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Abstract. Geoscientific measurements often provide time

series with irregular time sampling, requiring either data re-

construction (interpolation) or sophisticated methods to han-

dle irregular sampling. We compare the linear interpolation

technique and different approaches for analyzing the corre-

lation functions and persistence of irregularly sampled time

series, as Lomb-Scargle Fourier transformation and kernel-

based methods. In a thorough benchmark test we investigate

the performance of these techniques.

All methods have comparable root mean square errors

(RMSEs) for low skewness of the inter-observation time dis-

tribution. For high skewness, very irregular data, interpo-

lation bias and RMSE increase strongly. We find a 40 %

lower RMSE for the lag-1 autocorrelation function (ACF)

for the Gaussian kernel method vs. the linear interpolation

scheme,in the analysis of highly irregular time series. For the

cross correlation function (CCF) the RMSE is then lower by

60 %. The application of the Lomb-Scargle technique gave

results comparable to the kernel methods for the univariate,

but poorer results in the bivariate case. Especially the high-

frequency components of the signal, where classical methods

show a strong bias in ACF and CCF magnitude, are preserved

when using the kernel methods.

We illustrate the performances of interpolation vs. Gaus-

sian kernel method by applying both to paleo-data from four

locations, reflecting late Holocene Asian monsoon variabil-

ity as derived from speleothem δ18O measurements. Cross

correlation results are similar for both methods, which we
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attribute to the long time scales of the common variabil-

ity. The persistence time (memory) is strongly overes-

timated when using the standard, interpolation-based, ap-

proach. Hence, the Gaussian kernel is a reliable and more ro-

bust estimator with significant advantages compared to other

techniques and suitable for large scale application to paleo-

data.

1 Introduction

Paleoclimate proxy data sample past regional and global cli-

mate variation. Through their analysis we can attempt to

understand past environmental conditions and changes. In

order to separate local from global effects, measures of asso-

ciation like linear correlation and cross spectral density esti-

mation are traditionally employed to analyze these records.

A crucial problem with these records it their irregular sam-

pling in time due to the complex sedimentation/ accumula-

tion rate. However, standard methods can not be applied

when timescales and resolutions are different. This is not

a problem in the geosciences only, as irregular observation

of continuous-time processes also occurs in the detection of

biomedical rhythms (Schimmel, 2001), astronomy (Edelson

and Krolik, 1988; Scargle, 1981, 1982, 1989) or turbulence

research, where the velocity of the flow can only be measured

if seeding particles pass a measurement volume (Broersen

et al., 2000; Harteveld et al., 2005). When our aim is to re-

construct the linear auto- or mutual dependencies of the un-

derlying processes from the observations, we can estimate

either (cross-) power spectra or correlation functions, as both

are related to each other by the Fourier transform (Chatfield,
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2004). The irregular sampling of the time series makes direct

use of the standard estimation techniques of association mea-

sures impossible, as they rely on regular observation times.

For (cross-) power spectral density estimation, standard lin-

ear interpolation of these irregular observations onto a regu-

lar sampling causes an additional bias towards low frequen-

cies in power spectral density (PSD) estimation (Schulz and

Stattegger, 1997).

Historically, there are several approaches to overcome this

problem. The concepts can be classified into four cate-

gories: (a) direct transform methods, (b) slotting techniques,

(c) model-based estimators, and (d) time series reconstruc-

tion methods (Broersen et al., 2000).

The Lomb-Scargle (LS) periodogram, introduced for use

in astronomy (Scargle, 1981, 1982), is a well-known direct

transform method that computes a least squares fit of sine

curves to the data. The obtained least squares spectrum de-

tects peaks at high frequencies but turned out to be severely

biased for turbulence spectra (Broersen et al., 2000) which

do not possess periodic components. If the underlying as-

sumption of least squares optimization, that the noise in the

data is normally distributed, is fulfilled, then LS is equivalent

to the Maximum-Likelihood estimate. Like all least squares

techniques, the estimator is not robust in the presence of out-

liers. This is illustrated by the limitations of the method in

the application to bimodal rhythms and signals with isolated

outliers (Schimmel, 2001).

Standard slotting techniques determine the correlation

function by binning all available products in the lag domain,

so that observations only contribute to the correlation func-

tion at a lag if their observation time difference deviates less

than half the lag bin width from the considered lag. This

technique was proposed by Mayo in 1978 and further elabo-

rated by Edelson and Krolik (1988). It has become popular in

velocimetry (Broersen et al., 2000) and is frequently applied

in astronomy (Böttcher and Dermer, 2010; Fan et al., 2010;

Nieppola et al., 2009; Zhang et al., 2010). The disadvantage

of this technique is that, without post-processing, the correla-

tion function estimates are not necessarily positive semidefi-

nite and the spectra computed from their Fourier transform

can show negative power. Stoica et al. (2008), therefore,

proposed a weighting technique for autocorrelation estima-

tion which weighed observations based on a sinc kernel and

claimed that it yielded positive semidefinite results. In their

review, Babu and Stoica (2009) also showed the application

of other kernels in the time domain, including Laplacian and

Gaussian kernels. The distribution of sampling time errors

in time series reconstruction from paleo-archives is often as-

sumed to be Gaussian, which, we believe, intuitively sup-

ports its use in time domain analysis. Mudelsee (2010) pro-

posed two techniques to estimate the correlation coefficient

that he terms “binned correlation” and “synchrony correla-

tion”. “Synchrony correlation” consists of using the percent-

age of pairs of observations in the different time series that

have the smallest measurement time difference, treat them

as if they were observed coevally and calculate the correla-

tion coefficient. “Binned correlation” essentially resamples

the data into time bins on a regular grid that are assigned

the mean values of the observations within these bins. Using

these regular, reconstructed time series, the standard correla-

tion estimator can be applied. We do not employ these two

techniques because both do not utilize all available obser-

vations individually, which means loss of information. Also,

since the standard estimator is used for calculation of the cor-

relation coefficient, binning – or resampling – is problematic

when data gaps are present and we want to estimate the cor-

relation function.

Model-based estimators fit a model to the time series, the

spectra or the ACF, which requires prior knowledge about

the actual process (cf. Harteveld et al., 2005 and references

therein), a prerequisite we typically cannot meet due to the

heterogeneity and complexity of geophysical processes.

The fourth group of estimators resamples the data (through

some kind of interpolation) in order to create time series on a

regularly spaced grid, which then can be analyzed using the

standard FFT-based estimators. The most frequently used

technique in geophysical time series analysis is linear inter-

polation. Paleo data often has rather large data gaps and it is

controversial if, when and how missing observations can be

appropriately approximated. For standard interpolation (e.g.

linear, akima-spline and cubic-spline) a significant reduction

in variance toward the high-frequency range of the estimated

power spectrum occurs in the analysis of irregularly sampled

data (Schulz and Stattegger, 1997). When we are interested

in phenomena on short timescales (compared to the mean

sampling interval), such effects should be considered, and if

possible, avoided.

Without objective performance tests of these estimators,

application of specific methods is a matter of taste, but the

chosen routine may not be the optimal method available.

Therefore benchmark tests comparing various methods are

crucial. One study, conducted for the estimation of power

spectral density from flow velocimetry data in an engineering

background, has been performed by Benedict et al. (1998).

The test cases exhibited flat or simple exponentially decreas-

ing spectra or contained a single deterministic sinusoidal

component. They are therefore not nearly as complex as

spectra in geophysical time series analysis typically are. Fur-

thermore, they used a Poisson sampling scheme, which is

reasonable in measurements with detector dead time, but less

justified for paleo records.

In this paper we first review the methods that are or could

reasonably be applied in the estimation of correlation func-

tions of geophysical time series. This encompasses the stan-

dard approach, re-sampling by means of (linear) interpola-

tion followed by a FFT-based routine, the LS periodogram,

the slotting technique and kernel-weighted estimators.

We then – for the first time to our knowledge – compare

and evaluate systematically the performance of methods suit-

able for estimating correlation functions of geophysical time
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series under the presence of varying sampling schemes, and

we specifically quantify the extent and direction of estimator

variance and bias due to sampling irregularity. We do this

using a newly developed testing scheme, based on simulated

time series with increasing inter-sampling time irregularity

but constant mean sampling rate. In a last step we apply

the methods to real proxy data from the Asian summer mon-

soon region, we evaluate the consistency of the results with

respect to the synthetic tests and validate our ACF results

further by the application of an independent least squares es-

timator for the persistence time of autoregressive processes

of order 1 (AR(1)) (Mudelsee, 2002).

2 Methods

Assuming that two time series xt and yt were observed from

stationary stochastic processes at unit time intervals, their

sample CCF ρ̂(k) gives an estimate of the strength of a pos-

sible linear association between the processes behind the ob-

servations at each possible lag number k. It is defined as

ρ̂xy(k) = ρ̂xy(k1τ) = γ̂xy(k)/σ̂x σ̂y (1)

= 1

σ̂x σ̂y(N −k)

N−k
∑

t=1

(xt − x̄)(yt+k − ȳ) . (2)

Here, γ̂xy(k) is the sample cross-covariance at lag k, N

is the number of observations, σ̂x , σ̂y the sample standard

deviations of the processes and x̄, ȳ are the estimated mean

values of the time series (Chatfield, 2004). The spacing of

the CCF lags, 1τ , equals – in this standard definition – that

of the time series xt and yt , 1τ = t
x,y

i − t
x,y

i+1.

The discrete Fourier transform of the sample CCF is the

sample cross spectral density function or cross spectrum and

vice versa. The power spectrum can thus be estimated in

two ways, either by computing the discrete Fourier trans-

forms of the input time series and multiplying them after

complex-conjugating one of them, or by estimating the CCF

and Fourier transforming it (cf. Chatfield, 2004 for more de-

tails). We denote all estimators in the definitions in their re-

spective sections by ρ̂, for the sake of simplicity.

2.1 The resampling approach for irregular time series

In the case of irregularly sampled time series, the classical

definition, as illustrated in Fig. 1a, can not be readily ap-

plied. An irregularly spaced time series is a pair (tx,x) of

tuples of common length Nx , where tx1 < tx2 < ... < txNx are

the time points and xi is the value at time txi . For simplic-

ity we have transformed the time variable to get a normal-

ized mean increment of 1 by dividing by the mean sam-

pling period: txi = t
orig
i /1tx and we will use this notation

in the following. The differences between observation times

1txi = txi − txi−1 are not any more constant and the mean of

their distribution is the mean sampling time 1tx . When we

A Regular correlation estimation

B Slotted estimator

C Weighted estimator

Fig. 1. Principles of correlation function estimation: (A) shows the

classical estimator, where the correlation ρ̂xy(k) is given by a mean

over products of zero-mean observations a lag k apart. (B) For irreg-

ularly sampled time series, the slotted estimator computes ρ̂xy(k) as

the mean over all products in bins whose centers are a lag k apart.

(C) Non-rectangular correlation uses the weighted mean over all

available products with the weight maxima a lag k apart.

consider irregularly sampled time series (tx,x), (ty,y) of

second-order stationary processes with zero mean, these have

to be resampled onto a common regular time grid (tx,y) with

constant time increments tx,y(n)− tx,y(n−1) = 1tx for all

n = 1,2,...Nx,y . The grid spacing we will use is the larger

of the mean sampling intervals of the time series.
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We restrict ourselves in this analysis to the linear inter-

polation technique, as the effects of other standard routines

are not much different in their variance reduction towards the

high-frequency end of the spectrum (Schulz and Stattegger,

1997). A resampling method which does not result in a re-

duction in variance is the nearest neighbor technique, where

the function is approximated at the desired grid points by

the value of the observation closest in time. This leads to a

shifting bias (Broersen, 2009) which, in the presence of large

gaps in the data, can be rather large. We therefore do not em-

ploy this scheme. After resampling, the standard FFT-based

routines can be employed.

2.2 Lomb-Scargle approach

The Lomb-Scargle approach to the spectral estimation of ir-

regularly sampled data can be understood as a least squares

fitting of sinusoids to data (Scargle, 1981). The Lomb-

Scargle Fourier transform (LSFT)

LSFTx(ω) = F0(ω)

Nx
∑

i=1

(Axi cos ω t̂xi + iBxi sin ω t̂xi ), (3)

uses the explicit observation times t̂xi = txi −τ x(ω) shifted by

the constant (complex) phase shift

τ x(ω) = 1

2 ω
tan−1

(

∑

i

sin2 ωtxi /
∑

i

cos2 ωtxi

)

, (4)

to ensure time invariance of the LSFT (Schulz and Stattegger,

1997). The coefficient F0

F0(ω) = 1√
2

exp(−i ωtx1 −τ x(ω)) (5)

allows for a time shift in the alignment of the two time series

in bivariate spectral analysis. The amplitudes A and B are

defined as

A(ω) =
(

∑

i

cos2 ωt̂xi

)−1/2

, B(ω) =
(

∑

i

sin2 ωt̂xi

)−1/2

. (6)

In the univariate case, the well-known Lomb-Scargle peri-

odogram is then given by

P̂x(ω) = LSFTx(ω)LSFT∗
x(ω) (7)

The (bivariate) cross spectrum can be estimated as

P̂xy(ω) = LSFTx(ω)LSFT∗
y(ω) (8)

which can be inverted, using the Fourier transform (Scargle,

1989), to get the cross correlation coefficient estimate

ρ̂xy(k) = F−1[P̂xy(ω)]. (9)

The squared absolute value of the LSFT gives the widely

known and used LS periodogram (Schulz and Stattegger,

1997). The choice of the frequencies ω is described in Scar-

gle (1989) and we adopt the recommended values for the

fundamental frequency ω0 = ωmin = π(Nxy−1)
(tmax−tmin)N

xy and maxi-

mum frequency ωmax = 2π
1txy . In the bivariate case we define

the observation times tmin and tmax as the lower and upper

bounds of the overlapping part of both time series xt and

yt , otherwise, in the univariate case, minimum and maxi-

mum observation time are used. 1txy = max(1tx,1ty) is

the common sampling rate we define in the bivariate case.

The number of frequencies Nf = ofac·Nxy determines the

spacing of the frequency vector. According to Hocke and

Kämpfer (2009) there is no principal limit, the oversampling

factor ofac > 1 is regarded as a smoothing factor, although

the number of independent frequencies is constant. We use

ofac = 2, unless otherwise stated.

A thorough introduction to bivariate Lomb-Scargle spec-

tral estimation was given by Schulz and Stattegger (1997).

The use of the technique for correlation function estimation,

however, has not yet been explored, though it was already

proposed in Scargle (1989).

2.3 Correlation slotting

The sample correlation function ρ̂xy(k) at a lag k is cal-

culated by averaging over the lagged products of the

standardized observations. For irregular time series the

inter-sampling times vary, and without resampling Eq. (1)

cannot be applied. An alternative is the slotting or

Edelson and Krolik technique (Edelson and Krolik, 1988;

Mayo, 1993). Its key idea is to calculate the cross-products of

all available, standardized, observations and discretize them

into bins according to their sampling time differences as can

be seen in Fig. 1b. The technique was developed in fluid me-

chanics and applied in astrophysics. ρ̂(k1τ) at the lag k1τ

is then defined as

ρ̂(k·1τ) =
∑Nx

i=1

∑Ny

j=1xiyjbk(t
y

j − txi )
∑N

i=1

∑N
j=1bk(t

y

j − txi )
(10)

and the kernel bk(t
y

j −txi ) selects the products whose time lag

is not further than half the bin width from k1τ :

bk(ti − tj ) =
{

1 for||(tj − ti)|−k| < 1
2

0 otherwise.
(11)

Note that the observations have to be standardized to zero

mean and unit variance before the analysis. We set the lag bin

width 1τ to be equal to 1txy , and since we divide the ob-

servation times by this mean sampling interval, we can omit

it in the formulae above, for easier readability (cf. Sect. 2.1).

We do not choose this width arbitrarily but rather in the con-

text of the desired time resolution of the CCF, more on this

in Sect. 2.4.

There are, however, several disadvantages of this tech-

nique, primarily a high variance of the estimator (Babu and

Stoica, 2009; Benedict et al., 2000; Harteveld et al., 2005)
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Fig. 2. Kernel-based estimators effectively “use” observations

whose inter-sampling time difference is close to the lag for which

linear correlation is estimated. Slotting (the rectangular kernel)

chooses observations within an interval, Gaussian and sinc kernel

weigh the products smoothly according to the difference between

observation interval and desired lag. Kernels were scaled to the

standard choice for width parameter h (cf. Table 1, Fig. 3).

due to which we will not use this method in the following,

but rather apply related, non-rectangular kernels. It also does

not always provide positive semidefinite covariance matrix

estimates, a problem which can be overcome by “fourier fil-

tering”. We discuss this further in Sect. 2.5.

2.4 Non-rectangular kernels

In analogy to the slotting approach, and taking it further,

weighted averaging of the observations can be performed us-

ing symmetric, smooth density functions that tend to zero for

time differences much larger or smaller than the desired lag

k (Hall et al., 1994). The similarity is illustrated in Fig. 1c.

These requirements are for example met by the sinc kernel

(Stoica and Sandgren, 2006) but also the Gaussian kernel

(cf. Table 1) as can be seen in Fig. 2. Instead of binning the

observations into discrete sets, the weights prevent a sudden

cutoff in the time domain.

There is no theoretical definition of the effective width of

the weight functions. We decide to scale them to a kernel

width of the mean sampling rate for two reasons. (i) This

choice ensures that – for non-rectangular kernels – observa-

tions at (near-)regular times are rated higher than those that

are further away, but are still included in cases where little

information is available. (ii) In a trade-off between the loss

of resolution and control of estimator variance, the desired

resolution of the correlation function also plays a role, as a

kernel width choice larger than the lag spacing would result

in mixing information for adjacent lags. The width param-

eters for the kernels and their relation to the mean sampling

rate were confirmed as empirical optima in case of irregular

Table 1. Kernels b(d) used in this paper. d denotes the distance

between the inter-observation time 1t
xy
ij

and k1τ , k denotes the

k-th lag. The standard width parameter h is chosen to result in a

main lobe width of 1txy , the mean sampling interval or common

sampling period in the bivariate case.

Kernel

(reference)

b(k−1t
xy
ij

)

= b(d)

Standard

choice for

h

Rectangle; Edelson

and Krolik (1988)

{

1 if d ≤ h/2,

0 if otherwise.
1txy/2

Sinc; Stoica and

Sandgren (2006)

1
N

sin(πhd)
πhd

1txy

Gaussian;

Bjoernstad and

Falck (2001)

1√
2πh

e−|d|2/2h2
1txy/4

0 0.5 1 1.5 2 2.5 3 3.5
0.1

0.15

0.2

0.25
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0.45
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Kernel width h 

R
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S
E

 ρ
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1
)

 

 

slot

Gauss

sinc

Fig. 3. Influence of varying kernel width h on the RMSE of ρ(1),

using the kernel estimators (cf. Table 1, Fig. 2). 100 Realizations of

sinusoids with random phase in colored noise (30 %) were sampled

using Ŵ−distributed sampling intervals (sk = 2.85). (cf. Sect. 3.3).

time series (cf. Fig. 3). Other parameter choices might, how-

ever, also be sensible, depending on the nature of the time

series and the statistic to be estimated.

2.5 Positive semidefiniteness of the estimated function

In connection with the slotting-based covariance estimation,

the issue with the possible lack of positive semidefiniteness

of the correlation estimates has been discussed in Broersen

(2002), Harteveld et al. (2005) and Stoica and Sandgren

(2006). By Bochner’s theorem, positive semidefiniteness of

the correlation function is necessary and sufficient to ensure

non-negativity of the Fourier transform estimate of ρ̂(t). A

function ρ̂(k) is positive semidefinite if

www.nonlin-processes-geophys.net/18/389/2011/ Nonlin. Processes Geophys., 18, 389–404, 2011
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∫ ∫

ρ̂(l− t)w(t)w(l)dt dl ≥ 0 (12)

for all integrable functions w, and only if this holds true ρ̂(k)

is a possible correlation function. For discrete, short, and

regularly sampled time series, using Eq. (10) and a simple,

integrable function for w, we can find this condition violated

for all kernel methods. This problem can, amongst others,

be solved by a technique called “Fourier filtering”, which

involves Fourier-transforming the correlation function esti-

mate, setting any negative power estimates to zero and apply-

ing an inverse FFT afterwards to obtain a positive semidef-

inite correlation function estimate (Babu and Stoica, 2009;

Hall et al., 1994). Another routine could involve using the

absolute value of the power spectrum, instead of setting neg-

ative estimates to zero. Also, positive semidefinite matrices

have non-negative eigenvalues, which is another means to

test this property, and the same modifications as for the power

spectra could be applied here. It should be kept in mind, how-

ever, that, due to numerical problems, even the “unbiased”

1/(N −1) correlation estimator can result in negative power

estimates. When the positive semidefiniteness of the correla-

tion matrix is essential, Fourier filtering should be performed

and/or the eigenvalues of the matrix should be checked.

2.6 Quality of performance measures

Our aim is to evaluate which of the approaches listed above

yields the best results for the estimation of ACFs and CCFs

for geophysical time series. The performance of the esti-

mators can be evaluated with respect to the “true” expected

functions. This can of course only be done for modeled or

synthetic time series where we can calculate ACFs and CCFs

exactly.

To evaluate the different estimators we calculate the root

mean square error (RMSE) of the estimator θ̂ for a statistic

θ . θ can be e.g. the cross correlation function at lag k, ρxy(k).

The RMSE is given by

RMSE(θ̂) =
√

E[(θ̂ −θ)2] =
√

var(θ̂)+bias(θ̂)
2

(13)

and incorporates both variance and bias of the estimator, i.e.

its variability and its systematic deviation from the true value.

To estimate the RMSE we generate a large number of time

series of a given signal type and sampling scheme and com-

pute the “target statistic” θ̂ for each. The deviation between

the mean of these many estimates and the ‘true’ function is

the approximate bias of the estimator, together with the vari-

ance around this mean we can estimate the RMSE.

To evaluate the contribution of the sampling irregularity

to the estimation error, we perform the analysis for differ-

ent sampling schemes, first for regular sampling and then for

more and more irregular sampling. This we do by drawing

inter-sampling-time intervals from the Gamma-distribution

and concatenating them into a time line for which we then

generate a corresponding signal. Given the shape parame-

ter α and the scale parameter β, the mean µ of the Ŵ(α,β)-

distribution is given by µ = αβ, the variance by σ 2 = αβ2

and the skewness by sk = 2/
√

α. For low skewness (in our

case the lowest value was 0.1) the distribution is close to nor-

mal (cf. Fig. 7b). Since the higher order moments depend

only on the shape parameter α, we can vary the scale param-

eter β in a way to keep the mean constant while increasing

skewness and variance. We will only give the skewness pa-

rameter in the following, as the variance σ 2 = (2β/sk)2 =
(2µ/(sk α))2 is uniquely determined in our parameter con-

figuration. A distribution with a skewness of 2.85 (Fig. 7b)

results in a time series with large gaps, as large values be-

come more likely in more and more skewed sampling inter-

val distributions.

3 Comparison for synthetic records

To assess the adaptability and suitability of the different es-

timators, we perform a number of tests on artificially gen-

erated discrete signals for which we know the “true” ACFs

and/or CCFs of the underlying processes. For each signal

type we first estimate the RMSE in the case of regular sam-

pling. Then we create time series with Ŵ-distributed inter-

observation times with increasing skewness. Since the time

vectors are artificial, they do not need to have an actual unit,

but we assume that time is measured in years.

3.1 Sinusoids with random phase

Using techniques that are not (yet) fully established, our first

concern is to make sure that the results for the standard, reg-

ularly sampled case are consistent with those from the stan-

dard estimators. Therefore we sample a simple signal, a su-

perposition of three sinusoids:

x(t)=
3
∑

i=1

sin(ωi t +2i,n) (14)

with ωi = 2π
Ti

, Ti = (18,21,41) yr at a regular rate of 1/4

years. The phase variable 2i,n is randomly drawn from a

uniform distribution on (0,2π), making this a sample from a

stationary stochastic process. The true ACF is then a super-

position of cosine functions ρxx = 1/2
∑3

i=1 cos(ωi), irre-

spective of the relative phases of the signal components. The

length of the simulated time series is 1000 yr and we evaluate

the function for 200 lags. Sample time series, mean ACF and

power spectral density (PSD) of the mean ACF are depicted

in Fig. 4. The kernel estimators, the LS periodogram as well

as the “classical” method perform comparably well with a

RMSE below 2 % (see Fig. 5, left columns) in the regularly

sampled case.

We now use irregularly sampled observation times

and perform a stepwise increase in sampling distribution
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Fig. 4. Autocorrelation analysis of synthetic signals: for a regularly sampled combination of sinusoids (cf. Eq. 14) we give a sample time

series (a), the sampling interval probability density (b), the expected correlation function (c) and the corresponding power spectrum (d)

determined from 100 realizations of sinusoid time series with random phase arguments. Legends for each row are given in the right panels.

All estimators perform equally well.

Fig. 5. Mean RMSE for the ACF estimation (lags 1–3) using lin-

ear interpolation, Gaussian or sinc kernel or the inversion of the

Lomb-Scargle periodogram of noise-free sinusoids given for reg-

ular, gamma-distributed and mildly irregular (skewness sk = 0.1)

resp. very irregular (sk = 2.85) sampling. Errorbars give the stan-

dard deviation of the estimate, calculated using 1000 bootstrap iter-

ations.

skewness (as described in Sect. 2.6). For skewness sk = 0.1

the RMSEs are only slightly higher (Fig. 5, middle columns),

but for a skewness sk = 2.85 the RMSE is as high as 40 % for

interpolation and 35 % for the LS method. The estimated

RMSE for the Gaussian kernel method, is rather small com-

pared to that, with an approximate 12 %, lower than that

of the sinc kernel method (23.5 %). We have increased the

skewness in steps of 0.25 from sk = 0.1 to sk = 2.85 and note

that the RMSE of the ACF seems to be increasing almost lin-

early for all the methods. For the LS estimate it jumps in the

beginning, from 5 % to ≈ 20 %, and continues to increase at

a rate of 9 % per unit skewness, with the breakpoint occur-

ring at a skewness of 0.35. The RMSE of the interpolation

followed by the FFT-based estimator (denoted “linint” in the

figure legends) increases at a faster overall rate than all the

other methods (6.5 % per unit skewness). The Gaussian ker-

nel method has the lowest RMSE at high skewness and the

lowest increase with respect to the estimate for regular sam-

pling.

To investigate the reason for the differences between the

methods further, we evaluate the RMSE of the power spectra

obtained from the Fourier-transformed ACFs at the highest
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Fig. 6. Autocorrelation analysis of synthetic signals: for an irregularly sampled combination of sinusoids (cf. Eq. 14) we give a sample

time series (a), the sampling interval probability density (b), the expected correlation function (c) and the corresponding power spectrum (d)

determined from 100 realizations of sinusoid time series with random phase arguments. Legends for each row are given in the right panels.

High sampling irregularity leads to a variance reduction in the ACF for LS and interpolation.

input signal frequency ω = 2π/18 (c.f. Figs. 4d and 6d). We

find, that with increasing skewness, the RMSE of this peak

increases from around 3 % to 10 % for interpolation and the

LS correlation function estimate, while for sinc and Gaussian

kernel it goes from < 1 % to approximately 2 %. Estimating

the bias of this peak, we observe that the comparatively high

RMSE for interpolation and LS method corresponds to a neg-

ative bias increasing linearly from 5 % to > 50 % with respect

to the expected peak power at the high-frequency component.

In contrast to that, the bias is nearly constant for the kernel

methods, the slight increase in RMSE must therefore be due

to an increase in variance. This lack of power in the high

frequency component of the estimated spectrum is accompa-

nied by a positive bias for the lowest frequency component

ω = 2π/100 (results not shown).

3.2 Autoregressive processes

To understand the quantitative and qualitative effect of the

different estimation techniques on the short-term correlative

properties (e.g. the persistence time, the lag at which the ACF

has dropped to 1t/e), we use AR(1) processes generated

at high time resolution and then re-sample the observations

onto the desired irregular sampling times. We perform the

same simulations as before, first evaluating for regular sam-

pling and then, for gamma-distributed inter-sampling inter-

vals, where we subsequently increase the skewness of the

interval distribution. The driving process is given by

X(ti) = φX(ti−1)+ξi = e−1t/τX(ti−1)+ξi (15)

and for bivariate correlation analysis we sample a second

process driven by the first at lag ℓ:

Y (ti) = αX(ti−ℓ)+εi . (16)

ξ and ε are uncorrelated Gaussian distributed noise pro-

cesses with a variance σ 2
ξ , σ 2

ε such that the overall pro-

cess variances σ 2
x = σ 2

ξ /(1 − φ2) and σ 2
y = σ 2

ε + (α2σ 2
x ).

We choose the AR(1) coefficient as φ = 0.7, corresponding

to a persistence time τ = −1t/lnφ, the coupling strength

α = 0.5, coupling lag ℓ = 1 and generate our time se-

ries (e.g. Fig. 7a) following the different sampling schemes

(e.g. Fig. 7b). Then we set out to estimate φ and α from the

time series.
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Fig. 7. Cross correlation analysis for two irregularly sampled signals (cf. Eqs. 15, 16) from different sampling schemes: Sample time series

(a) and sampling time interval histograms (b), the mean ACFs out of 100 realizations (c) and the mean estimated CCF (d). Legends for

each row are given in the right panels. A positive bias in interpolation ACF estimates and a negative bias in the interpolation and LS CCF

estimates is observable for increased sampling irregularity.

In the estimation of the AR(1) coefficient φ, the RMSE for

interpolation increases from 2 % to 17 % and the error for the

sinc-kernel increases from 6 % to 13.5 %. The LS technique

results in the largest increase for high skewness with a RMSE

of 52 %. The Gaussian kernel method remains more accurate

with an increase from 2 % to 8.5 %.

The coupling strength α is the true value of the CCF at

the coupling lag ℓ. A typical application in the geoscience

context is the estimation of the degree of similarity for time

series from different sources, with different sampling prop-

erties. Analyzing two time series of inter-sampling time dis-

tribution skewnesses skx =0.1 sky =2.85, we find that the

CCF estimation at lag ℓ = −1 has a negative bias for all tech-

niques. The bias of the LS technique is strongly negative,

underestimating the true correlation by more than 65 %. Lin-

ear interpolation results in a 30 % lower estimated coupling

strength, the sinc kernel method in 15 % and the Gaussian

kernel estimate is negatively biased by 8 % with respect to

the “true” coupling strength of 0.5 (Fig. 7e).

Looking at the performance under the increasing sampling

time distribution skewness of time series yt (keeping skx

constant at 0.1), we find that the RMSE of the estimated α

Fig. 8. Mean RMSE for the ACF estimation (lag 1) using linear

interpolation, Gaussian or sinc kernel or the inversion of the LS

Periodogram of time series from AR(1) processes (cf. Eqs. 15),

given for regular, gamma-distributed and mildly irregular (skew-

ness sk = 0.1) resp. very irregular (sk = 2.85) sampling. Errorbars

give the standard deviation of the estimate, calculated using 1000

bootstrap iterations.
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Fig. 9. RMSE for the CCF estimation (at the lag of coupling) us-

ing linear interpolation, Gaussian or sinc kernel or the inversion of

the LS Periodogram of time series from coupled AR(1) processes

(cf. Eqs. 15, 16) – given for regular and two gamma-distributed sam-

plings with mildly irregular (skewness skx and sky = 0.1) and very

irregular (skewness skx = 0.1, sky = 2.85) inter-observation-times.

Errorbars give the standard deviation of the estimate, calculated us-

ing 1000 bootstrap iterations.

increases for all methods, but least for the Gaussian kernel

(Fig. 9).

3.3 Sinusoids with random phase in colored noise

For irregular time series, the effect of interpolation on the

ACF estimation of noise-free sinusoids is that it seems to

suppress high-frequency variability. For red-noise signals we

find that it, similarly, leads to an overestimation of autocor-

relation. To generate more “realistic” signals, we synthesize

the above-mentioned sinusoidal signals (Eq. 14) with varying

amounts of additive red (AR) noise:

x(t) = 1−s

3

∑

i

sin(ωi t +2i,n)+sζi . (17)

The sinusoidal components vary with the frequencies ωi =
2π
Ti

, Ti = [18,21,41] years. The time vector t is concatenated

into a time line from random variables drawn from a gamma-

distribution with µ = 4 and sk = 0.1. The phase variable 2i,n

is, for each realization n, randomly drawn from a uniform

distribution on (0,2π). This makes the time series samples

from stationary stochastic processes. ζi represents a red noise

process (cf. Eq. 15) whose variance s we vary in the range

[0,1]. The persistence time τ is, for this intercomparison,

fixed at τ = 4 (corresponding to φ ≈ 0.78). Since we adjust

the overall variance of the process to equal unity, the signal-

to-noise ratio varies in proportion with s.

The “true” ACF is then given by

ρ(k) = (1−s)/3
∑

i

cos( ωi |k|)+s·exp(−|k|/τ) . (18)
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Fig. 10. Effect of the Signal-to-Noise ratio on the RMSE of the

ACF for skewed (sk = 2) inter-observation times. The share of the

noise variance in the overall process variance increases from left to

right (cf. Eq. 17).

Varying s and using irregular time series (sk = 2) we find

that the mean RMSE of ρ̂x(1) estimated for the Gaussian ker-

nel method increases slightly from 5 % for sinusoidal signals

(s = 0, cf. Fig. 10), to 7 % for pure red noise (s = 1). At

the same time, the RMSE for the interpolation-based routine

rises from 10 % to 15 %, that for the LS-technique decreases

from 27 % to 19 %. The sinc kernel performs similar to the

interpolation routine for sinusoidal signals with up to 30 % of

noise, but has a higher RMSE for noise-dominated signals.

For irregular time series with low inter-sampling-time distri-

bution skewness (sk = 0.1) we find that the RMSE is maximal

for medium signal-to-noise ratios, i.e. it is lower for purely

deterministic and purely random time series than for the mix-

ture of both (results not shown). For mostly deterministic

time series, s 6 0.5, the LS technique has then the highest

RMSE, while sinc and Gaussian kernel-based methods give

more accurate results. For dominant red noise s > 0.5, the

LS technique gives good results with low RMSE, where at

the same time the performance of the sinc kernel deterio-

rates. The interpolation-based FFT-routine is not the best

choice for irregular time series, irrespective of the signal-to-

noise ratios of the processes generating the time series. The

increased RMSE for interpolation observable for the ACF es-

timates is due to a positive bias for ρx(1). The RMSE of the

kernel-based methods is lower and the ACF bias is constant

and negligible. The high-frequency variability is systemat-

ically underestimated when using interpolation. The higher

the persistence time τ in the AR(1) component, the lower are

the advantages of the Gaussian-kernel based estimator, since

the high-frequency variability in the signal is lower.
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3.4 Summary of the synthetic tests

In all tests we performed in this section, we find that linear

interpolation comes with two systematic effects. Firstly, it

has a positive bias for ACF estimation and secondly, it has a

negative bias in CCF estimation. Both effects become more

severe with increasing sampling time distribution skewness.

The LS technique performed well for the ACF estimation of

slightly irregular autocorrelated time series but not for sinu-

soids. We find the opposite pattern for the sinc kernel: its

RMSEs are low in the application to sinusoidal data – but

high for the ACF of autocorrelated noise processes. The

Gaussian kernel estimates are consistent and have the, or

close to the, lowest RMSEs in all tests. Therefore we recom-

mend the use of the Gaussian kernel-based estimator instead

of – or in addition to – the standard interpolation routine for

irregular time series with positive inter-sampling time distri-

bution skewness, and especially in the presence of observa-

tion gaps.

4 Comparison for paleo data

We will now apply the Gaussian kernel estimator and in-

terpolation followed by the standard FFT-routine to paleo

records from the Asian Monsoon domain, to evaluate pos-

sible differences between the CCF/ACF estimates of these

datasets, depending on the analysis technique.

The Asian monsoon system (cf. Fig. 11) affects a large

share of today’s world population. Zhang et al. (2008) find

its strength in the past 1800 yr to be correlated with agricul-

tural and cultural prosperity, its weakening with periods of

unrest and instability. It can be divided into the Indian and

the East Asian monsoon subsystems (ISM and EASM), that

transport moisture from different sources. Oxygen isotope

ratios (δ18O) from cave records have been used to study the

Holocene variability of monsoonal precipitation over China

and India. While most of them show a millennial-scale

trend, believed to be linked with the decreasing solar irra-

diation through the Holocene (Maher, 2008; Wang et al.,

2005), sources for variability on shorter time scales are de-

bated (Berkelhammer et al., 2010). In an inter-comparison

of four published, acclaimed records of monsoonal precipi-

tation from four different geographical locations we want to

investigate the spatial and temporal consistency of linear de-

pendencies among these time series. Cross-correlation anal-

ysis of monsoon records could give clues to the interrelation-

ships between the different monsoon branches and their de-

velopment with time. Autocorrelation analysis can, amongst

other methods, give insights into the persistence inherent to

the time series and is believed to increase before certain dy-

namical transitions (Scheffer et al., 2009). Persistence time

(cf. Eq. 15) is a characteristic parameter for the time scales

on which these climate processes operate.
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Fig. 11. Map showing the location of the paleo records and the main

wind directions of the Indian and East-Asian summer monsoon sys-

tems. Presently there are three major inflow corridors into Southern

China, through the Bay of Bengal and over Indo-China, through the

South China Sea and from the south east (Liu et al., 2008; Clemens

et al., 2010).

For the late Holocene time span of 387–1100 BP, we

estimate cross correlation and persistence time of four

speleothem δ18O records (cf. Fig. 11), reconstructed from

Dongge cave in southern China (Wang et al., 2005), Hes-

hang cave in central China (Hu et al., 2008), Wanxiang cave

in north-central China (Zhang et al., 2008) and from Dan-

dak cave in southern India (Berkelhammer et al., 2010). The

sample locations lie in different branches of the Asian mon-

soon and therefore enable us to assess spatial variability of

the monsoon system. The data sets have quite different inter-

sampling time distributions, with rather high time resolution

(0.5a–3.9a) and considerable time uncertainties. The details

of the overlapping part of the records, which we will use,

are given in table 2. For all four records, δ18O variations

are interpreted as mainly dominated by precipitation amount

changes, thus reflecting summer monsoon strength (Wang

et al., 2005; Hu et al., 2008; Zhang et al., 2008; Berkelham-

mer et al., 2010).

Prior to correlation analysis we subtract (nonlinear) trends

from the records, that we estimate using a 500a wide Gaus-

sian kernel smoother (high-pass filter), adapted for irregular

sampling. For the standard approach of CCF (ACF) estima-

tion the time series are then interpolated linearly to a regular

grid with spacing of the larger of the mean sampling inter-

vals (a spacing equalling the mean sampling period) of the

respective two time series involved. This means that in case

of the CCF comparison of Dandak and Wanxiang records,

this CCF has a lag resolution of 3.31a, in case we compare

the Wanxiang to the Dongge record the resolution is at 3.92 a.
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Table 2. Mean sampling intervals,variances and skewnesses of the inter-sampling time distributions and number of observations in the

overlapping section of the used paleo proxy records (625 AD–1563 AD).

Record
Mean sampling Skewness No. of

Reference
rate µ1t [a] SK1t observations N

Dandak 0.50 2.95 1874 Berkelhammer et al. (2010)

Wanxiang 3.31 −0.96 284 Zhang et al. (2008)

Heshang 2.34 1.45 402 Hu et al. (2008)

Dongge (DA) 3.92 0.41 241 Wang et al. (2005)

4.1 Results from ACF analysis

First we look at the individual ACFs (e.g. Fig. 12c and d)

and find that the Gaussian estimate shows a much stronger

initial decline than that resulting from interpolation. To in-

vestigate whether this more pronounced decline, this lower

persistence time τ (cf. Eq. 15), is due to a negative bias of

the kernel method or to a positive bias of the interpolation we

perform the additional least squares analysis (LSq). The esti-

mator, implemented similar to that in Mudelsee (2002), fits a

simplified Ohrnstein-Uhlenbeck process, a continuous-time

AR(1) analog, to the time series. Its estimates are robust with

respect to variations in sampling rates, irregularity and per-

sistence time and show a small, but constant, bias (−10 %)

and variance. We compare four results: from interpolation,

followed by ACF estimation involving the FFT; from inter-

polation, followed by the LSq estimation; from the Gaussian

kernel ACF estimate and from LSq analysis of the original

record (cf. Fig. 13). We find a pronounced overestimation, up

to a factor of two, when interpolation is involved. This is ir-

respective of whether τ was estimated via ACF or the LSq fit.

The Gaussian kernel estimate is generally lower than that of

LSq analysis, but differs by not much, except in the estimate

for the Heshang cave record where it is 50 % lower. We could

relate this to the differences in the respective sampling time

distributions: The Heshang sampling time distribution shows

high skewness and a large mean sampling period, both com-

bining into a source of estimation error. Neither high skew-

ness (Dandak) nor a lower sampling rate (Dongge) alone lead

to such a deviation between the LSq and Gaussian kernel es-

timates, which is in agreement with the results from Sect. 3.

It follows from this, that interpolation causes a strongly

positive bias on persistence and the kernel-based estimate is

slightly negatively biased. Thus, if in an analysis the two es-

timates coincide we could assume the result to be unbiased.

On the other hand, we should exercise caution when the re-

sults from different methods disagree. Persistence times give

a measure of memory in processes and are thus important to

characterize time scales on which climate processes operate.

As we see in this section, interpolation leads to a strong over-

estimation of persistence for irregular time series, with a bias

changing also in relation to the skewness of the observation

time distribution. Caution should therefore be exercised and

additional methods employed when performing autocorrela-

tion analysis of irregular time series.

4.2 Results from cross correlation analysis

Next, pairwise cross correlation functions were calculated for

all four records. Only two combinations resulted in signifi-

cant correlation at zero lag (Fig. 14a). The correlation co-

efficient of 0.29 (−0.17,0.21) for interpolation resp. 0.295

(−0.19,0.27) for the Gaussian kernel at lag zero between the

Wanxiang and Dandak records is significant to the 95 % level

in the two-sided test for zero correlation under the null hy-

pothesis of the time series being sampled from autocorrelated

red noise processes. In the brackets we give the estimated

critical values of the test that were determined using AR(1)

processes (with persistence times based on the LSq estimate)

on the original time axis of the records.

The late Holocene section (387–1325 BP) of the record

from Wanxiang cave correlates also significantly with that

from Heshang cave with a lag zero correlation coeffi-

cient of 0.28 (−0.2, 0.23) based on interpolation and 0.28

(−0.2,0.19) from the kernel estimator. We find that the high-

frequency variability of the estimated correlation function is

more pronounced in the kernel estimate. However, the over-

all shapes of the functions agree well.

The lack of significant correlation between the other

records could have several reasons. One may be that our

estimators did fail to capture the “true” underlying mon-

soon variability common to all records. This is not unlikely,

since there are time uncertainties and local influences to be

taken into account, especially when analyzing records that

are spaced so far apart and reconstructed over such a time

span. It may well be that the strongest commonality be-

tween the records are trends on centennial to millennial time

scales that cannot be reconstructed from a less than 1000 yr

long overlapping section and that possible links operating

on shorter time scales were obscured in the generation pro-

cess. On the other hand, our time section includes the North-

ern hemispheric Medieval Warm Period (MWP, ca. 700 BP–

1000 BP) and parts of the Little Ice Age (LIA, ca. 100 BP–

400 BP), periods where monsoonal circulation seemed to be

stronger (MWP) or weaker (LIA) according to Zhang et al.

(2008).
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Fig. 13. Persistence times of the δ18O records estimated using lin-

ear interpolation ACF estimate, Gaussian kernel ACF estimate and

the least squares fitting of AR(1) processes (denoted by LSq) on

interpolated and original record.

The Asian summer monsoon is a large-scale atmospheric

circulation phenomenon. During northern hemisphere cold

phases, less energy available for its generation might have

led to a weakening of the monsoon. In contrast, warm phases

should have led to a strong circulation which results in an in-

creased influence of the ISM on Chinese precipitation. This

should be observable in an increased correlation between In-

dian and Chinese rainfall variation and, at the same time, an

increased correlation between the δ18O records.

We therefore analyze two time slices (389 BP–700 BP and

700 BP–1100 BP) of the records separately. After signifi-

cance testing – and considering lags of 0 to 30 yr absolute

value –, we find a contrasting picture: while the North-

ern Chinese records correlate with the Indian Dandak record

during the warm phase (MWP), this correlation is insignif-

icant in the colder phase (towards the LIA) that followed

(cf. Fig. 14c). On the other hand, while the southern Chinese

Dongge record correlates with the more northern records

from Heshang and Wanxiang caves during the LIA, this cor-

relation is not significant during the MWP.

This points us towards a more differentiated interpretation

of these correlations, emphasizing the geographical origins

of these cave records. According to the “isotopic zones”

shown in Maher (2008), Feng et al. (1999) and references

therein, Wanxiang cave is located in a zone that is, at present,

dominated by the ISM. Heshang and Dongge cave lie in an
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A Whole time period

Dandak

Dongge

Heshang

Wanxiang
(387 - 1100) BP

B Cold phase with parts of the LIA

Dandak

Dongge

Heshang

Wanxiang
(387-700) BP

C Medieval warm period

Dandak

Dongge

Heshang

Wanxiang
(700 - 1100) BP

Fig. 14. Results from pairwise cross correlation analysis for all records: Red links indicate significant positive cross correlation at or close

to zero lag for the respective records. While in the warm phase of the MWP the Northern Chinese records correlate with the Indian Dandak

record and not with the southernmost Dongge cave record (B), this is reversed in the cold phase after the MWP. The Chinese records then

correlate amongst each other, but not with the Indian Dandak record (C).

“isotopic zone” where both monsoonal branches are influ-

ential. However, Dongge cave lies closer to the southern

zone that is, at present, dominated by monsoonal precipi-

tation from the south east (South China Sea) but not from

the south-west (ISM). Recent investigations show, that even

within southern China, moisture sources and their isotopic

signature, differ orthogonally to these “isotopic zones” (Liu

et al., 2008), pointing at a stronger influence of the South

East monsoon in direction of Dongge cave. We conclude

that during warm phases our results are consistent with these

isotopic zones, since the records from central China corre-

late with the Indian Dandak record. In the cold phases, the

atmospheric circulation might have been different, emphasiz-

ing the south east moisture source for allover China, evident

through a correlation between the Dongge cave record and

the more northern Chinese records and, since we observe no

significant correlation with the Dandak record, less ISM im-

pact.

Interpolation and kernel-based estimation give similar re-

sults. The CCF estimates at and around lag zero were not – or

not significantly – lower for interpolation where a significant

correlation was detected. We believe that this is due to the

long time scales on which these correlations are recorded, as

the advantages of the kernel-based method are larger for low

persistence (cf. Sect. 3).

5 Conclusions

Comparing different methods for analyzing correlations from

irregularly sampled time series, we have found that the

kernel-based method is robust and has a comparable – and

often even lower – RMSE and bias than the traditionally em-

ployed schemes using interpolation in the application to syn-

thetic records, for regular and irregular sampling.

For the interpolation and FFT-based routine we find a four

to seven times increase in RMSE, predominantly caused by

an increase in the absolute value of the bias. This bias is

positive for ACF estimation but negative for CCF quantifica-

tion and its magnitude scales linearly with sampling irregu-

larity.

In all synthetic test cases we studied the Gaussian kernel

was close to or was the estimator with the lowest RMSE.

Its performance was slightly inferior to that of the sinc ker-

nel for sinusoidal time series but significantly better for red

noise ACF and CCF estimation, especially in the application

to records with disparate sampling rates.

We find that the sinc-kernel performs well for ACF estima-

tion of sinusoidal signals. It shows, however, alternating bias

patterns in the ACF for red noise time series, resulting in a

high RMSE comparable to the FFT-based result. This might

be due to the shape of the kernel with its positive and nega-

tive weights, thus emphasizing regular, deterministically re-

current structures that are not present in stochastic processes.

Another reason for the mixed performance could be cutoff

effects, since the kernel effectively presents a rectangular fil-

ter in the frequency domain.

The performance of the Lomb-Scargle periodogram-based

routine showed advantages over interpolation for low skew-

ness time sampling. For very irregular time series, in ACF as

in CCF tests, we found a strong sampling effect resulting in

a large bias.

In all tests we performed on synthetic data, we have found

that linear interpolation comes with two systematic effects:

It shows a positive bias for ACF estimation, and it has a

negative bias in CCF estimation, emphasizing low-frequency

variability at the cost of high-frequency components. Both

effects become more severe with increasing sampling time

distribution skewness and lower persistence in the processes

from which we generate the time series. The Gaussian ker-

nel estimates are consistent with those from interpolation for

regular sampling and have the, or close to the, lowest RMSEs

in all tests.

The estimated persistence time using the Gaussian kernel

shows generally only a small negative bias with respect to

the least squares estimate on the original record. The least
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squares persistence time estimator, which is, fitting an AR(1)

process to the observations, has a constant and low bias for

varying sampling irregularity. Compared to this, interpola-

tion leads to an overestimation of this persistence time by a

factor of two. This difference is especially unnerving as the

frequency of observations recorded through paleo archives

varies in dependence on climatic parameters (e.g. lower ac-

cumulation rates through less precipitation). A change in the

inter-observation time distribution could then lead to an arti-

ficial change in the estimated persistence.

In the cross correlation analysis of the paleo records, the

kernel-based lag-zero cross correlation functions are consis-

tent for interpolation and cross correlation. We believe that

this is due to the short time scales on which the interac-

tions of the monsoon systems are recorded, as the advan-

tages of the kernel-based method are not as pronounced for

records with high persistence. The kernel-based cross corre-

lation functions show more high-frequency variability which

could be investigated through cross spectral analysis. We

do not attempt to characterize it here, since this is outside

the scope of this paper. The bias effects from interpolation

could cause problems in the evaluation of phenomena emerg-

ing on time scales close to the actual mean sampling rate.

This is where the kernel methods show significant advantages

and especially the Gaussian kernel correlation method can

provide high-resolution, robust estimates of time-dependent

cross correlation coefficients.

In our cross correlation analysis of four Asian monsoon

records in the time interval of 387 BP–1100 BP, we have

found significant evidence that the Indian summer mon-

soon circulation influenced Chinese rainfall variability dur-

ing the northern hemispheric MWP, as then the δ18O record

from Dandak cave in India correlates with the central China

records from Wanxiang and Heshang caves. During the

colder phase after the MWP and into the LIA, significant

cross correlation coefficients are found amongst the Chinese

records, indicating a spatially more homogeneous moisture

source. At the same time these records do not correlate with

the Indian record during the LIA cold phase, pointing to less

ISM impact on Chinese precipitation.

To summarize, we have shown that in correlation estima-

tion of irregularly sampled time series, caution should be ex-

ercised when these records have an inter-observation time

distribution that is strongly skewed. In the CCF estimation

we found a strongly negative bias for the standard approach

with interpolation for processes with little persistence. The

advantages of the kernel-based estimators are higher for cou-

pling on short time scales, compared to the sampling rate.

This is especially interesting for the investigation of proxy

data with low resolution. Our results indicate that the bias

properties of the Gaussian kernel and the interpolation tech-

niques have different signs in ACF estimation, indicating

when sampling irregularity causes problems in the analysis.
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