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Abstract. Crossover (i.e. solution recombination) operators play very important role by constructing competitive 

genetic algorithms (GAs). In this paper, the basic conceptual features and specific characteristics of various crossover 

operators in the context of the quadratic assignment problem (QAP) are discussed. The results of experimental 

comparison of more than 10 different crossover operators for the QAP are presented. The results obtained demonstrate 

high efficiency of the crossovers with relatively low degree of disruption, namely, the swap path crossover (SPX), the 

cohesive crossover (COHX), the one point crossover (OPX). Another promising operator is so-called multiple parent 

crossover (MPX) operator based on special type of recombination of several solutions-parents. The results from the 

experiments show that MPX operator enables to achieve better solutions than other operators tested. 
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1. Indroduction 

The quadratic assignment problem (QAP) can be 

formulated as follows. Let two matrices A = (aij)n×n 

and B = (bkl)n×n and the set Π of all possible permuta-

tions of {1, 2, ..., n} be given. The goal is to find a 

permutation π = (π(1), π(2), ..., π(n)) ∈ Π that mini-

mizes 
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One of the interpretations of the QAP is the facili-

ty layout problem [14]. In this case, n is the number of 

facilities/locations, the element aij denotes the flow of 

materials from facility i to facility j, and bkl can be 

seen as the distance between location k and location l. 

The permutation π = (π(1), π(2), ..., π(n)) then repre-

sents an assignment of n facilities to n locations (here, 

π(i) (π(i) ∈ {1, 2, ..., n}) is the location what facility i 

is assigned to). 

It has been proved that the QAP is NP-hard, there-

fore various heuristic approaches are used for solving 

medium- and large-scale QAPs within reasonable 

computation times. For surveys of the heuristics for 

the QAP, see [3,5]. Starting from 1994, genetic algo-

rithms (GAs), their modifications and hybrids are 

among the advanced heuristic techniques for this 

problem (see, for example, [1,8,15,18,21]). 

Very roughly, genetic algorithms can be charac-

terized as follows [12]. Let P be a subset of Π; it is 

referred to as a population, and it is composed of 

individuals, i.e. solutions (permutations in the context 

of the QAP), π1, π2, ... πPS = |P|. Each individual (πi) is 

associated with a fitness, i.e. the corresponding objec-

tive function value (z(πi)). The individual πi is prefer-

red to individual πj if z(πi) < z(πj). (Further, we also 

shall call the solution (permutation), π, as a chromo-

some, the single position, i, of the solution (chromo-

some) − as a gene, and the value at the given position 

(gene), π(i) − as an allele.) The following are the main 

steps of the genetic search. A pair (or fraction) of 

solutions of P is selected to be parents by use of a 

selection mechanism. New solutions (i.e. offspring) 

are created by combining (merging) the parents; this 

recombination operator is known as a crossover. 

Afterward, a replacement (culling) scheme is applied 

to the previous generation and the offspring to deter-

mine which individuals survive to form the next gene-

ration. In addition, some individuals undergo a muta-

tion (random perturbation) to prevent a premature loss 

of the diversity within the population. Over many 

steps, i.e. generations, less fit individuals (worse solu-

tions) tend to die-off, while better individuals (solu-

tions) tend to predominate. The process is continued 

until a certain termination criterion is met. The best-

survived individual is regarded as a result of the 

genetic algorithm. 

For a more complete discussion on the principles 

of GAs, the reader is addressed to [6,12,27]. 

It should be noted that the state-of-the-art genetic 

algorithms are rather hybrid (combined genetic local 

search) algorithms which incorporate additional 

heuristic components [24]. Typically, a post-crossover 

109 



A. Misevičius, B. Kilda 

(or post-merging) procedure is used to play the role of 

a local improvement algorithm applied to the solution 

previously produced by the crossover. This way of 

proceeding ensures that the population consists solely 

of locally optimal solutions. However, despite the 

optimized populations, the recombination of solutions 

still remains one of the critical things by constructing 

competitive genetic algorithms. Very likely, the role of 

recombination operators within hybrid genetic algo-

rithms (HGA) is more significant than in the ordinary 

GAs. In fact, we can think of HGA as a process that 

combines intensification and diversification (I&D) of 

the search (for more details on I&D methodology, see, 

for example, [22]). The intensification (local improve-

ment algorithm) concentrates the search in certain 

local (limited) portions of the solution space, while the 

diversification is responsible for escaping from the 

current local optimum and moving towards unvisited 

so far solutions. From this point of view, the crossover 

is a special sort of the diversification (solution recon-

struction) mechanism, which − generally speaking − 

guides the global search, i.e. exploration of new and 

new regions of the solution space. The proper explo-

ration mechanism is, in some sense, even more severe 

than intensification, and may add crucial influence on 

the resulting efficiency of the search. 

In this paper, we discuss issues related, namely, to 

the investigation of crossover operators within HGAs 

in the context of the quadratic assignment problem. 

Both conceptual and experimental comparison of va-

rious types of crossovers for the QAP are given. More 

precisely, in Section 2, the basic features of twelve 

different crossover operators for the QAP are over-

viewed. Then, the computational results for these 

crossovers are presented in Section 3. Section 4 com-

pletes the paper with concluding remarks. 

2.  Discussion of crossover operators for the 

QAP 

As mentioned above, crossover is one of the main 

genetic search operators. It is capable of producing a 

new feasible solution (i.e. child) by exchanging the 

information contained in both parents. From the philo-

sophical point of view, crossover is a structured and, at 

that time, randomized process (operation) that guaran-

tees both inheritance of the parents’ characteristics and 

creation of entirely new features. Mathematically, 

crossover can be defined as a binary operator 

(function) ψ: Π × Π → Π  such that ψ(π′, π′′) ≠  

π′ ∨ ψ(π′, π′′) ≠ π′′ if π′ ≠ π′′; here, we assume that 

the solutions are represented by permutations. As a 

rule, the recombination operators ensure that the 

offspring definitely inherits the alleles which are com-

mon to both parents; more formally, π′(i) = π′′(i) ⇒  

π°(i) = π′(i) = π′′(i), i = 1, 2, ..., n, where π′, π′′, π° are 

the parents and offspring, respectively. The inheritance 

of the remaining genes can be accomplished in a 

variety of ways. These ways, with respect to the 

quadratic assignment problem, are discussed below. 

We start our overview of the crossover operators 

with the crossover by Tate and Smith proposed as far 

back as 1995 [29]. This crossover can be viewed as 

some kind of uniform crossover adapted to permuta-

tion-based solutions. So, we call it as uniform like 

crossover (ULX). It works as follows. First, all items 

assigned to the same position in both parents are 

copied to this position in the child. Second, the 

unassigned positions of a permutation are scanned 

from left to right: for the unassigned position, an item 

is chosen randomly, uniformly from those in the 

parents if they are not yet included in the child. Third, 

remaining items are assigned at random (see also 

Figure 1). 
 

3 6 7 4 1 5 2 9 8 

7 3 6 4 2 9 5 1 8 

   4     8 

7 6  4 2 5  1 8 

3 9        

7 6 9 4 2 5 3 1 8 

 

parent 1
parent 2

offspring 

Figure 1. Example of uniform like crossover

Uniform crossover allows some flexibility, and 

different variations of the basic procedure are 

possible. Below, we give three modifications/en-

hancements of the basic ULX operator. In some sense, 

these modifications can also be considered as special 

kind crossovers. We will call them: randomized ULX 

(RULX), modified ULX (or block crossover (BX)), 

and extended ULX (or repair crossover (RX)). 

The only difference between the standard uniform 

crossover described above and the randomized one is 

in the manner how the positions of solutions are 

scanned. In standard ULX, the order of scanning is 

fixed − from left to right. In RULX, the consideration 

of the positions (both the assigned and unassigned) is 

done in a random way. The motivation of this tech-

nique is adding more randomness and diversity to the 

offspring generation process (this is important by 

avoiding a premature convergence). 

Another modification of ULX − we call it block 

crossover − is distinguishing for the fact that some 

blocks (segments) of elements are considered, instead 

of the single elements. The block size BS is in the 

range [1, n/2]. Note that blocks may be of different 

sizes; for example, if n = 9 and the number of blocks 

is equal to 4, then one obtains three blocks of size 2 

and one block of size 3. By copying blocks, the 

feasibility of permutation must be kept (see Figure 2). 

BS = n/2 means that the first segment of size n/2 is 

110 



Comparison of Crossover Operators for the Quadratic Assignment Problem 

111 

copied from one of the parents (say, π′) to the 

offspring, the remaining items are copied from the 

"opposite" parent (π′′)) in such a way that the feasibi-

lity of the resulting solution is preserved. If there still 

exist unassigned positions in the offspring, then the 

missing elements can be taken from either the first or 

second parent. 

The central idea of the extended crossover is the 

combination of ULX and a local improvement-based 

repair (correction) procedure applied to the offspring 

produced by ULX. More precisely, one tries to 

improve the offspring by pairwise interchanges of the 

elements − but only those that are not inherited from 

the parents. A candidate list CL is created, where 

CL(i) = π°(i), CL(i) ≠ π′(i), CL(i) ≠ π′′(i) (π′, π′′, π° 
are the parents and offspring, respectively). The 

members of the candidate list take part in the 

improvement process (Of course, if the candidate list 

size is zero (| CL | = 0), the improvement process is 

omitted.) The template of the corresponding procedure 

is given in Figure 3. 

Figure 2. Example of block crossover 

procedure partial_steepest_descent 

 // Let π be the current solution-offspring. At each step of procedure, an attempt is made to  

 // replace the current solution by the solution that improves most the objective function value.  

 // The process is continued until no improving solution exists 

 repeat 

  ; )(minarg:

)(,...,1
)1(),...,1(

ij

wCLij
wCLCLi
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+=
−=

• ππ

  if z(π•) < z(π) then π := π• // replace the current solution by the new one 

 until π• ≠ π 

end // partial_steepest_descent 

 

Figure 3. Template of partial local improvement procedure used in repair crossover. 

Notes. 1. pij is the elementary perturbation operator which simply exchanges ith and jth elements 

in the current permutation; in this case, the expression ijp⊕π  denotes the permutation that is obtained  

from the current permutation π by applying pij. 2. w = | CL | 
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1 8 6 2 4 5 3 7 9 
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1 8 6 2 4 5 3 7 9 

1 8 6 2 4 5 3 7 9 

1 3 6 2 4 5 8 7 9 

6 3 1 2 4 5 8 7 9 

6 3 1 2 4 7 8 5 9 

5 2 9 8 

7 3 6 4 2 9 5 1 8 

7 3  4 1 9 5  8 
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5 

 

2 

 

8 

 

parent 1

offspring 

parent 2

missing elements 

parent 1

clone of parent 1 

parent 2

step 2
step 1

offspring 
step 3

Figure 4. Example of uniform partially mapped crossover 

The experiments have shown that the size of the 

candidate list is much more less than n in most cases; 

so, the partial local improvement procedure does not 

contribute considerably to the total amount of run time 

of the genetic algorithm. 

Further, let us describe a variant of the well-known 

recombination operator, the partially-mapped cross-

over (PMX). The key idea of PMX is that it works 

with a part of a chromosome − mapping section − lo-

cated between two crossover points (sites) [13]. PMX 

has been proven to be highly effective for the traveling 

salesman problem [13], however the straightforward 

PMX procedure does not work well for the QAP. For 

this reason, Migkikh et al. [19] proposed a modifica-

tion of PMX based on using a number of random 

mapping points − instead of one mapping segment. 

This crossover was referred to as a uniform PMX 

(UMPX). The basic steps of UPMX are as follows: a) 

clone the offspring π° from the first parent π′; b) 

choose a position pos1 of the offspring at random; c) 

find a position pos2 in the offspring where the content 

is equal to the content of pos1 in the second parent π′′, 
i.e. π°(pos2) = π′′(pos1); d) swap the content of 

π°(pos1) and π°(pos2); e) repeat steps a-e k times, 

where k = n/3 (according to [19]). An illustration of 

UPMX is presented in Figure 4. 

In [16], Merz and Freisleben introduced a distance 

preserving crossover (DPX) for the QAP. (The earlier 

version of this crossover was tried on the traveling 
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salesman problem [10].) The main idea of DPX is that 

this recombination operator aims at producing the 

offspring which has the same distance to each of its 

parents, and this distance is equal to the distance bet-

ween the parents themselves. Remind that the "dis-

tance" ρ between two permutations π1 and π2 is defi-

ned as a number of the elements that are assigned to 

different positions in the corresponding permutations, 

i.e. )}()(|{),( 2121 iii ππππρ ≠= . So, the elements 

that are identical for the same positions in both parents 

(π′ and π′′) will be copied to the offspring (π°). The 

contents for all other genes change; that is, the 

remaining positions are randomly filled in with the yet 

unassigned elements, taking care that no assignment 

that appears in just one parent is copied to the child. A 

simple example of how DPX works is shown in Fi-

gure 5. 

We continue consideration of the crossover opera-

tors by concerning the principle of a cycle crossover 

(CX) [17,18,25]. The key idea of this operator is that 

CX preserves the information contained in both 

parents, that is, all the alleles of the offspring are taken 

either from the first or second parent. The main steps 

of CX are as follows. 1. All the alleles found at the 

same locations in both parents are assigned to the cor-

responding locations in the child. 2. Starting from the 

first (or randomly chosen location) (provided that the 

corresponding element has not been included in the 

offspring yet), an element is chosen in a random way 

from the two parents. After this, one performs additio-

nal assignments to ensure that no random assignment 

(mutation) occurs. Then, the next unassigned location 

is processed in the same manner until all the locations 

have been considered. An example is presented in Fi-

gure 6. 

Figure 5. Example of distance preserving crossover 
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Figure 6. Example of cycle crossover 
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Ahuja et al. used a swap path crossover (SPX) in 

their "greedy genetic algorithm" [1]. (Note that the 

original idea of this type of crossover was developed 

by Glover [11], who referred to it as a "path relink-

ing".) Let π′, π′′ be a pair of parents. In SPX, one 

starts at the first (or some random) gene, and the pa-

rents are examined from left to right until all the genes 

have been considered. If the alleles at the position 

being looked at are the same, one moves to the next 

position; otherwise, one performs a swap (inter-

change) of two alleles in π′ or in π′′ so that the alleles 

at the current position become alike. (For example, if 

the current gene is i, and a = π′(i), b = π′′(i), then, 

after a swap, either π′(i) becomes b, or π′′(i) becomes 

a.) Ahuja et al. propose to perform the swap for which 

the corresponding solution has a lower cost (objective 

function value). The elements in the two resulting 

solutions are then considered, starting at the next posi-

tion, and so on. The best solution obtained during this 

process (the fittest child) serves as an offspring. The 

"fragment" of swap path crossover is illustrated in Fi-

gure 7. For more details, see [1]. 

One point crossover (OPX) operators [12] are clas-

sical solution recombination procedures widely used 

in early versions of genetic algorithms. One of the 

variants of OPX for the QAP is due to Lim et al. [15]. 

The idea of OPX is quite simple. A crossing point 

(site) is chosen randomly between 1 and n − 1 in one 

of the parents. As a result, a child chromosome is ob-

tained, containing information partially determined by 

each of parent chromosomes. Again, the care of pre-

serving of the solution feasibility should be taken (see 

Figure 8). 

Figure 7. Example of swap path crossover 

step 2: start position is 3, start element is 8 
step 1: elements 5,1,7 are inherited from the parents

offspring π°
step 3: start position is 4, start element is 9 
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Figure 8. Example of one point crossover 
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Figure 9. Example of order-based crossover 

offspring 

parent 2
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elements from parent 1 
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So-called order-based operators [7] have been ap-

plied successfully for problems as scheduling, where 

the objective is to obtain the order (sequence) in which 

jobs are assigned by the schedule. The basic feature of 

order-based crossovers (OBX) is that they preserve the 

relative order of the alleles in chromosomes. So, a 

number of items (elements) are selected from one of 

the parents and copied to the offspring. The missing 

elements (alleles) are taken from the other parent in 

order. An example of this crossover is shown in Fi-

gure 9 (see also [30] for more details). 

Recently, Drezner introduced a quite original solu-

tion recombination operator − a cohesive crossover 

(COHX) [8]. COHX produces the offspring in several 

steps. At the beginning, some mask − an n1 × n2 matrix 

M − is created. n1 and n2 are chosen in such a way that 

n1 ⋅ n2 = n ∧ n1 + n2 → min. The initial mask position 

is fixed at (i0, j0), where i0 ∈ {1, 2, ..., n1}, j0 ∈ {1,  2,  

..., n2}. The mask matrix is then filled in according to 

wave propagation fashion (see Figure 10). There exist 

n different masks M(1), M(2), ..., M(k), ..., M(n), where k, 

i0, and j0 are in the following relation: k = n2⋅(i0 − 1)  

+ j0, i0 = 1, 2, ..., n1, j0 = 1, 2, ..., n2. Then, the kth 

recombined solution π(k) (k ∈ {1, 2, ..., n}) is gene-

rated in three steps: 
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where i = 1, 2, ..., n, πworse = argmax {z(π′), z(π′′)}; 

3) for every unassigned position i (π (k)(i) = 0), an item 

is chosen randomly from those not yet included in the 

offspring. 

A visual example of generation of a solution is 

given in Figure 11. As a result, n solutions are pro-

duced, but only the best of them is regarded as an off-

spring, i.e. . )(minarg )(

,...2,1

k

nk

z ππ
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Figure 10. Filling in a mask

Multiple parent crossover (MPX) was described by 

Misevičius in [23], although the idea of using com-

binations of several solutions goes back to Boese et al. 

[2] and Fleurent and Glover [9]. MPX is distinguished 

for the fact that the offspring derives the information 

from many parents − this is the contrast and, at that 

time, advantage to the traditional operators, where 

useful information may be left out of account because 

of using two parents only. In MPX, the ith element, 

i.e. allele of the offspring π° is created by choosing 

such a number j (among those not yet chosen) that 

probability that π°(i) = j  is maximized. 

Here, the probability ))( ji =°Pr(π  is equal to 

∑
n

j

ij

ij

d

d
, 

where dij is the entry of a desirability matrix 

D = (dij)n×n, and is equal to the number of times that 

the element i is assigned to the position j = π(i) in µ 

parents (which participate in creation of the child). 

The process is to be continued until all the genes of 

the offspring take on their values. An example of 

producing of the offspring in multiple parent crossover 

(µ = 5) is given in Figure 12. 

))(Pr( ji =°π

Note that, in this work, the desirability matrix was 

slightly modified. Instead of D = (dij)n×n, we used 

D′ = (d′ij)n×n, where d′ij = dij + ε, here ε is a correction 

(noise). 
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4 7 8       
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Figure 11. Example of cohesive crossover 

Figure 12. Example of multiple parent crossover 

The recombination operators discussed can be 

categorized depending on various criteria (factors): the 

number of parents, the level (degree) of randomness 

(distortion), the problem oriented knowledge, 

time/memory complexity, implementation/program-

ming aspects, etc. Let us concern the randomization 

factor in more details. Very roughly speaking, this 

factor can be viewed as a measure of how "far" is the 

offspring from the parents. Regarding this factor, the 

crossover operators can be classified as less disruptive 

and more disruptive. Radcliffe and Surry [26] use the 

terms "assorting" and "respectful", respectively. (Note 

that most of the above crossovers may be viewed as 

"respectful"; the only cycle crossover falls into the 

category of "assorting" operators.) In general, there 

are two situations in merging process: explicit muta-

tion and implicit mutation. The "assorting" crossover 

is characterized by explicit mutation, while implicit 

mutation is an indication of the "respectful" operator. 

As an explicit mutation, we call the situation where 

the offspring is different from both first and second 

parent, however every allele of the child is from the 

corresponding gene of either first or second parent; 

that is, π° ≠ π′ ∧ π° ≠ π′′ ∧ (π°(i) = π′(i) ∨ π°(i) =  

π′′(i),  i = 1, 2, ..., n). This is a very strict condition. It 

is the reason of why the assorting recombination is 

hardly accomplished for some problems. Meanwhile, 

implicit mutation offers more "degree of freedom"; the 

only requirement to fulfil is that the offspring is diffe-

rent from the parents (provided that the offspring 

necessary inherits common parents’ alleles). More 

formally, the implicit mutation takes place if there 

exists (at least one) such an i that π°(i) ≠  

π′(i) ∧ π°(i) ≠ π′′(i). The corresponding element (all-

ele) (π°(i)) can be considered as "foreign" element, 

since this element is not contained in (one of) the 

parents. The number of foreign elements may be seen 

as an indicator of "disruptiveness" of the crossover: 

the more number of foreign elements, the more dis-

ruptive crossover operator. 

It can be guessed that implicit mutations have a 

positive effect on the performance of the genetic 

search, especially, in the cases where highly elabo-

rated post-crossover algorithms are used. The results 

obtained (see Section 3) confirmed this preliminary 

conjecture: crossovers with implicit mutation outper-

formed the representative of explicit operators, the 

cycle crossover, for most of the QAP instances tested. 

However, the crossover designer must be very careful 

by preferring a "respectful" crossover to an "assorting" 

one: for the particular problems, implicit mutations 

may appear to be inferior to explicit ones. 

The other factors of crossovers seem to be more 

intuitively clear. These factors (together with the ran-

domization level characteristic) are summarized in 

Table 1. 
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0 0 0 0 1 0 0 0 4 

0 1 0 0 0 1 1 2 0 

0 2 0 0 1 0 0 2 0 
 

4 6 3 7 1 5 9 8 2 

 

five parents

entries of the desirability matrix 
 

assume that the sequence of indices (is) is as follows: 

7, 3, 1, 8, 2, 6, 5, 4, 9; 

then, the offspring is created in the following way: 

{ } { } 9maxarg))7(Pr(maxarg)7( 7 ==== j
jj

djππ ; 

{ } 3))3(Pr(maxarg)3(
9

===
≠

j
j

ππ ; { } 4))1(Pr(maxarg)1(
9,3

===
≠

j
j

ππ ;

offspring 
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Table 1. Crossover characteristics: towards conceptual comparison of crossovers 

Crossovers 

Characteristics 

ULX,RULX, 

BX,OBX 
RX UPMX DPX CX SPX OPX COHX MPX

Number of parents 2 2 2 2 2 2 2 2 ≥2 

Randomization level 

(explicit mutation (EM), 

implicit mutation (IM)) 

IM IM IM IM EM IM IM IM IM 

Time complexity O(n) O(n + w
2
) O(n) O(n

2
) O(n

2
) O(n

2
) O(n

2
) O(n

2
) O(n

2
)

Memory size complexity O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n
2
)

Implementation (program-

ming) aspects (TI − rather 

trivial implementation, 

NTI − rather non-trivial 

implementation) 

TI NTI TI NTI NTI TI TI NTI NTI

Problem oriented know-

ledge (embedded (E), 

not embedded (NE)) 

NE E NE NE NE E NE E E 

Additional properties   k2),( ≤°′ ππρ ,

where k is the 

number of 

swaps 

high 

degree of 

disruption 

of the 

offspring

 low 

degree of 

disruption

relatively low de-

gree of disruption; 

cn −≤°′ ),( ππρ , 

where c is the 

crossing position 

relatively 

low 

degree of 

disruption

 

 

 

3. Computational experiments 

In this section, we present the results of experi-

mental comparison of the crossovers outlined above. 

In the experiments, we used the instances (bench-

marks) of the QAP taken from the well-known library 

QAPLIB [4]. The types of the instances we examined 

are as follows: 

(a) random instances (these instances are randomly 

generated according to a uniform distribution; in 

QAPLIB, they are denoted by tai20a, tai25a, tai30a, 

tai35a, tai40a, tai50a, tai60a, tai80a, and tai100a; the 

corresponding numeral (20, 25, and so on) in the 

instance name denotes the size of the instance); 

(b) real-life like instances (instances of this type 

are generated in such a way that the entries of the mat-

rices A and B resemble the distribution from real 

world problems; these instances are denoted by tai20b, 

tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, tai80b, 

tai100b, and tai150b). 

As an experimental basis for the crossover opera-

tors, we used an extended hybrid genetic algorithm 

(EHGA). The basic flowchart of EHGA is shown in 

Figure 13. The details of this algorithm are presented 

in Misevičius' paper [20]. Remind that the high per-

formance of this algorithm was achieved by effective 

implementation of the genetic-tabu search paradigm, 

i.e. combining the genetic operators with the iterated 

tabu search (ITS) procedure. The details of the ITS 

procedure can be found in [22]. 

The efficiency measure for crossover operators is 

the average deviation of solutions obtained from the 

best known solution − δ  ( %][ )(100 zzz
((−=δ , 

where z  is the average objective function value over 

10 restarts (single applications of EHGA to a given 

instance), and z
(

 is the best known value (BKV) of the 

objective function). 
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NO
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Restart 

Stop? 
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END 

Figure 13. Generalized flowchart of 

the extended hybrid genetic algorithm
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In the experimental comparison, equated condi-

tions are created: all the crossover variants use the 

identical initial solutions and require approximately 

the same CPU time. For the sake of more fairness, we 

carried out two sets of experiments (shorter runs and 

longer runs, with smaller and larger number of genera-

tions, respectively). The following are the values of 

the control parameters of EHGA (of course, they are 

equivalent for all the crossovers compared): popula-

tion size −  n ; number of generations − n/3 (for the 

first set of experiments) and 3n (for the second set); 

number of offsprings (crossovers) per generation − 1; 

number of iterations of the post-crossover, i.e. the 

iterated tabu search (ITS) procedure − 2

10
1 n  (for the 

random instances) and 4n (for the real-life like 

instances). The number of parents in the MPX cros-

sover is equal to the population size. 

The results of comparison of the crossovers are 

presented in Tables 2−5. 

Table 2. Comparison of the crossover operators for the QAP: shorter run results for the random instances.  The best results ob-

tained are printed in bold face. CPU times per restart are given in seconds. 900 MHz PENTIUM computer was used in the ex-

periments 

Instance BKV 
δ  

 BX RX UPMX DPX CX SPX OPX OBX COHX MPX 

CPU 

time 

tai20a  703482 a 0.730 0.666 0.680 0.718 0.652 00..662222  00..662222  0.681 0.655 0.615 0.1 

tai25a  1167256 a 1.005 00..771100  0.754 1.090 0.923 0.899 0.717 0.882 0.899 0.698 0.3 

tai30a  1818146 a 0.685 0.648 00..552255  0.827 0.603 0.668 0.531 0.693 0.496 0.636 0.6 

tai35a  2422002 a 0.754 0.734 0.659 0.779 0.695 0.814 0.763 0.711 0.698 00..668877  1.2 

tai40a  3139370 a 00..772277  0.810 0.838 0.863 0.786 0.765 0.752 0.770 0.766 0.708 2.7 

tai50a  4941410 a 0.964 0.918 0.961 0.966 0.901 0.865 0.945 0.919 00..888899  0.904 8.8 

tai60a  7205962 b 0.833 0.866 0.876 0.878 0.833 00..882288  0.850 0.841 0.848 0.819 21 

tai80a  13546960 b 0.499 0.498 0.506 0.522 0.458 0.435 0.458 0.518 0.505 00..445555  85 

tai100a  21123042 b 0.377 0.411 0.402 0.406 0.370 0.314 0.377 0.403 0.385 00..332299  250 

Average:  0.730 0.696 0.689 0.783 0.691 0.690 00..666688  0.713 0.682 0.650  

a comes from [4]; b comes from [22]. 

Table 3. Comparison of the crossover operators for the QAP: shorter run results for the real-life like instances.  The best results 

obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the 

experiments 

Instance BKV 
δ  

 RULX RX UPMX DPX CX SPX OPX OBX COHX MPX 

CPU 

time 

tai20b  122455319 a 00..009900  0.045 00..009900  0.101 0.085 00..009900  00..009900  0.091 0.045 00..009900  0.1 

tai25b  344355646 a 0.150 0.201 0.194 0.206 0.166 0.045 0.273 00..007799  0.175 0.115 0.2 

tai30b  637117113 a 0.315 0.410 0.549 0.690 0.514 0.551 0.371 0.560 0.528 00..335533  0.3 

tai35b  283315445 a 0.289 0.287 0.163 0.368 0.240 0.281 0.271 00..221188  0.242 0.289 0.4 

tai40b  637250948 a 0.550 0.420 0.444 0.411 0.464 0.068 0.352 0.515 0.414 00..224433  0.9 

tai50b  458821517 a 0.285 0.261 0.228 0.500 0.205 00..116688  0.296 0.223 0.121 0.316 2.4 

tai60b  608215054 a 0.184 0.181 0.176 0.330 0.183 0.163 0.176 0.201 00..116666  0.173 4.3 

tai80b  818415043 a 0.337 0.477 0.594 0.909 0.547 0.448 0.381 0.474 0.396 00..333388  15 

tai100b  1185996137 a 0.357 0.422 0.387 0.644 0.458 0.471 0.429 0.370 00..331133  0.290 35 

tai150b  498896643 b 0.639 0.622 0.684 1.020 0.698 0.674 00..559922  0.599 0.623 0.557 120 

Average:  0.320 0.333 0.351 0.518 0.356 00..229966  0.323 0.333 0.302 0.276  

a comes from [4]; b comes from [28]. 
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Table 4. Comparison of the crossover operators for the QAP: longer run results for the random instances. The best results 

obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the 

experiments 

Instance BKV 
δ  

 BX RX UPMX DPX CX SPX OPX OBX COHX MPX 

CPU 

time 

tai20a  703482  0.216 0.216 0.238 0.221 0.268 00..220077  0.202 0.268 0.229 0.246 1.0 

tai25a  1167256  0.190 0.191 0.117 0.231 0.158 0.151 0.190 0.159 0.169 00..115500  3.0 

tai30a  1818146  0.091 0.097 0.111 0.074 00..004400  0.091 0.120 0.112 0.091 0.035 6.0 

tai35a  2422002  0.175 0.388 0.284 0.433 0.312 0.283 0.209 0.324 0.279 00..119944  12 

tai40a  3139370  0.454 0.474 0.455 0.503 0.424 0.444 0.441 0.425 00..441177  0.374 27 

tai50a  4941410  0.638 0.609 0.565 0.693 0.627 0.585 0.602 00..557799  0.638 0.583 88 

tai60a  7205962  0.608 0.629 0.623 0.689 0.619 0.609 00..559966  0.613 0.651 0.572 210 

tai80a  13546960  00..221199  0.295 0.265 0.330 0.251 0.240 0.268 0.260 0.266 0.218 850 

tai100a  21123042  0.192 0.203 0.191 0.230 0.165 00..114422  0.178 0.219 0.195 0.108☼ 2500 

Average:  0.309 0.345 0.317 0.378 0.318 00..330066  0.312 0.329 0.326 0.276  

☼ During the experimentation with MPX on the instance tai100a, we were successful in discovering new record-breaking 

solution. The new objective function value, which is better than that reported in [22], is equal to 21090402. 
 

Table 5. Comparison of the crossover operators for the QAP: longer run results for the real-life like instances.  The best results 

obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the 

experiments 

Instance BKV 
δ  

 RULX RX UPMX DPX CX SPX OPX OBX COHX MPX 

CPU 

time 

tai20b  122455319  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0 

tai25b  344355646  0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 2.0 

tai30b  637117113  0.000 0.018 0.001 0.019 0.017 0.001 0.001 0.000 0.000 0.001 3.0 

tai35b  283315445  0.049 0.014 00..001199  0.047 0.042 0.029 0.062 0.037 0.038 00..001199  4.0 

tai40b  637250948  0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.000 9.0 

tai50b  458821517  0.035 0.003 0.006 0.088 0.002 0.012 0.000 0.000 0.000 0.014 24 

tai60b  608215054  0.024 00..000044  0.012 0.025 0.007 0.002 0.002 0.015 0.009 0.010 43 

tai80b  818415043  0.004 0.067 0.119 0.173 00..001133  0.017 0.045 0.017 0.015 0.016 150 

tai100b  1185996137  0.104 0.091 0.117 0.145 0.108 0.091 0.113 0.114 00..007799  0.064 350 

tai150b  498896643  0.305 0.243 0.410 0.608 0.360 0.232 0.261 0.338 0.309 00..224411  1200 

Average:  0.052 0.044 0.068 0.116 0.055 00..003388  0.048 0.052 0.045 0.037  

 

Table 6. Summarizing results of the experimental comparison of the crossover operators for the QAP 

Instance groups 
Deviation from BKV averaged over two sets of experiments 

 RULX BX RX UPMX DPX CX SPX OPX OBX COHX MPX 

tai∗a  0.520 0.521 0.503 0.581 0.505 0.498 00..449900  0.521 0.504 0.463 

tai∗b 0.186  0.189 0.210 0.317 0.206 00..116677  0.186 0.193 0.174 0.157 

Average:   0.355 0.357 0.449 0.356 00..333333  0.338 0.357 0.339 0.310 

 

Some observations, looking at the results in Tables 

2−5, are as follows. 1. Shorter run results are quite 

"flat", so it may be complicated to draw right 

conclusions; meanwhile, longer run results (obtained 

by large number of generations) are differentiated in a 

higher degree and allow to judge more about the effi-

ciency of crossover operators. 2. Long time results de-

monstrate that crossovers have considerable influence 
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on the final solutions produced by the genetic algo-

rithm, even in the cases when the powerful post-

crossover procedures are used. This indicates that the 

recombination operators, which are responsible for the 

exploration of new regions in the solution space, hide 

high potential. 3. The performance of different cros-

sover operators varies in large ranges; nevertheless 

some regularities can be discovered. For example, less 

disruptive crossovers appear to be more efficient than 

highly disruptive crossovers; surprisingly, the cycle 

crossover (the minimally available disruptive cros-

sover) produces only medium-quality results. It can 

also be seen that the crossovers which incorporate the 

problem-oriented knowledge seem to be in average 

better than the remaining ("pure") operators. 4. Also, it 

can be observed that there exists some dissipation of 

results for the random and real-life like problems: 

typically, some of crossovers (except MPX and, may-

be, SPX and OPX operators) work well on the random 

instances, but produce worse solutions for the real-life 

like instances, and vice versa. It is even more surpris-

ing that the MPX operator outperforms all the other 

competitors for both random and real-life like instan-

ces. This is a clear indication of high stability and 

universality of the multiple parent crossover. 5. The 

preliminary overall ranking of the crossover operators 

(sorted according to decreasing quality of solutions) 

for the random instances looks as follows: MPX-

OPX-SPX-UPMX-COHX-CX-BX-RX-OBX-DPX. 

The similar ranking for the real-life like problems is as 

follows: MPX-SPX-COHX-RULX-OPX-RX-OBX-

CX-UPMX-DPX. The resulting ranking is: MPX-

SPX-OPX-COHX-RX-CX-UPMX-OBX-DPX (see 

Table 6). (It was somewhat unexpected that OPX 

produced slightly better results than COHX, which, in 

turn, was shown by Drezner [8] to be very effective 

for pseudo-random grid-based QAP instances. Thus, 

some more experiments would be useful in order to 

acknowledge the above ranking as really fair.) To 

summarize, SPX, OPX, COHX, and, especially, MPX 

appear to be superior to the remaining crossovers with 

respect to the QAP instances tested and could be 

recommended as perfect recombination operators for 

the designers of new (hybrid) genetic algorithms for 

the QAP. 

4. Concluding remarks 

In this paper, the solution recombination, i.e. cros-

sover operators in the context of the quadratic assign-

ment problems are discussed. These operators are 

known as playing an important role by developing 

robust genetic algorithms. The crossover procedures 

are considered in two aspects. Firstly, the basic prin-

ciples (factors) and specific features of various recom-

bination operators are outlined, and the table of cros-

sover characteristics is given; then the results of the 

experimental comparison within the framework of 

hybrid genetic-tabu search algorithm are presented. 

We implemented twelve different crossover proce-

dures and their modifications in order to test the influ-

ence of the recombination operators to the genetic 

search process when applied to the quadratic assign-

ment problem. The following crossover operators have 

been used in the experimentation: the uniform like 

crossover (ULX) and its modifications (the randomi-

zed ULX crossover (RULX), the ULX crossover 

combined with repair procedure (RX), the block cros-

sover (BX)), the uniform partially-mapped crossover 

(UPMX), the distance preserving crossover (DPX), 

the cycle crossover (CX), the swap path crossover 

(SPX), the one point crossover (OPX), the order-based 

crossover (OBX), the cohesive crossover (COHX), 

and, finally, the multiple parent crossover (MPX). The 

results obtained from the experiments with the test 

instances of the QAP show high performance of the 

crossovers with lower degree of disruption and, 

especially, the multiple parent crossover. These robust 

crossovers incorporated into the hybrid genetic-tabu 

search algorithm resulted in encouraging results with-

in small computation time. New best known solution 

for the QAP instance tai100a was obtained by using, 

namely, the MPX operator. 

Further elaboration of the crossover operators 

mentioned with the focus on the multiple parent 

recombination, as well as development of innovative 

crossover operators for the QAP and similar com-

binatorial problems may be the subject of the future 

research. 
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