses are generally

able to capture the pattern of convective parameters very well,

with MERRA-2 typically a bit drier and less unstable (lower

MIXR, CAPE, and WMAXSHEAR) over central Europe

and theBalkanswith the opposite pattern overwesternRussia.

Both reanalyses notably underestimate CIN across Europe,

and CAPE and CIN over the United States.
d Mean correlations by station for the two reanalyses illustrate

that the best representation is over flat or lower elevations. In

contrast, performance is poor near sharp topographic bound-

aries (coastal zones and mountain ranges). The correlation

between reanalyses is the highest for stations located over

northern Europe and decreases toward the south. Over

North America the best agreement is for stations located

over the east and decreases toward the west.

Atmospheric reanalyses provide a best guess to the state of

the past atmosphere, and unlike sparse sounding data with

limited spatiotemporal resolution, they are an invaluable tool for

construction of severe thunderstorm climatologies (Brooks et al.

2003; Gensini and Ashley 2011; Tippett et al. 2012; Thompson

et al. 2013; Allen and Karoly 2014; Allen et al. 2015; Taszarek

et al. 2018; Chen et al. 2020; Li et al. 2020; Taszarek et al. 2020),

assessment of long-term historical trends (Mohr and Kunz 2013;

Gensini and Brooks 2018; Rädler et al. 2018; Tang et al. 2019;

Taszarek et al. 2021), and investigation of environments associ-

ated with specific convective hazards leading to their better pre-

diction (Thompson et al. 2003, 2007, 2012; Gropp andDavenport

2018; Coffer et al. 2020; Ingrosso et al. 2020; Taszarek et al. 2020;

Rodríguez and Bech 2021). The new ERA5 reanalysis provides

higher spatial, vertical, and temporal resolution that represents

convective environments with a resolution that was not available

in prior global reanalysis, opening new research possibilities.

While reanalyses do provide an invaluable source of data, as

highlighted in this study, there are areas of possible future

improvement, especially related to boundary layer represen-

tation. As shown in our results and those of prior studies, one of

the biggest limitations of the reanalyses is their inability to

represent rare and extreme convective environments, espe-

cially those that are characterized by high CAPE and/or ver-

tical wind shear. Reanalyses are also inconsistent through time

for parameters relevant to severe convection, and hence trend

analyses require careful consideration to ensure shifts are

not solely the response to changes in data quality. Here, we

demonstrated that convective profiles derived from ERA5 and

MERRA-2 hybrid-sigma model levels are overall better

FIG. 16. Pearson correlation coefficient as a mean from all 45 parameters listed in Table 2 and 3 (considering only stations with at least

5000 measurements), for (left) soundings and ERA5, (center) soundings and MERRA-2, and (right) ERA5 and MERRA-2. Higher

values indicate a better fit between datasets. Please note, that this concerns mainly convective parameters and unstable profiles (most-

unstable CAPE . 0 J kg21).
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sampled compared to previously evaluated profiles from both

ERA-Interim (Allen and Karoly 2014; Taszarek et al. 2018)

and NARR (Gensini et al. 2014). Correlations in our study

were also higher than in the work of King and Kennedy (2019),

who derived convective variables from six different reanalyses

to compare with the RUC2 collocated profiles. A potential

explanation for this difference is that in contrast to King and

Kennedy (2019), who only considered profiles proximal to

known supercell cases, we analyze all available time steps in-

cluding situations not contaminated by convection.

We would also suggest that in a view of best practice, it is

recommended that computation of convective variables, if

available, should be performed with the native coordinates at

the full resolution the reanalysis was produced. As an example,

hybrid-sigma model levels follow orography allowing for con-

sistent vertical resolution and can more accurately sample

boundary layer conditions (e.g., 28 levels at 0–2 km in ERA5)

and depict important features such as capping inversions.

Conversely, commonly used pressure levels are interpolated

from model levels, and are subsampled to reduce data volume

(typically 37 levels for the entire profile) while also not fol-

lowing orography. This also leads to a reduction in the number

of boundary layer data available in high elevation areas. We

also conclude that researchers using reanalysis and model da-

tasets more broadly for climatological purposes should ensure

that they are aware of their respective parameter biases and

(where possible) cross-validate these results with observations.

Finally, based on the results from our work and prior studies we

suggest that ERA5 is likely one of the most reliable available

reanalyses for exploration of convective environments, mainly

because of its improved resolution.
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APPENDIX A

Fraction of Measurements that Passed

Quality-Control Phase

Figure A1 shows the fraction of measurements that passed

preliminary quality control assumptions.

APPENDIX B

Example of Errors Detected in Quality-Control Phase

Figure B1 shows an example of erroneous sounding mea-

surements detected during the quality-control phase.

FIG. A1. Fraction ofmeasurements that passed preliminary quality-control assumptions for individual location over

North America and Europe.

15 APRIL 2021 TA SZAREK ET AL . 3233

Unauthenticated | Downloaded 08/20/22 06:23 AM UTC

https://cds.climate.copernicus.eu/
https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
http://weather.uwyo.edu/upperair/
http://weather.uwyo.edu/upperair/


FIG. B1. Example of erroneous sounding measurements detected during the quality-control phase. Plots derived from University of

Wyoming sounding database http://weather.uwyo.edu/upperair/.
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