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Abstract

In this work we compared the most frequently used Klebsiella pneumoniae typing methods: PFGE, cgMLST and coreSNP. We 

evaluated the discriminatory power of the three methods to confirm or exclude nosocomial transmission on K. pneumoniae 

strains isolated from January to December 2017, in the framework of the routine surveillance for multidrug- resistant organ-

isms at the San Ra�aele Hospital, in Milan. We compared the results of the di�erent methods to the results of epidemiological 

investigation. Our results showed that cgMLST and coreSNP are more discriminant than PFGE, and that both approaches are 

suitable for transmission analyses. cgMLST appeared to be inferior to coreSNP in the K. pneumoniae CG258 phylogenetic recon-

struction. Indeed, we found that the phylogenetic reconstruction based on cgMLST genes wrongly clustered ST258 clade1 and 

clade2 strains, conversely properly assigned by coreSNP approach. In conclusion, this study provides evidences supporting the 

reliability of both cgMLST and coreSNP for hospital surveillance programs and highlights the limits of cgMLST scheme genes 

for phylogenetic reconstructions.

DATA SUMMARY

1.Sequence read �les for all 80 isolates have been deposited in 
SRA, accessible through NCBI BioSample accession numbers 
and whole- genome shotgun projects have been deposited in 
Genbank (BioProject PRJNA564099 for K. pneumoniae)

2.A full list of SRA run accession numbers (Illumina reads) 
for these samples are available in Table S2 (available in the 
online version of this article).

INTRODUCTION

Klebsiella pneumoniae carbapenemase- producing K. pneu-
moniae (KPC- Kp) is a major cause of healthcare- associated 
infections (HAIs). Reported estimates show that the mortality 
rate among patients with KPC- Kp bloodstream infections 

ranges from 40 to 70 %, while for patients with KPC- Kp 
pneumonia ranges from 20 to 40 % [1, 2]. In many countries, 
including Italy, KPC- Kp has reached endemic proportions 
[3–5]. �e majority of the KPC- Kp isolated worldwide belong 
to the clonal group CG258, a well- demarcated group of strains 
de�ned on the basis of cgMLST pro�les [3]. CG258 strains 
belong to several sequence type (STs) (de�ned by the multi- 
locus sequence type scheme, https:// pubmlst. org/ so�ware/ 
database/ bigsdb/), including the high- risk ST258, ST11, 
ST512 and ST340 [6]. �e clone ST258 predominates largely 
in North America, Latin America and Europe, while the clone 
ST11 is much more prevalent in Asia and Latin America [7]. 
�e clone ST512 is frequently isolated in Italy, Colombia, 
and Israel while the clone ST340 is common in Brazil and 
Greece [8]. An epidemic dissemination of KPC- Kp has been 
reported in Italy since 2010 mostly related to the spread of the 

http://mgen.microbiologyresearch.org/content/journal/mgen/
https://creativecommons.org/licenses/by/4.0/deed.ast
https://pubmlst.org/software/database/bigsdb/
https://pubmlst.org/software/database/bigsdb/
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ST258 clone [9]. �e emergence of new clones contributed to 
increase the genetic diversity in all countries, as described in 
a recent European study [10]. �e strategies for the detection 
and surveillance of KPC- Kp- circulating clones have received 
signi�cant attention in recent years [11, 12].

Several molecular methods have been proposed for K. pneu-
moniae typing in outbreak and cluster investigations [13, 14]. 
Criteria for the evaluation of typing methods' performance 
include reproducibility, discriminatory power and epidemio-
logical concordance [15].

PFGE is still the gold standard technique to investigate the 
relatedness among isolates and to support epidemiological 
investigations. However, due to the high clonality of K. pneu-
moniae clinical isolates (most of which belong to CG258), 
this method may not provide su�cient resolution power 
to distinguish clusters, thus reducing the ability to discern 
transmission dynamics [16]. Recently, methods based on 
whole- genome sequencing (WGS) have been used to trace 
phylogenetic relationships and to identify K. pneumoniae 
clones [17–19].

�e most common way to compare genomes is to evaluate 
the di�erences in SNPs [14]. An alternative approach is the 
core- genome MLST (cgMLST): an improvement of the MLST 
concept to the genome level [20–22]. cgMLST schemes contain 
hundreds to thousands of core genes showing a discrimina-
tory power higher than MLST schemes, which include only 
few genes (e.g. seven for the K. pneumoniae scheme). Two 
di�erent cgMLST schemes are available for K. pneumoniae: 
BIGSdb [21] and SeqSphere+ (http://www. cgmlst. org/ ncs). In 
the literature, the latter is the most frequently used, probably 
because a standalone and user- friendly so�ware is available 
[23–25].

Previous studies on other bacterial species have been 
performed to evaluate the concordance between cgMLST and 
coreSNP methods [21, 26, 27]. Despite the clinical relevance 
of K. pneumoniae, only few evidences [23, 25, 26] and no 
speci�c studies on this topic are present in the literature.

�e aim of this study is to compare the three most frequently 
used K. pneumoniae typing methods: PFGE, cgMLST 
(SeqSphere+) and coreSNP. We also evaluated the concord-
ance of results on the transmission events of carbapenem- 
resistant K. pneumoniae among patients admitted at the San 
Ra�aele hospital (OSR), in Milan, during 2017. Furthermore, 
we compared the phylogenetic signal of cgMLST and coreSNP 
on a large genomic dataset including the genomes of the K. 
pneumoniae strains collected during the OSR surveillance 
program and ~400 genomes retrieved from public database 
[28].

METHODS

Isolate collection

�e strains included in this retrospective study were collected 
from January to December 2017 in the framework of the 
routine surveillance for multidrug- resistant organisms 

in place at the San Ra�aele Hospital in Milan (OSR). �e 
strains originating from duplicates from the same patient 
were excluded.

Cultures for isolation of carbapenem- resistant (CR- KP) were 
performed on MacConkey agar plates containing a 10 µg disk 
of carbapenem. A�er 24–48 h of incubation at 37 °C, the colo-
nies growing close to the disk were collected and identi�ed 
by MALDI- TOF mass spectrometry (Vitek MS bioMérieux, 
Florence, Italy).

An antimicrobial sensitivity testing was performed by auto-
mated microdilution using the Vitek-2 AST- GN202 card 
and imipenem and meropenem MICs were veri�ed with the 
E- test. Resistance mechanisms were con�rmed by phenotypic 
assays: the 'modi�ed Hodge test' was used to detect carbap-
enemase activity, synergy between phenyl- boronic acid and 
carbapenems in combined disk tests were used to detect 
KPC- Kp, and synergy between EDTA and carbapenems in 
combined disk were used to detect metallo-β-lactamases. All 
K. pneumoniae strains positive to carbapenemase phenotypic 
test were processed for WGS and PFGE.

PFGE

Brie�y, genomic DNA was digested with XbaI enzyme and run 
into a CHEF- DRIII system, as previously described [29, 30]. 
PFGE pro�les and cluster analyses were identi�ed by using the 
so�ware InfoQuest FP version 5.1 (Bio- Rad, Hercules, CA, 
USA) and con�rmed by the epidemiological investigation. 
A cluster was de�ned as two or more related KPC- Kp cases 
presenting the same clone, according to the molecular- typing 
results, and a link con�rmed if those patients had shared the 

Impact Statement

K. pneumoniae is one of the most common causes of 

healthcare- associated infections. The global spread 

of carbapenemase- producing K. pneumoniae high- risk 

clones is a public health concern. In the last decade, most 

hospital outbreaks of carbapenem- resistant K. pneumo-

niae have been attributed to K. pneumoniae carbapene-

mase (KPC)- producing isolates belonging to clonal group 

(CG) 258. Like many research and public health laborato-

ries, we frequently perform large- scale bacterial compar-

ative genomics studies using Illumina sequencing, which 

assays gene content and provides the high- confidence 

variant calls needed for phylogenomics and transmis-

sion studies. We compared the most frequently used K. 

pneumoniae typing methods: PFGE, cgMLST and coreSNP. 

We compared the results of the di�erent methods to 

the results of epidemiological investigation. Our results 

showed that cgMLST and coreSNP are more discrimi-

nant than PFGE, and that both approaches are suitable 

for transmission analyses. cgMLST appeared to be infe-

rior to coreSNP in the K. pneumoniae CG258 phylogenetic 

reconstruction.

http://www.cgmlst.org/ncs
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same ward for at least 1 day in intensive care units; for at least 
2 calendar days in any other ward, limiting the investigation 
to the current hospitalization, irrespective to the date of isola-
tion of the KPC- Kp and of its length.

WGS

For DNA extraction, bacterial cultures were puri�ed by two 
successive single colony selections a�er streaking on blood 
agar medium incubated overnight at 37 °C (Becton Dick-
inson, Franklin Lakes, NJ, USA). Bacterial DNA was extracted 
from a liquid suspension of the puri�ed cultures using the 
Maxwell 16 Cell DNA Puri�cation Kit SEV in combination 
with a Maxwell 16 Instrument (Promega, USA). All strains 
were sequenced by Illumina NextSeq500 platform, (Illumina, 
San Diego, CA, USA), with a paired- end run of (2×150 bp), 
a�er Nextera XT paired- end library preparation following the 
manufacturer’s instructions [31].

Sequencing reads were de novo assembled using SPAdes 
(version 3.13) [32]. WGS data were used for genotypic char-
acterization and virulence- gene detection by blast search 
using gene datasets available at the Bacterial Isolate Genome 
Sequence Database (BIGSdb) [21]. We will refer to this 
genome dataset as ‘OSR dataset’.

Genome-dataset reconstruction and sequence-type 
profile determination

We reconstructed a K. pneumoniae background genomic 
dataset as follows. We retrieved all the 924 K. pneumoniae 
genome assemblies present in the PATRIC database on 29 
October 2018 for which the publication code was available (in 
accordance with Fort Lauderdale and Toronto agreements). 
�en we selected a subset of these retrieved assemblies on the 
basis of their genetic distances from the OSR assemblies. In 
more detail, we computed the genetic distance between each 
OSR genome assembly and each retrieved genome assembly 
using Mash so�ware [33]. For each OSR genome assembly, we 
selected the 50 less distant assemblies retrieved from PATRIC. 
Lastly, selected PATRIC assemblies and OSR assemblies were 
merged in a dataset called ‘Global dataset’.

In order to exclude low- quality selected PATRIC assemblies 
(i.e. >300 contigs or genome size not compatible with complete 
assemblies of K. pneumoniae) we assessed the number of 
contigs and the total genome length using quast so�ware 
[34] (Table S1). �e maximum contigs number was 240, and 
the ranges of total length between complete assemblies and 
sca�olds were comparable (total length: 5 118 878–6 107 937 
and 4 988 911–5,835,446, for complete and sca�old assemblies, 
respectively). �us, no genome assemblies were excluded 
from the analysis.

�e MLST pro�les of all the strains included in the study (i.e. 
those sequenced in this work and those retrieved from the 
PATRIC database) were in silico determined using an in- house 
Perl script (https:// skynet. unimi. it/ index. php/ tools/ purple- 
tool/). �e MLST gene sequences and pro�les used for the 
analyses were retrieved from the BIGSdb database.

Core-genome MLST

For OSR dataset, core- genome MLST (cgMLST) analysis was 
performed using SeqSphere+so�ware (6.0.0 version Ridom, 
GmbH, Münster, Germany) according to the ‘K. pneumoniae 
sensu lato cgMLST’ version 1.0 scheme (https://www. cgmlst. 
org/ ncs/ schema/ 2187931/). �is comprises a total of 2358 
genes (about 40 % of the NTUH- K2044 reference genome) 
[31]. SeqSphere+tool was used to map the reads against the 
reference genome using BWA v 0.6.2 so�ware (parameters 
setting: minimum coverage of �ve and Phred value >30) and 
to determine the cgMLST gene alleles. �e combination of 
all these alleles in each strain formed an allelic pro�le that 
was used to generate minimum spanning tree (MST) using 
SeqSphere+with the ‘pairwise ignore missing values’ param-
eter. A threshold of ≤4 allelic di�erences was used to de�ne 
the clusters [31, 35, 36].

Assembled reads from 486 genomes present in PATRIC were 
imported to Seqsphere+ and the target scan procedure was 
performed by using the built- in blast v 2.2.12 for cgMLST 
analysis.

�e cgMLST gene concatenate of the OSR dataset and Global 
dataset were obtained as follows: (i) the cgMLST genes, 
for which the variants were determined in all the strains, 
were selected; (ii) for each selected gene, the sequences 
relative to the named variants were retrieved from the 
SeqSphere+cgMLST gene dataset and aligned using muscle 
[37]; (iii) the obtained gene alignments were concatenated 
using an in- house Perl script (https:// drive. google. com/ open? 
id= 1OlSmcQmcm4- 5hfS Cu1b ov3M 8AXS 96Xbt).

CoreSNPs calling and clustering

�e coreSNP calling analysis was performed for both OSR 
and Global datasets. All the assemblies included in the dataset 
were aligned to the K. pneumoniae reference genome NTUH- 
K2044 using progressiveMauve [38] and the coreSNP calling 
was performed as described by Gaiarsa and colleagues [39]. 
CoreSNPs were de�nied as gap- free variable positions of the 
alignment �anked, on the right and on the le�, by at least 
�ve conserved positions. CoreSNPs localized inside repeated 
regions (identi�ed using MUMmer, [40]) or phages (iden-
ti�ed using phiSpy, [41]) on the reference assembly were 
masked. �is approach has been previously used in surveil-
lance studies [42] and outbreak reconstructions[43]. OSR 
strains were then clustered in groups with cuto� <21 SNPs, 
as previously described [43]. �en the coreSNP- based MST 
was computed using the R library Ape [44].

Phylogenetic analyses and comparison

For both the ‘OSR’ and ‘Global datasets’, cgMLST concatenates 
and coreSNP alignments were subjected to the best model 
selection using ModelTest- NG following the Bayesian infor-
mation criterion (BIC) [45]. For OSR and Global cgMLST 
alignments the best model resulted GTR, while for OSR and 
Global coreSNP alignments the best model resulted TVM. 
For each alignment, maximum likelihood (ML) phyloge-
netic analyses were perfomed using RaxML8 so�ware [46] 

https://skynet.unimi.it/index.php/tools/purple-tool/
https://skynet.unimi.it/index.php/tools/purple-tool/
https://www.cgmlst.org/ncs/schema/2187931/
https://www.cgmlst.org/ncs/schema/2187931/
https://drive.google.com/open?id=1OlSmcQmcm4-5hfSCu1bov3M8AXS96Xbt
https://drive.google.com/open?id=1OlSmcQmcm4-5hfSCu1bov3M8AXS96Xbt
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Fig. 1. Clonal relationship of 80 K. pneumoniae isolates in a MST based on core- genome multilocus. Each circle represents a single 

genotype, i.e. an allelic profile based on up to 2358 target genes present in the isolates with the “pairwise ignoring missing values” option 

turned on in the SeqSphere+ software during comparison. The number on connecting lines represents the number of alleles that di�er 

between the connected genotypes. The clusters identified on the cgMLST MST and absent in the MST computed on coreSNP MST (Fig. 2) 

are marked with asterisks.

with 100 pseudo- bootstraps and the relative selected model. 
Furthermore, distance matrix of cgMLST concatenate and of 
coreSNP alignment were computed using the R library Ape 
and compared using the Mantel test.

RESULTS

Bacterial strain description: KPC variants and 
sequence-type distribution

A total of 80 carbapenem- resistant K. pneumoniae isolates 
were collected during the study period and included in the 
present work. Most of the strains (55/80, 69 %), were isolated 
from diagnostic specimens. Among them, 15 derived from 
urine samples, 9 from respiratory samples, 13 were abdominal 
wound samples and 17 from blood samples. �e remaining 
25 isolates (31 %) were isolated from perirectal swabs 
collected for surveillance purposes. �e overall results from 
WGS analyses and the genotypic characterization of the 80 
K. pneumoniae strains are reported in Table 1. All isolates 
carried bla

KPC-3
 (n=67) or bla

KPC-2
 (n=13), no other class A 

enzyme genes (bla
SME

, bla
IMI

) or metallo beta- lactamase genes 
(including bla

NDM
 or bla

VIM
) were detected.

�e most represented MLST lineage is the clonal group 
CG258 (n=37), followed by ST307 (n=32) and ST101 (n=5). 

Among the CG258 strains, all the ST512 (n=31) harboured the 
KPC-3 variant. �ree of the the �ve ST258 strains, presented 
the bla

KPC-3
 genes and two the bla

KPC-2
 genes. �e ST11 isolate 

carried the KPC-2 variant. Finally, among ST307 strains both 
the bla

KPC-2
 and the bla

KPC-3
 genes were identi�ed in 5 and 27 

isolates, respectively (see Table 1).

All investigated isolates harboured mrkABCDF, iucABCDiA 
and yersiniabactin markers (irp and ybt). �e regulators of 
the mucoid phenotype (an indicator of hypervirulence, rmpA 
and rmpA2) and two capsular serotypes, K1 and K2, were 
absent in our isolates. �e cps-1 and cps-2 capsular gene clus-
ters were restricted to CG258 strains. �e cps-2 capsular type 
was found to be associated with isolates belonging to ST258 
and ST512 (n=34), while cps-1 was preferentially associated 
with ST258 strains only (see Table 1). ST101 isolates carried 
the wzi137 variant associated with the K17 serotype. ST307 
strains carried wzi173, ST11 carried wzi75 and ST15 carried 
wzi89, not associated with speci�c K- serotypes (Table 1).

Comparison of the discriminatory power of PFGE, 
cgMLST and coreSNP

According to the interpreting criteria described by Tenover et 
al. [30], the 80 clinical isolates of K. pneumoniae isolated from 



6

Gona et al., Microbial Genomics 2020;6

Fig. 2. Clonal relationship of 80 K. pneumoniae isolates in a MST computed on coreSNP distances. Clusters of strains distant <21 SNPs 

have been identified, coloured and labelled on the graph. The clusters identified on the coreSNP MST and absent in the MST computed 

on cgMLST allele distances (Fig. 1) are marked with asterisks.

the OSR were grouped into four clonal patterns, named A, B, 

C and D. �e four PFGE clones corresponded to the MLST 

STs: clone A corresponds to ST512, clone B to ST307, clone 

C to ST258 and clone D to ST101.

�e cgMLST cluster analysis grouped 44 out of the 80 isolates 

into 12 clonal clusters. �e cgMLST grouped strains of the 

PFGE clonal pattern A into six di�erent clusters (A1 to A6) 

and those of the clonal pattern B into three clusters (B1 to 

B3). �e cgMLST clusters C and D correspond to the PFGE 

clonal patterns C and D. cgMLST allowed to identify a further 

cluster named E including two strains of ST395 (Fig.  1). 

cgMLST cluster A6 (eight ST512 strains) and B3 (12 ST307 

strains) were dominant; the other ten clusters included only 

two or three isolates each (Fig. 1).

�e coreSNP cluster analysis (with cuto� <21 SNPs) grouped 

39 out of the 80 isolates into ten clonal clusters. Among these, 

eight were coherent with the cgMLST clusters: A2, A4, A5, 

A6, B1, B3, C and E. �e remaining two clusters (B4 and B5) 

were detected only with coreSNP approach (Fig. 2). On the 

other hand, cgMLST identi�ed four clusters not identi�ed by 

coreSNP (A1, A3, B2 and D).

Epidemiological links among patients were investigated by 

the Infection Control Committee of the OSR for each cluster 

identi�ed by PFGE, cgMLST or coreSNP. As shown in Table 2, 

n=18 epidemiological links were con�rmed by the investi-

gation, involving a total of 25 patients in six clusters. PFGE 

analysis failed to detect 10 out of 18 links, cgMLST two and 

coreSNP three.

Comparison of phylogenetic reconstructions 
cgMLST and coreSNPs

CoreSNP alignment and cgMLST gene concatenates were 
obtained both for OSR and Global datasets, the �rst one 
including the 80 OSR genomes only and the second one 
including these 80 genomes and the other 406 selected 
from the PATRIC database (see Methods). �e cgMLST 
concatenate lengths for the OSR and Global datasets were 
902 289 bp and 440 658 bp, respectively. CoreSNP calling 
produced an alignment of 54 407 SNPs for OSR dataset and 
85 676 SNPs for the Global one. �is di�erence could be due 
to the di�erent number of strains (80 for OSR and 486 for 
Global dataset) and thus to the di�erent genetic variability 
inside the dataset. On the other hand, cgMLST concatenate of 
OSR is sized about twofold more than the Global dataset: we 
can explain it considering that cgMLST shared gene number 
(see Methods) decreases with the number of genomes (Fig. 
S1, Fig. S2). Indeed, for each genome we can expect that 
SeqSphere+ does not determine the allele variant of some 
genes (from here ‘undetermined genes’). �e 90 % of the 486 
strains of the Global dataset have less than 13 undetermined 
genes. �e contig number and contig total length of the 
strains with <=13 undetermined genes and those with >13, 
resulted not signi�cantly di�erent (Wilcoxon test, contig num 
P- value=0.1 and contig total length P- value=0.5). �is result 
suggests that the reduction in shared gene number is not due 
to the quality of the genome assemblies. Considering that a 
cgMLST variant can be called by SeqSphere+tool only if it is 
present in the cgMLST scheme, we can hypothesize that part 
of the ‘undetermined genes’ could be a consequence of the 
absence of some variants in the cgMLST SeqSphere+scheme.
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Table 2. Description of the epidemiological links confirmed

Epidemiological links Ward Clusters PFGE cgMLST coreSNP

KP360 - KP367 Neurosurgical Intensive Care Unit A6 + +

KP360 - KP496 Neurosurgical Intensive Care Unit A6 + +

KP367 - KP496 Neurosurgical Intensive Care Unit A6 + + +

KP502 - KP605 Cardiosurgical Intensive Care Unit A6 + +

KP604 - KP715 Intensive Care Unit A6 + +

KP361 - KP363 Intensive Care Unit A2 + >4 alleles +

KP363 - KP364 Intensive Care Unit A2 + >4 alleles +

KP361 - KP364 Intensive Care Unit A2 + + +

KP239 - KP249 Medicine A3 + + >21 SNPs

KP249 - KP256 Medicine A3 + + >21 SNPs

KP232 - KP252 Gastroenterological surgery C + +

KP232 - KP488 Gastroenterological surgery C + +

KP252 - KP488 Gastroenterological surgery C + +

KP2 - KP4 Cardiosurgical Intensive Care Unit B + + +

KP258 - KP481 Cardiosurgical Intensive Care Unit B + + +

KP126 - KP480 Medicine B + +

KP126 - KP491 Medicine B + +

KP255 - KP365 Rehabilitation D + >21 SNPs

�e distance matrices computed on the cgMLST concatenate 

and coreSNP alignment are signi�cantly correlated (Mantel 

test, P- value<0.001; Spearman test R=0.87, P- value<2.2 e-16, 

Fig. S3).

As shown in Fig. 3, OSR cgMLST and coreSNP trees were 

highly congruent, indeed all the ST clades were consistently 

placed on the trees.

On the other hand, the two trees for the Global dataset 

were mainly coherent with exceptions within the CG258 

(Fig. 4). The coreSNP tree correctly clustered the ST258_

Clade 2 strains separating them from the ST258_Clade 1. 

Conversely, the cgMLST clustered the ST512 strains with 

ST258 _Clade 1 strains on the tree (Fig. 4). Finally, the 

ST11 strains were correctly placed as basal to the ST258 

lineage (clade1 and clade2) by coreSNP tree, while the 

cgMLST tree places some ST11 strains as part of a sepa-

rated clade including ST258_ Clade 2 and ST11 strains 

(Fig. 4).

Whole- genome shotgun projects have been deposited in 
Genbank (BioProject PRJNA564099 for K. pneumoniae) and 
the accession numbers can be found in Table S2.

DISCUSSION

WGS allows the entire sequence of a bacterial genome to 
be obtained with an a�ordable cost and a short turnaround 
time. �is drastically increases the amount of information 
available to compare bacterial strains improving bacterial 
typing discriminatory power. �e most frequently used 
WGS- based bacterial typing methods are based on SNP 
detection and cgMLST. In recent years, despite the coher-
ence and reliability of the two methods for epidemiological 
purposes being investigated for several bacterial species, 
little information is available for K. pneumoniae, one of the 
most important nosocomial pathogens.

cgMLST has been successfully used to support infection- 
control measures [47–49] at hospital level and to perform 
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Fig. 3. Comparison of the ML phylogenetic trees obtained with coreSNP and cgMLST on the OSR dataset (80 strains isolated during OSR 

routine surveillance program). On the left, the tree obtained with coreSNP and on the right the tree with SeqSphere+cgMLST. The strains 

belonging to highly represented MLST profiles (>=10 strains) are connected by coloured lines. Among these strains, those included in 

the routine surveillance program are highlighted on the trees with coloured dots.

surveillance of speci�c pathogens at global level [50]. 
Indeed, like MLST, it allows a large number of bacterial 
genomes to be analysed and it provides a standard strain 
nomenclature easily shareable in an international context 
[51]. �e cgMLST schemes usually contain from hundreds 
to thousands of genes, which represent only a part of the 
entire genome. �e SNP analysis, exploiting the entire 
genome positions (including also intergenic regions), 
allows very closely related strains to be discriminated, and 
consequently detailed epidemiological investigations to be 
performed [21].

Currently, the most important limit to the application of WGS- 
based methods in the hospital epidemiological surveillance is 

the absence of established guidelines for the identi�cation of 
bacterial relatedness, guidelines similar to those available for 
pre- WGS typing methods, such as PFGE [48]. In this study, 
we used PFGE and WGS- based typing methods (including 
cgMLST and coreSNPs) to perform cluster analysis and to 
evaluate epidemiological links on the 80 KP- KPC strains in 
the framework of the routine surveillance for multidrug- 
resistant organisms at the San Ra�aele Hospital, in Milan, 
during 2017.

We showed that both cgMLST and coreSNP give comparable 
results in the high majority of cases. Indeed, the strains of 
the clusters found by cgMLST only (A1, A3, B2 and D; see 
Fig. 1) are also close on the coreSNP MST, but they were 
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Fig. 4. Comparison of the ML phylogenetic trees obtained with coreSNP and cgMLST on the Global dataset (486 K. pneumoniae strains: 

80 isolated during OSR routine surveillance program and 406 from database). Asterisks are reported on nodes with bootstrap supports 

below 75. On the left, the tree obtained with coreSNP and on the right the tree with SeqSphere+cgMLST. The strains belonging to 

highly represented MLST profiles (>=10 strains) are connected by coloured lines. Among these strains, those included in the routine 

surveillance program are highlighted on the trees with coloured dots.

not assigned to any cluster due to their distances slightly 
exceeded the <21 SNP threshold (Fig. 2). Similarly, the few 
strains identi�ed by coreSNP only (B4 and B5; Fig. 2) show 
an allele distances (range �ve to eight alleles) just above the 
threshold (≤four alleles). �ese results clearly showed how 
the threshold choice is a key point for WGS- based epide-
miological investigation and may be modi�ed according to 
the speci�c epidemiological context. By comparing PFGE, 
cgMLST and coreSNP with the epidemiological data we veri-
�ed if the strains from the same cluster were truly involved in 
transmission events. We found that PFGE has lower capacity 

to correctly identify strains involved in clusters, while both 

WGS approaches showed better resolution (Table 2). In the 

absence of �xed thresholds, the best approach is probably the 

use of both analysis methods, supported by the epidemio-

logical investigation.

We also compared the applicability of cgMLST genes and 

coreSNP for phylogenetic reconstruction. We analysed two 

datasets, the �rst including the 80 strains isolated from the 

OSR (OSR dataset), and a larger dataset including the same 

80 strains plus additional 406 from public databases (Global 
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dataset). While the cgMLST and coreSNP phylogenetic trees 
obtained for the OSR dataset were comparable (Fig. 3), the 
two trees for the Global dataset present important di�erences 
(Fig. 4). cgMLST wrongly placed CG258 strains, in particular 
‘ST258_Clade1’ and ‘ST512/ST258_Clade2’ strains (Fig. 4). 
�e ST258 emerged a�er a ~1 Mb recombination [52]. �en, 
a second omologous recombination of a ~215 kb genomic 
region, including the capsule polysaccharide synthesis (cps) 
locus, divided the ST258 in two sub- clades: ST258_Clade1 
and ST258_Clade2 (which include also the ST512) [53]. �e 
cps locus is a major source of variability in K. pneumoniae 
and the wzi gene is used to di�erentiate capsular types. For 
instance, bla

KPC-3
 and wzi154 variants are strongly associated 

with ST258_Clade2, while bla
KPC-2

 and wzi29 variants are 
associated with ST258_Clade1 [51, 54]. �e correct attri-
bution of a strain to ST258 Clade1 and Clade2 could be of 
pivotal epidemiological importance.

Considering that both Global trees are generated using the 
same evolutionary model (GTR), the misplacement of CG258 
strains in the cgMLST Global tree could be due to the low 
number of cgMLST genes localized inside the �rst half of the 
~1 Mb recombined region described by [53], which likely 
contains genetic information important to correctly recon-
struct the phylogenetic tree of the CG258 (see Fig. S4).

In conclusion, we showed that, in our setting, both cgMLST 
and coreSNP analyses are more discriminatory than PFGE. 
Both are suitable for epidemiological investigations nonethe-
less we suggest to perform clustering analysis considering a 
range of thresholds or combining both the methodologies. 
�e most important di�erence between coreSNP and cgMLST 
is that coreSNP- based approach shows a higher capacity to 
perform a proper CG258 clade discrimination compared to 
cgMLST in phylogenetic reconstructions.
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