
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.2

COMPARISON OF CROSSOVER OPERATORS FOR THE QUADRATIC

ASSIGNMENT PROBLEM

Alfonsas Misevičius
1
, Bronislovas Kilda

2

Department of Practical Informatics1, Computer Department2, Kaunas University of Technology

Studentų St. 50−400a/416a1, Studentų St. 50−4122, LT−51368 Kaunas, Lithuania

Abstract. Crossover (i.e. solution recombination) operators play very important role by constructing competitive

genetic algorithms (GAs). In this paper, the basic conceptual features and specific characteristics of various crossover

operators in the context of the quadratic assignment problem (QAP) are discussed. The results of experimental

comparison of more than 10 different crossover operators for the QAP are presented. The results obtained demonstrate

high efficiency of the crossovers with relatively low degree of disruption, namely, the swap path crossover (SPX), the

cohesive crossover (COHX), the one point crossover (OPX). Another promising operator is so-called multiple parent

crossover (MPX) operator based on special type of recombination of several solutions-parents. The results from the

experiments show that MPX operator enables to achieve better solutions than other operators tested.

Keywords: heuristic algorithms, genetic algorithms, crossover operators, quadratic assignment problem.

1. Indroduction

The quadratic assignment problem (QAP) can be

formulated as follows. Let two matrices A = (aij)n×n

and B = (bkl)n×n and the set Π of all possible permuta-

tions of {1, 2, ..., n} be given. The goal is to find a

permutation π = (π(1), π(2), ..., π(n)) ∈ Π that mini-

mizes

.)(
1 1

)()(∑∑
= =

=
n

i

n

j

jiijbaz πππ (1)

One of the interpretations of the QAP is the facili-

ty layout problem [14]. In this case, n is the number of

facilities/locations, the element aij denotes the flow of

materials from facility i to facility j, and bkl can be

seen as the distance between location k and location l.

The permutation π = (π(1), π(2), ..., π(n)) then repre-

sents an assignment of n facilities to n locations (here,

π(i) (π(i) ∈ {1, 2, ..., n}) is the location what facility i

is assigned to).

It has been proved that the QAP is NP-hard, there-

fore various heuristic approaches are used for solving

medium- and large-scale QAPs within reasonable

computation times. For surveys of the heuristics for

the QAP, see [3,5]. Starting from 1994, genetic algo-

rithms (GAs), their modifications and hybrids are

among the advanced heuristic techniques for this

problem (see, for example, [1,8,15,18,21]).

Very roughly, genetic algorithms can be charac-

terized as follows [12]. Let P be a subset of Π; it is

referred to as a population, and it is composed of

individuals, i.e. solutions (permutations in the context

of the QAP), π1, π2, ... πPS = |P|. Each individual (πi) is

associated with a fitness, i.e. the corresponding objec-

tive function value (z(πi)). The individual πi is prefer-

red to individual πj if z(πi) < z(πj). (Further, we also

shall call the solution (permutation), π, as a chromo-

some, the single position, i, of the solution (chromo-

some) − as a gene, and the value at the given position

(gene), π(i) − as an allele.) The following are the main

steps of the genetic search. A pair (or fraction) of

solutions of P is selected to be parents by use of a

selection mechanism. New solutions (i.e. offspring)

are created by combining (merging) the parents; this

recombination operator is known as a crossover.

Afterward, a replacement (culling) scheme is applied

to the previous generation and the offspring to deter-

mine which individuals survive to form the next gene-

ration. In addition, some individuals undergo a muta-

tion (random perturbation) to prevent a premature loss

of the diversity within the population. Over many

steps, i.e. generations, less fit individuals (worse solu-

tions) tend to die-off, while better individuals (solu-

tions) tend to predominate. The process is continued

until a certain termination criterion is met. The best-

survived individual is regarded as a result of the

genetic algorithm.

For a more complete discussion on the principles

of GAs, the reader is addressed to [6,12,27].

It should be noted that the state-of-the-art genetic

algorithms are rather hybrid (combined genetic local

search) algorithms which incorporate additional

heuristic components [24]. Typically, a post-crossover

109

A. Misevičius, B. Kilda

(or post-merging) procedure is used to play the role of

a local improvement algorithm applied to the solution

previously produced by the crossover. This way of

proceeding ensures that the population consists solely

of locally optimal solutions. However, despite the

optimized populations, the recombination of solutions

still remains one of the critical things by constructing

competitive genetic algorithms. Very likely, the role of

recombination operators within hybrid genetic algo-

rithms (HGA) is more significant than in the ordinary

GAs. In fact, we can think of HGA as a process that

combines intensification and diversification (I&D) of

the search (for more details on I&D methodology, see,

for example, [22]). The intensification (local improve-

ment algorithm) concentrates the search in certain

local (limited) portions of the solution space, while the

diversification is responsible for escaping from the

current local optimum and moving towards unvisited

so far solutions. From this point of view, the crossover

is a special sort of the diversification (solution recon-

struction) mechanism, which − generally speaking −

guides the global search, i.e. exploration of new and

new regions of the solution space. The proper explo-

ration mechanism is, in some sense, even more severe

than intensification, and may add crucial influence on

the resulting efficiency of the search.

In this paper, we discuss issues related, namely, to

the investigation of crossover operators within HGAs

in the context of the quadratic assignment problem.

Both conceptual and experimental comparison of va-

rious types of crossovers for the QAP are given. More

precisely, in Section 2, the basic features of twelve

different crossover operators for the QAP are over-

viewed. Then, the computational results for these

crossovers are presented in Section 3. Section 4 com-

pletes the paper with concluding remarks.

2. Discussion of crossover operators for the

QAP

As mentioned above, crossover is one of the main

genetic search operators. It is capable of producing a

new feasible solution (i.e. child) by exchanging the

information contained in both parents. From the philo-

sophical point of view, crossover is a structured and, at

that time, randomized process (operation) that guaran-

tees both inheritance of the parents’ characteristics and

creation of entirely new features. Mathematically,

crossover can be defined as a binary operator

(function) ψ: Π × Π → Π such that ψ(π′, π′′) ≠

π′ ∨ ψ(π′, π′′) ≠ π′′ if π′ ≠ π′′; here, we assume that

the solutions are represented by permutations. As a

rule, the recombination operators ensure that the

offspring definitely inherits the alleles which are com-

mon to both parents; more formally, π′(i) = π′′(i) ⇒

π°(i) = π′(i) = π′′(i), i = 1, 2, ..., n, where π′, π′′, π° are

the parents and offspring, respectively. The inheritance

of the remaining genes can be accomplished in a

variety of ways. These ways, with respect to the

quadratic assignment problem, are discussed below.

We start our overview of the crossover operators

with the crossover by Tate and Smith proposed as far

back as 1995 [29]. This crossover can be viewed as

some kind of uniform crossover adapted to permuta-

tion-based solutions. So, we call it as uniform like

crossover (ULX). It works as follows. First, all items

assigned to the same position in both parents are

copied to this position in the child. Second, the

unassigned positions of a permutation are scanned

from left to right: for the unassigned position, an item

is chosen randomly, uniformly from those in the

parents if they are not yet included in the child. Third,

remaining items are assigned at random (see also

Figure 1).

3 6 7 4 1 5 2 9 8

7 3 6 4 2 9 5 1 8

 4 8

7 6 4 2 5 1 8

3 9

7 6 9 4 2 5 3 1 8

parent 1
parent 2

offspring

Figure 1. Example of uniform like crossover

Uniform crossover allows some flexibility, and

different variations of the basic procedure are

possible. Below, we give three modifications/en-

hancements of the basic ULX operator. In some sense,

these modifications can also be considered as special

kind crossovers. We will call them: randomized ULX

(RULX), modified ULX (or block crossover (BX)),

and extended ULX (or repair crossover (RX)).

The only difference between the standard uniform

crossover described above and the randomized one is

in the manner how the positions of solutions are

scanned. In standard ULX, the order of scanning is

fixed − from left to right. In RULX, the consideration

of the positions (both the assigned and unassigned) is

done in a random way. The motivation of this tech-

nique is adding more randomness and diversity to the

offspring generation process (this is important by

avoiding a premature convergence).

Another modification of ULX − we call it block

crossover − is distinguishing for the fact that some

blocks (segments) of elements are considered, instead

of the single elements. The block size BS is in the

range [1, n/2]. Note that blocks may be of different

sizes; for example, if n = 9 and the number of blocks

is equal to 4, then one obtains three blocks of size 2

and one block of size 3. By copying blocks, the

feasibility of permutation must be kept (see Figure 2).

BS = n/2 means that the first segment of size n/2 is

110

Comparison of Crossover Operators for the Quadratic Assignment Problem

111

copied from one of the parents (say, π′) to the

offspring, the remaining items are copied from the

"opposite" parent (π′′)) in such a way that the feasibi-

lity of the resulting solution is preserved. If there still

exist unassigned positions in the offspring, then the

missing elements can be taken from either the first or

second parent.

The central idea of the extended crossover is the

combination of ULX and a local improvement-based

repair (correction) procedure applied to the offspring

produced by ULX. More precisely, one tries to

improve the offspring by pairwise interchanges of the

elements − but only those that are not inherited from

the parents. A candidate list CL is created, where

CL(i) = π°(i), CL(i) ≠ π′(i), CL(i) ≠ π′′(i) (π′, π′′, π°
are the parents and offspring, respectively). The

members of the candidate list take part in the

improvement process (Of course, if the candidate list

size is zero (| CL | = 0), the improvement process is

omitted.) The template of the corresponding procedure

is given in Figure 3.

Figure 2. Example of block crossover

procedure partial_steepest_descent

 // Let π be the current solution-offspring. At each step of procedure, an attempt is made to

 // replace the current solution by the solution that improves most the objective function value.

 // The process is continued until no improving solution exists

 repeat

 ;)(minarg:

)(,...,1
)1(),...,1(

ij

wCLij
wCLCLi

pz ⊕=

+=
−=

• ππ

 if z(π•) < z(π) then π := π• // replace the current solution by the new one

 until π• ≠ π

end // partial_steepest_descent

Figure 3. Template of partial local improvement procedure used in repair crossover.

Notes. 1. pij is the elementary perturbation operator which simply exchanges ith and jth elements

in the current permutation; in this case, the expression ijp⊕π denotes the permutation that is obtained

from the current permutation π by applying pij. 2. w = | CL |

3 6 7 4 1

1 8 6 2 4 5 3 7 9

6 7 1 4 2 9 8 5 3

1 8 6 2 4 5 3 7 9

1 8 6 2 4 5 3 7 9

1 3 6 2 4 5 8 7 9

6 3 1 2 4 5 8 7 9

6 3 1 2 4 7 8 5 9

5 2 9 8

7 3 6 4 2 9 5 1 8

7 3 4 1 9 5 8

6

7

2

3

6

4

1

9

5

2

8

parent 1

offspring

parent 2

missing elements

parent 1

clone of parent 1

parent 2

step 2
step 1

offspring
step 3

Figure 4. Example of uniform partially mapped crossover

The experiments have shown that the size of the

candidate list is much more less than n in most cases;

so, the partial local improvement procedure does not

contribute considerably to the total amount of run time

of the genetic algorithm.

Further, let us describe a variant of the well-known

recombination operator, the partially-mapped cross-

over (PMX). The key idea of PMX is that it works

with a part of a chromosome − mapping section − lo-

cated between two crossover points (sites) [13]. PMX

has been proven to be highly effective for the traveling

salesman problem [13], however the straightforward

PMX procedure does not work well for the QAP. For

this reason, Migkikh et al. [19] proposed a modifica-

tion of PMX based on using a number of random

mapping points − instead of one mapping segment.

This crossover was referred to as a uniform PMX

(UMPX). The basic steps of UPMX are as follows: a)

clone the offspring π° from the first parent π′; b)

choose a position pos1 of the offspring at random; c)

find a position pos2 in the offspring where the content

is equal to the content of pos1 in the second parent π′′,
i.e. π°(pos2) = π′′(pos1); d) swap the content of

π°(pos1) and π°(pos2); e) repeat steps a-e k times,

where k = n/3 (according to [19]). An illustration of

UPMX is presented in Figure 4.

In [16], Merz and Freisleben introduced a distance

preserving crossover (DPX) for the QAP. (The earlier

version of this crossover was tried on the traveling

A. Misevičius, B. Kilda

112

salesman problem [10].) The main idea of DPX is that

this recombination operator aims at producing the

offspring which has the same distance to each of its

parents, and this distance is equal to the distance bet-

ween the parents themselves. Remind that the "dis-

tance" ρ between two permutations π1 and π2 is defi-

ned as a number of the elements that are assigned to

different positions in the corresponding permutations,

i.e.)}()(|{),(2121 iii ππππρ ≠= . So, the elements

that are identical for the same positions in both parents

(π′ and π′′) will be copied to the offspring (π°). The

contents for all other genes change; that is, the

remaining positions are randomly filled in with the yet

unassigned elements, taking care that no assignment

that appears in just one parent is copied to the child. A

simple example of how DPX works is shown in Fi-

gure 5.

We continue consideration of the crossover opera-

tors by concerning the principle of a cycle crossover

(CX) [17,18,25]. The key idea of this operator is that

CX preserves the information contained in both

parents, that is, all the alleles of the offspring are taken

either from the first or second parent. The main steps

of CX are as follows. 1. All the alleles found at the

same locations in both parents are assigned to the cor-

responding locations in the child. 2. Starting from the

first (or randomly chosen location) (provided that the

corresponding element has not been included in the

offspring yet), an element is chosen in a random way

from the two parents. After this, one performs additio-

nal assignments to ensure that no random assignment

(mutation) occurs. Then, the next unassigned location

is processed in the same manner until all the locations

have been considered. An example is presented in Fi-

gure 6.

Figure 5. Example of distance preserving crossover

3 5 8 2 9 1 4 6 7

8 5 6 4 9 1 3 2 7

 5 9 1 7

6

6

5

2

2

3

3

9

1

8

8

4

4

7

parent π′
parent π′′

5),(),(),(=′′′=°′′=°′ ππρππρππρ

offspring π°

Figure 6. Example of cycle crossover

3 5 8 2 9 1 4 6 7

8 5 6 9 4 1 2 3 7

 5 1 7

3 8 6

9

4

2

3 5 8 9 4 1 2 6 7

parent π′
parent π′′

Ahuja et al. used a swap path crossover (SPX) in

their "greedy genetic algorithm" [1]. (Note that the

original idea of this type of crossover was developed

by Glover [11], who referred to it as a "path relink-

ing".) Let π′, π′′ be a pair of parents. In SPX, one

starts at the first (or some random) gene, and the pa-

rents are examined from left to right until all the genes

have been considered. If the alleles at the position

being looked at are the same, one moves to the next

position; otherwise, one performs a swap (inter-

change) of two alleles in π′ or in π′′ so that the alleles

at the current position become alike. (For example, if

the current gene is i, and a = π′(i), b = π′′(i), then,

after a swap, either π′(i) becomes b, or π′′(i) becomes

a.) Ahuja et al. propose to perform the swap for which

the corresponding solution has a lower cost (objective

function value). The elements in the two resulting

solutions are then considered, starting at the next posi-

tion, and so on. The best solution obtained during this

process (the fittest child) serves as an offspring. The

"fragment" of swap path crossover is illustrated in Fi-

gure 7. For more details, see [1].

One point crossover (OPX) operators [12] are clas-

sical solution recombination procedures widely used

in early versions of genetic algorithms. One of the

variants of OPX for the QAP is due to Lim et al. [15].

The idea of OPX is quite simple. A crossing point

(site) is chosen randomly between 1 and n − 1 in one

of the parents. As a result, a child chromosome is ob-

tained, containing information partially determined by

each of parent chromosomes. Again, the care of pre-

serving of the solution feasibility should be taken (see

Figure 8).

Figure 7. Example of swap path crossover

step 2: start position is 3, start element is 8
step 1: elements 5,1,7 are inherited from the parents

offspring π°
step 3: start position is 4, start element is 9

5 2 3 4 1 7 6 8 9

2 1 3 4 6 5 7 8 9

2 5 3 4 1 7 6 8 9

5 1 3 4 6 2 7 8 9

2

2

5

5

3

3

4

4

1

1

7

7

6

6

8

8

9

9

2 1 3 4 6 5 7 8 9

2 1 3 4 5 7 6 8 9

2 5 3 4 6 1 7 8 9

...

parent 1

child 1

parent 2

better child
child 2

new pair of parents

child 3
child 4

offspring = the best child

Comparison of Crossover Operators for the Quadratic Assignment Problem

2 8 7 1 4 5 9 3 6

7 6 4 1 8 9 2 3 5

2 8

parent 1

Figure 8. Example of one point crossover

7 1 4 5

 6 3 9

2 8 7 1 4 5 6 3 9

Figure 9. Example of order-based crossover

offspring

parent 2

crossing site

elements of parent 1
elements of parent 2

8 6 4 2 1 5 9 3 7

2 3 4 6 7 1 5 9 8

0 1 0 1 1 0 0 0 1

 6 2 1 7

3 4 5 9 8

3 6 4 2 1 5 9 8 7

parent 1
parent 2
random template

elements from parent 1
missing
offspring

So-called order-based operators [7] have been ap-

plied successfully for problems as scheduling, where

the objective is to obtain the order (sequence) in which

jobs are assigned by the schedule. The basic feature of

order-based crossovers (OBX) is that they preserve the

relative order of the alleles in chromosomes. So, a

number of items (elements) are selected from one of

the parents and copied to the offspring. The missing

elements (alleles) are taken from the other parent in

order. An example of this crossover is shown in Fi-

gure 9 (see also [30] for more details).

Recently, Drezner introduced a quite original solu-

tion recombination operator − a cohesive crossover

(COHX) [8]. COHX produces the offspring in several

steps. At the beginning, some mask − an n1 × n2 matrix

M − is created. n1 and n2 are chosen in such a way that

n1 ⋅ n2 = n ∧ n1 + n2 → min. The initial mask position

is fixed at (i0, j0), where i0 ∈ {1, 2, ..., n1}, j0 ∈ {1, 2,

..., n2}. The mask matrix is then filled in according to

wave propagation fashion (see Figure 10). There exist

n different masks M(1), M(2), ..., M(k), ..., M(n), where k,

i0, and j0 are in the following relation: k = n2⋅(i0 − 1)

+ j0, i0 = 1, 2, ..., n1, j0 = 1, 2, ..., n2. Then, the kth

recombined solution π(k) (k ∈ {1, 2, ..., n}) is gene-

rated in three steps:

1) ;






≤+−
+−

=
otherwise,0

))1)mod)1((

,1)div)1(((),(

)(
2

2

)(

)(

η
π

π nk

nki

i

k

better
k

M

where i = 1, 2, ..., n, πbetter = argmin {z(π′), z(π′′)}, π′,
π′′ are the solutions-parents, and η is the median of

M
(k), i.e.

21

1 2
)(),(

nn

ji

n

i

n

j

k

⋅

∑∑
=

M

η ;

2) ;






∧=

>
=

otherwise,0

in not)(0)(),(

0)(),(

)()(

)()(

)(k

worse

k

worse

kk

k iii

ii

i ππππ
ππ

π

where i = 1, 2, ..., n, πworse = argmax {z(π′), z(π′′)};

3) for every unassigned position i (π (k)(i) = 0), an item

is chosen randomly from those not yet included in the

offspring.

A visual example of generation of a solution is

given in Figure 11. As a result, n solutions are pro-

duced, but only the best of them is regarded as an off-

spring, i.e. .)(minarg)(

,...2,1

k

nk

z ππ
=

=°

 2

 2 1 2

2 1 0 1 2

 2 1 2

 2

Figure 10. Filling in a mask

Multiple parent crossover (MPX) was described by

Misevičius in [23], although the idea of using com-

binations of several solutions goes back to Boese et al.

[2] and Fleurent and Glover [9]. MPX is distinguished

for the fact that the offspring derives the information

from many parents − this is the contrast and, at that

time, advantage to the traditional operators, where

useful information may be left out of account because

of using two parents only. In MPX, the ith element,

i.e. allele of the offspring π° is created by choosing

such a number j (among those not yet chosen) that

probability that π°(i) = j is maximized.

Here, the probability))(ji =°Pr(π is equal to

∑
n

j

ij

ij

d

d
,

where dij is the entry of a desirability matrix

D = (dij)n×n, and is equal to the number of times that

the element i is assigned to the position j = π(i) in µ

parents (which participate in creation of the child).

The process is to be continued until all the genes of

the offspring take on their values. An example of

producing of the offspring in multiple parent crossover

(µ = 5) is given in Figure 12.

))(Pr(ji =°π

Note that, in this work, the desirability matrix was

slightly modified. Instead of D = (dij)n×n, we used

D′ = (d′ij)n×n, where d′ij = dij + ε, here ε is a correction

(noise).

113

A. Misevičius, B. Kilda

3 2 1 4 7 8 9 6 5

8 9 7 3 2 1 5 4 6

3 2 1

4 7 8

9 6 5

3 2 1 7

 5 4 6

 9 8

3 2 1 9 7 8 5 4 6

Figure 11. Example of cohesive crossover

Figure 12. Example of multiple parent crossover

The recombination operators discussed can be

categorized depending on various criteria (factors): the

number of parents, the level (degree) of randomness

(distortion), the problem oriented knowledge,

time/memory complexity, implementation/program-

ming aspects, etc. Let us concern the randomization

factor in more details. Very roughly speaking, this

factor can be viewed as a measure of how "far" is the

offspring from the parents. Regarding this factor, the

crossover operators can be classified as less disruptive

and more disruptive. Radcliffe and Surry [26] use the

terms "assorting" and "respectful", respectively. (Note

that most of the above crossovers may be viewed as

"respectful"; the only cycle crossover falls into the

category of "assorting" operators.) In general, there

are two situations in merging process: explicit muta-

tion and implicit mutation. The "assorting" crossover

is characterized by explicit mutation, while implicit

mutation is an indication of the "respectful" operator.

As an explicit mutation, we call the situation where

the offspring is different from both first and second

parent, however every allele of the child is from the

corresponding gene of either first or second parent;

that is, π° ≠ π′ ∧ π° ≠ π′′ ∧ (π°(i) = π′(i) ∨ π°(i) =

π′′(i), i = 1, 2, ..., n). This is a very strict condition. It

is the reason of why the assorting recombination is

hardly accomplished for some problems. Meanwhile,

implicit mutation offers more "degree of freedom"; the

only requirement to fulfil is that the offspring is diffe-

rent from the parents (provided that the offspring

necessary inherits common parents’ alleles). More

formally, the implicit mutation takes place if there

exists (at least one) such an i that π°(i) ≠

π′(i) ∧ π°(i) ≠ π′′(i). The corresponding element (all-

ele) (π°(i)) can be considered as "foreign" element,

since this element is not contained in (one of) the

parents. The number of foreign elements may be seen

as an indicator of "disruptiveness" of the crossover:

the more number of foreign elements, the more dis-

ruptive crossover operator.

It can be guessed that implicit mutations have a

positive effect on the performance of the genetic

search, especially, in the cases where highly elabo-

rated post-crossover algorithms are used. The results

obtained (see Section 3) confirmed this preliminary

conjecture: crossovers with implicit mutation outper-

formed the representative of explicit operators, the

cycle crossover, for most of the QAP instances tested.

However, the crossover designer must be very careful

by preferring a "respectful" crossover to an "assorting"

one: for the particular problems, implicit mutations

may appear to be inferior to explicit ones.

The other factors of crossovers seem to be more

intuitively clear. These factors (together with the ran-

domization level characteristic) are summarized in

Table 1.

mask M
(k)

 (k = 2) parent 1 (better parent)
parent 2

1 0 1

2 1 2

3 2 3

"wrapping" parent 1

these items are copied from parent 1
these items are copied from parent 2

recombined solution π(k)
(k = 2)

these items are assigned randomly

4 3 6 7 1 2 9 8 5

4 3 6 7 1 9 5 8 2

4 6 3 1 7 5 9 2 8

4 7 3 1 8 5 9 6 2

5 6 3 1 2 4 9 7 8

0 0 0 4 1 0 0 0 0

0 0 2 0 0 2 1 0 0

0 0 3 0 0 2 0 0 0

3 0 0 0 0 0 2 0 0

2 1 0 0 0 0 1 1 0

0 1 0 1 2 0 0 0 1

0 0 0 0 1 0 0 0 4

0 1 0 0 0 1 1 2 0

0 2 0 0 1 0 0 2 0

4 6 3 7 1 5 9 8 2

five parents

entries of the desirability matrix

assume that the sequence of indices (is) is as follows:

7, 3, 1, 8, 2, 6, 5, 4, 9;

then, the offspring is created in the following way:

{ } { } 9maxarg))7(Pr(maxarg)7(7 ==== j
jj

djππ ;

{ } 3))3(Pr(maxarg)3(
9

===
≠

j
j

ππ ; { } 4))1(Pr(maxarg)1(
9,3

===
≠

j
j

ππ ;

offspring

114

Comparison of Crossover Operators for the Quadratic Assignment Problem

Table 1. Crossover characteristics: towards conceptual comparison of crossovers

Crossovers

Characteristics

ULX,RULX,

BX,OBX
RX UPMX DPX CX SPX OPX COHX MPX

Number of parents 2 2 2 2 2 2 2 2 ≥2

Randomization level

(explicit mutation (EM),

implicit mutation (IM))

IM IM IM IM EM IM IM IM IM

Time complexity O(n) O(n + w
2
) O(n) O(n

2
) O(n

2
) O(n

2
) O(n

2
) O(n

2
) O(n

2
)

Memory size complexity O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n
2
)

Implementation (program-

ming) aspects (TI − rather

trivial implementation,

NTI − rather non-trivial

implementation)

TI NTI TI NTI NTI TI TI NTI NTI

Problem oriented know-

ledge (embedded (E),

not embedded (NE))

NE E NE NE NE E NE E E

Additional properties k2),(≤°′ ππρ ,

where k is the

number of

swaps

high

degree of

disruption

of the

offspring

 low

degree of

disruption

relatively low de-

gree of disruption;

cn −≤°′),(ππρ ,

where c is the

crossing position

relatively

low

degree of

disruption

3. Computational experiments

In this section, we present the results of experi-

mental comparison of the crossovers outlined above.

In the experiments, we used the instances (bench-

marks) of the QAP taken from the well-known library

QAPLIB [4]. The types of the instances we examined

are as follows:

(a) random instances (these instances are randomly

generated according to a uniform distribution; in

QAPLIB, they are denoted by tai20a, tai25a, tai30a,

tai35a, tai40a, tai50a, tai60a, tai80a, and tai100a; the

corresponding numeral (20, 25, and so on) in the

instance name denotes the size of the instance);

(b) real-life like instances (instances of this type

are generated in such a way that the entries of the mat-

rices A and B resemble the distribution from real

world problems; these instances are denoted by tai20b,

tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, tai80b,

tai100b, and tai150b).

As an experimental basis for the crossover opera-

tors, we used an extended hybrid genetic algorithm

(EHGA). The basic flowchart of EHGA is shown in

Figure 13. The details of this algorithm are presented

in Misevičius' paper [20]. Remind that the high per-

formance of this algorithm was achieved by effective

implementation of the genetic-tabu search paradigm,

i.e. combining the genetic operators with the iterated

tabu search (ITS) procedure. The details of the ITS

procedure can be found in [22].

The efficiency measure for crossover operators is

the average deviation of solutions obtained from the

best known solution − δ (%][)(100 zzz
((−=δ ,

where z is the average objective function value over

10 restarts (single applications of EHGA to a given

instance), and z
(

 is the best known value (BKV) of the

objective function).

NO

EHGA

Initial population generation by ITS

Selection

Crossover

Limited ITS

Population replacement

NO
Process converged?

YES

Restart

Stop?

YES
END

Figure 13. Generalized flowchart of

the extended hybrid genetic algorithm

115

A. Misevičius, B. Kilda

In the experimental comparison, equated condi-

tions are created: all the crossover variants use the

identical initial solutions and require approximately

the same CPU time. For the sake of more fairness, we

carried out two sets of experiments (shorter runs and

longer runs, with smaller and larger number of genera-

tions, respectively). The following are the values of

the control parameters of EHGA (of course, they are

equivalent for all the crossovers compared): popula-

tion size −  n ; number of generations − n/3 (for the

first set of experiments) and 3n (for the second set);

number of offsprings (crossovers) per generation − 1;

number of iterations of the post-crossover, i.e. the

iterated tabu search (ITS) procedure − 2

10
1 n (for the

random instances) and 4n (for the real-life like

instances). The number of parents in the MPX cros-

sover is equal to the population size.

The results of comparison of the crossovers are

presented in Tables 2−5.

Table 2. Comparison of the crossover operators for the QAP: shorter run results for the random instances. The best results ob-

tained are printed in bold face. CPU times per restart are given in seconds. 900 MHz PENTIUM computer was used in the ex-

periments

Instance BKV
δ

 BX RX UPMX DPX CX SPX OPX OBX COHX MPX

CPU

time

tai20a 703482 a 0.730 0.666 0.680 0.718 0.652 00..662222 00..662222 0.681 0.655 0.615 0.1

tai25a 1167256 a 1.005 00..771100 0.754 1.090 0.923 0.899 0.717 0.882 0.899 0.698 0.3

tai30a 1818146 a 0.685 0.648 00..552255 0.827 0.603 0.668 0.531 0.693 0.496 0.636 0.6

tai35a 2422002 a 0.754 0.734 0.659 0.779 0.695 0.814 0.763 0.711 0.698 00..668877 1.2

tai40a 3139370 a 00..772277 0.810 0.838 0.863 0.786 0.765 0.752 0.770 0.766 0.708 2.7

tai50a 4941410 a 0.964 0.918 0.961 0.966 0.901 0.865 0.945 0.919 00..888899 0.904 8.8

tai60a 7205962 b 0.833 0.866 0.876 0.878 0.833 00..882288 0.850 0.841 0.848 0.819 21

tai80a 13546960 b 0.499 0.498 0.506 0.522 0.458 0.435 0.458 0.518 0.505 00..445555 85

tai100a 21123042 b 0.377 0.411 0.402 0.406 0.370 0.314 0.377 0.403 0.385 00..332299 250

Average: 0.730 0.696 0.689 0.783 0.691 0.690 00..666688 0.713 0.682 0.650

a comes from [4]; b comes from [22].

Table 3. Comparison of the crossover operators for the QAP: shorter run results for the real-life like instances. The best results

obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the

experiments

Instance BKV
δ

 RULX RX UPMX DPX CX SPX OPX OBX COHX MPX

CPU

time

tai20b 122455319 a 00..009900 0.045 00..009900 0.101 0.085 00..009900 00..009900 0.091 0.045 00..009900 0.1

tai25b 344355646 a 0.150 0.201 0.194 0.206 0.166 0.045 0.273 00..007799 0.175 0.115 0.2

tai30b 637117113 a 0.315 0.410 0.549 0.690 0.514 0.551 0.371 0.560 0.528 00..335533 0.3

tai35b 283315445 a 0.289 0.287 0.163 0.368 0.240 0.281 0.271 00..221188 0.242 0.289 0.4

tai40b 637250948 a 0.550 0.420 0.444 0.411 0.464 0.068 0.352 0.515 0.414 00..224433 0.9

tai50b 458821517 a 0.285 0.261 0.228 0.500 0.205 00..116688 0.296 0.223 0.121 0.316 2.4

tai60b 608215054 a 0.184 0.181 0.176 0.330 0.183 0.163 0.176 0.201 00..116666 0.173 4.3

tai80b 818415043 a 0.337 0.477 0.594 0.909 0.547 0.448 0.381 0.474 0.396 00..333388 15

tai100b 1185996137 a 0.357 0.422 0.387 0.644 0.458 0.471 0.429 0.370 00..331133 0.290 35

tai150b 498896643 b 0.639 0.622 0.684 1.020 0.698 0.674 00..559922 0.599 0.623 0.557 120

Average: 0.320 0.333 0.351 0.518 0.356 00..229966 0.323 0.333 0.302 0.276

a comes from [4]; b comes from [28].

116

Comparison of Crossover Operators for the Quadratic Assignment Problem

117

Table 4. Comparison of the crossover operators for the QAP: longer run results for the random instances. The best results

obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the

experiments

Instance BKV
δ

 BX RX UPMX DPX CX SPX OPX OBX COHX MPX

CPU

time

tai20a 703482 0.216 0.216 0.238 0.221 0.268 00..220077 0.202 0.268 0.229 0.246 1.0

tai25a 1167256 0.190 0.191 0.117 0.231 0.158 0.151 0.190 0.159 0.169 00..115500 3.0

tai30a 1818146 0.091 0.097 0.111 0.074 00..004400 0.091 0.120 0.112 0.091 0.035 6.0

tai35a 2422002 0.175 0.388 0.284 0.433 0.312 0.283 0.209 0.324 0.279 00..119944 12

tai40a 3139370 0.454 0.474 0.455 0.503 0.424 0.444 0.441 0.425 00..441177 0.374 27

tai50a 4941410 0.638 0.609 0.565 0.693 0.627 0.585 0.602 00..557799 0.638 0.583 88

tai60a 7205962 0.608 0.629 0.623 0.689 0.619 0.609 00..559966 0.613 0.651 0.572 210

tai80a 13546960 00..221199 0.295 0.265 0.330 0.251 0.240 0.268 0.260 0.266 0.218 850

tai100a 21123042 0.192 0.203 0.191 0.230 0.165 00..114422 0.178 0.219 0.195 0.108☼ 2500

Average: 0.309 0.345 0.317 0.378 0.318 00..330066 0.312 0.329 0.326 0.276

☼ During the experimentation with MPX on the instance tai100a, we were successful in discovering new record-breaking

solution. The new objective function value, which is better than that reported in [22], is equal to 21090402.

Table 5. Comparison of the crossover operators for the QAP: longer run results for the real-life like instances. The best results

obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the

experiments

Instance BKV
δ

 RULX RX UPMX DPX CX SPX OPX OBX COHX MPX

CPU

time

tai20b 122455319 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0

tai25b 344355646 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 2.0

tai30b 637117113 0.000 0.018 0.001 0.019 0.017 0.001 0.001 0.000 0.000 0.001 3.0

tai35b 283315445 0.049 0.014 00..001199 0.047 0.042 0.029 0.062 0.037 0.038 00..001199 4.0

tai40b 637250948 0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.000 9.0

tai50b 458821517 0.035 0.003 0.006 0.088 0.002 0.012 0.000 0.000 0.000 0.014 24

tai60b 608215054 0.024 00..000044 0.012 0.025 0.007 0.002 0.002 0.015 0.009 0.010 43

tai80b 818415043 0.004 0.067 0.119 0.173 00..001133 0.017 0.045 0.017 0.015 0.016 150

tai100b 1185996137 0.104 0.091 0.117 0.145 0.108 0.091 0.113 0.114 00..007799 0.064 350

tai150b 498896643 0.305 0.243 0.410 0.608 0.360 0.232 0.261 0.338 0.309 00..224411 1200

Average: 0.052 0.044 0.068 0.116 0.055 00..003388 0.048 0.052 0.045 0.037

Table 6. Summarizing results of the experimental comparison of the crossover operators for the QAP

Instance groups
Deviation from BKV averaged over two sets of experiments

 RULX BX RX UPMX DPX CX SPX OPX OBX COHX MPX

tai∗a 0.520 0.521 0.503 0.581 0.505 0.498 00..449900 0.521 0.504 0.463

tai∗b 0.186 0.189 0.210 0.317 0.206 00..116677 0.186 0.193 0.174 0.157

Average: 0.355 0.357 0.449 0.356 00..333333 0.338 0.357 0.339 0.310

Some observations, looking at the results in Tables

2−5, are as follows. 1. Shorter run results are quite

"flat", so it may be complicated to draw right

conclusions; meanwhile, longer run results (obtained

by large number of generations) are differentiated in a

higher degree and allow to judge more about the effi-

ciency of crossover operators. 2. Long time results de-

monstrate that crossovers have considerable influence

A. Misevičius, B. Kilda

on the final solutions produced by the genetic algo-

rithm, even in the cases when the powerful post-

crossover procedures are used. This indicates that the

recombination operators, which are responsible for the

exploration of new regions in the solution space, hide

high potential. 3. The performance of different cros-

sover operators varies in large ranges; nevertheless

some regularities can be discovered. For example, less

disruptive crossovers appear to be more efficient than

highly disruptive crossovers; surprisingly, the cycle

crossover (the minimally available disruptive cros-

sover) produces only medium-quality results. It can

also be seen that the crossovers which incorporate the

problem-oriented knowledge seem to be in average

better than the remaining ("pure") operators. 4. Also, it

can be observed that there exists some dissipation of

results for the random and real-life like problems:

typically, some of crossovers (except MPX and, may-

be, SPX and OPX operators) work well on the random

instances, but produce worse solutions for the real-life

like instances, and vice versa. It is even more surpris-

ing that the MPX operator outperforms all the other

competitors for both random and real-life like instan-

ces. This is a clear indication of high stability and

universality of the multiple parent crossover. 5. The

preliminary overall ranking of the crossover operators

(sorted according to decreasing quality of solutions)

for the random instances looks as follows: MPX-

OPX-SPX-UPMX-COHX-CX-BX-RX-OBX-DPX.

The similar ranking for the real-life like problems is as

follows: MPX-SPX-COHX-RULX-OPX-RX-OBX-

CX-UPMX-DPX. The resulting ranking is: MPX-

SPX-OPX-COHX-RX-CX-UPMX-OBX-DPX (see

Table 6). (It was somewhat unexpected that OPX

produced slightly better results than COHX, which, in

turn, was shown by Drezner [8] to be very effective

for pseudo-random grid-based QAP instances. Thus,

some more experiments would be useful in order to

acknowledge the above ranking as really fair.) To

summarize, SPX, OPX, COHX, and, especially, MPX

appear to be superior to the remaining crossovers with

respect to the QAP instances tested and could be

recommended as perfect recombination operators for

the designers of new (hybrid) genetic algorithms for

the QAP.

4. Concluding remarks

In this paper, the solution recombination, i.e. cros-

sover operators in the context of the quadratic assign-

ment problems are discussed. These operators are

known as playing an important role by developing

robust genetic algorithms. The crossover procedures

are considered in two aspects. Firstly, the basic prin-

ciples (factors) and specific features of various recom-

bination operators are outlined, and the table of cros-

sover characteristics is given; then the results of the

experimental comparison within the framework of

hybrid genetic-tabu search algorithm are presented.

We implemented twelve different crossover proce-

dures and their modifications in order to test the influ-

ence of the recombination operators to the genetic

search process when applied to the quadratic assign-

ment problem. The following crossover operators have

been used in the experimentation: the uniform like

crossover (ULX) and its modifications (the randomi-

zed ULX crossover (RULX), the ULX crossover

combined with repair procedure (RX), the block cros-

sover (BX)), the uniform partially-mapped crossover

(UPMX), the distance preserving crossover (DPX),

the cycle crossover (CX), the swap path crossover

(SPX), the one point crossover (OPX), the order-based

crossover (OBX), the cohesive crossover (COHX),

and, finally, the multiple parent crossover (MPX). The

results obtained from the experiments with the test

instances of the QAP show high performance of the

crossovers with lower degree of disruption and,

especially, the multiple parent crossover. These robust

crossovers incorporated into the hybrid genetic-tabu

search algorithm resulted in encouraging results with-

in small computation time. New best known solution

for the QAP instance tai100a was obtained by using,

namely, the MPX operator.

Further elaboration of the crossover operators

mentioned with the focus on the multiple parent

recombination, as well as development of innovative

crossover operators for the QAP and similar com-

binatorial problems may be the subject of the future

research.

References

 [1] R.K. Ahuja, J.B. Orlin, A. Tiwari. A greedy genetic

algorithm for the quadratic assignment problem. Com-

puters & Operations Research, 2000, Vol.27, 917–

934.

 [2] K.D. Boese, A.B. Kahng, S. Muddu. A new adaptive

multi-start technique for combinatorial global optimi-

zations. Operations Research Letters, 1994, Vol.16,

101–113.

 [3] R.E. Burkard, E. Çela, P.M. Pardalos, L. Pitsoulis.
The quadratic assignment problem. In D.Z.Du, P.M.

Pardalos (eds.), Handbook of Combinatorial Optimi-

zation, Kluwer, Dordrecht, 1998, Vol.3, 241−337.

 [4] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a

quadratic assignment problem library. Journal of Glo-

bal Optimization, 1997, Vol.10, 391−403. [See also

http://www.seas.upenn.edu/qaplib/.]

 [5] E. Çela. The Quadratic Assignment Problem: Theory

and Algorithms. Kluwer, Dordrecht, 1998.

 [6] L. Davis. Handbook of Genetic Algorithms, Van Nost-

rand, New York, 1991.

 [7] L. Davis. Order-based genetic algorithms and the

graph coloring problem. In L.Davis (ed.), Handbook of

Genetic Algorithms, Van Nostrand, New York, 1991,

72−90.

 [8] Z. Drezner. A new genetic algorithm for the quadratic

assignment problem. INFORMS Journal on

Computing, 2003, Vol.15, 320−330.

118

Comparison of Crossover Operators for the Quadratic Assignment Problem

 [9] C. Fleurent, F. Glover. Improved constructive multi-

start strategies for the quadratic assignment problem

using adaptive memory. INFORMS Journal on Com-

puting, 1999, Vol.11, 198−204.

[10] B. Freisleben, P. Merz. A genetic local search algo-

rithm for solving symmetric and asymmetric traveling

salesman problems. Proceedings of the 1996 IEEE

International Conference on Evolutionary Computa-

tion, Nagoya, Japan, 1996, 616−621.

[11] F. Glover. Genetic algorithms and scatter search:

unsuspected potential. Statistics and Computing, 1994,

Vol.4, 131−140.

[12] D.E. Goldberg. Genetic Algorithms in Search, Opti-

mization and Machine Learning, Addison-Wesley,

Reading, 1989.

[13] D.E. Goldberg, R. Lingle. Alleles, loci, and the trave-

ling salesman problem. In J.J. Grefenstette (ed.), Pro-

ceedings of the First International Conference on

Genetic Algorithms and their Applications, Lowrence

Erlbaum, Hillsdale, 1985, 154−159.

[14] T. Koopmans, M. Beckmann. Assignment problems

and the location of economic activities. Econometrica,

1957, Vol.25, 53−76.

[15] M.H. Lim, Y. Yuan, S. Omatu. Efficient genetic

algorithms using simple genes exchange local search

policy for the quadratic assignment problem. Compu-

tational Optimization and Applications, 2000, Vol.15,

249−268.

[16] P. Merz, B. Freisleben. A genetic local search ap-

proach for the quadratic assignment problem. In

T.Bäck (ed.), Proceedings of the Seventh International

Conference on Genetic Algorithms, Morgan Kauf-

mann, East Lansing, 1997, 465–472.

[17] P. Merz, B. Freisleben. A comparison of memetic

algorithms, tabu search, and ant colonies for the

quadratic assignment problem. In P.Angeline (ed.),

Proceedings of 1999 Congress on Evolutionary Com-

putation (CEC'99), IEEE Press, New York, 1999,

2063–2070.

[18] P. Merz, B. Freisleben. Fitness landscape analysis

and memetic algorithms for the quadratic assignment

problem. IEEE Transactions on Evolutionary Compu-

tation, 2000, Vol.4, 337−352.

[19] V.V. Migkikh, A.A. Topchy, V.M. Kureichik, A.Y.

Tetelbaum. Combined genetic and local search algo-

rithm for the quadratic assignment problem. Proceed-

ings of the First International Conference on Evolutio-

nary Computation and its Applications (EVCA'96),

Presidium of the Russian Academy of Sciences, Mos-

cow, 1996, 335−341.

[20] A. Misevicius. An extension of hybrid genetic algo-

rithm for the quadratic assignment problem. Informa-

tion Technology and Control, 2004, Vol.4(33), 53−60.

[21] A. Misevicius. An improved hybrid genetic algorithm:

new results for the quadratic assignment problem.

Knowledge-Based Systems, 2004, Vol.17, 65−73.

[22] A. Misevicius. A tabu search algorithm for the quad-

ratic assignment problem. Computational Optimiza-

tion and Applications, 2005, Vol.30, 95−111.

[23] A. Misevicius, D. Rubliauskas. Performance of hyb-

rid genetic algorithm for the grey pattern problem.

Information Technology and Control, 2005, Vol.34,

No.1, 15−24.

[24] P. Moscato. Memetic algorithms: a short introduction.

In D.Corne, M.Dorigo, F.Glover (eds.), New Ideas in

Optimization, McGraw-Hill, London, 1999, 219–234.

[25] I.M. Oliver, D.J. Smith, J.R.C. Holland. A study of

permutation crossover operators on the traveling

salesman problem. In J.J.Grefenstette (ed.), Genetic

Algorithms and their Applications: Proceedings of the

Second International Conference on Genetic Algo-

rithms, Lawrence Erlbaum, Hillsdale, 1987, 224–230.

[26] N. Radcliffe, P. Surry. Fitness variance of formae

and performance prediction. In L.D. Whitley, M. Vose

(eds.), Proceedings of the Third Workshop on Founda-

tions of Genetic Algorithms, Morgan Kaufmann, San

Francisco, 1994, 51–72.

[27] C.R. Reeves, J.E. Rowe. Genetic Algorithms: Prin-

ciples and Perspectives. Kluwer, Norwell, 2001.

[28] E. Taillard, L.M. Gambardella. Adaptive memories

for the quadratic assignment problem. Tech. Report

IDSIA-87-97, Lugano, Switzerland, 1997.

[29] D.M. Tate, A.E. Smith. A genetic approach to the

quadratic assignment problem. Computers & Opera-

tions Research, 1995, Vol.1, 73–83.

[30] M. Vázquez, L.D. Whitley. A hybrid genetic algo-

rithm for the quadratic assignment problem. In L.D.

Whitley, D.E. Goldberg, E. Cantú-Paz et al. (eds.),

Proceedings of the Genetic and Evolutionary Compu-

tation Conference (GECCO’00), Morgan Kaufmann,

San Francisco, 2000, 135–142.

119

