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Comparison of deep neural 
networks to spatio-temporal 
cortical dynamics of human 
visual object recognition reveals 
hierarchical correspondence
Radoslaw Martin Cichy1,2, Aditya Khosla1, Dimitrios Pantazis3, Antonio Torralba1 & 

Aude Oliva1

The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient 
visual object recognition in humans. However, the stage-wise computations therein remain poorly 

understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) 

visual brain representations with representations in an artificial deep neural network (DNN) tuned 
to the statistics of real-world visual recognition. We showed that the DNN captured the stages of 
human visual processing in both time and space from early visual areas towards the dorsal and ventral 

streams. Further investigation of crucial DNN parameters revealed that while model architecture was 
important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical 

relationships with the brain. Together our results provide an algorithmically informed view on the 

spatio-temporal dynamics of visual object recognition in the human visual brain.

Visual object recognition in humans is mediated by complex multi-stage processing of visual information emerg-
ing rapidly in a distributed network of cortical regions1–7. Understanding visual object recognition in cortex thus 
requires a quantitative model that captures the complexity of the underlying spatio-temporal dynamics8–10.

A major impediment in creating such a model is the highly nonlinear and sparse nature of neural tuning 
properties in mid- and high-level visual areas11–13 that is di�cult to capture experimentally, and thus unknown. 
Previous approaches to modeling object recognition in cortex relied on extrapolation of principles from well 
understood lower visual areas such as V18,9 and strong manual intervention, achieving only modest task perfor-
mance compared to humans.

Here we take an alternative route, constructing and comparing against brain signals a visual computational 
model based on deep neural networks (DNNs)14–16, i.e. computer vision models in which model neuron tuning 
properties are set by supervised learning without manual intervention14,17. DNNs are the best performing models 
on computer vision object recognition benchmarks and yield human performance levels on object categoriza-
tion18,19. We used a tripartite strategy to reveal the spatio-temporal processing cascade underlying human visual 
object recognition by DNN model comparisons.

First, as object recognition is a process rapidly unfolding over time3,20–22, we compared DNN visual representa-
tions to millisecond resolved magnetoencephalography (MEG) brain data. Our results delineate an ordered 
relationship between the stages of processing in a DNN and the time course with which object representations 
emerge in the human brain23.

Second, as object recognition recruits a multitude of distributed brain regions, a full account of object recogni-
tion needs to go beyond the analysis of a few pre-de�ned brain regions24–28, determining the relationship between 
DNNs and the whole brain. Using a spatially unbiased approach, we revealed a hierarchical relationship between 
DNNs and the processing cascade of both the ventral and dorsal visual pathway.
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�ird, interpretation of a DNN-brain comparison depends on the factors shaping the DNN fundamentally: 
the pre-speci�ed model architecture, the training procedure, and the learned task (e.g. object categorization). By 
comparing di�erent DNN models to brain data, we demonstrated the in�uence of each of these factors on the 
emergence of similarity relations between DNNs and brains in both space and time.

Together, our results provide an algorithmically informed perspective of the spatio-temporal dynamics under-
lying visual object recognition in the human brain.

Results
Construction of a deep neural network performing at human level in object categorization. To 
be a plausible model of object recognition in cortex, a computational model must provide high performance on 
visual object categorization. Latest generations of computer vision models, termed deep neural networks (DNNs), 
have achieved extraordinary performance, thus raising the question whether their algorithmic representations 
bear resemblance of the neural computations underlying human vision. To investigate we trained an 8-layer DNN 
architecture (Fig. 1a) that corresponds to the best-performing model in object classi�cation in the ImageNet 
Large Scale Visual Recognition Challenge29. Each DNN layer performs simple operations that are implementable 
in biological circuits, such as convolution, pooling and normalization. We trained the DNN to perform object 
categorization on everyday object categories (683 categories, with ~1300 images in each category) using back 
propagation, i.e. the network learned neuronal tuning functions by itself. We termed this neural network object 
deep neural network (object DNN). �e object DNN performed equally well on object categorization as previous 
implementations16 (Suppl. Table 1).

We investigated the coding of visual information in the object DNN by determining the selectivity and size 
of receptive �elds (RF) of the model neurons using a neuroscience-inspired reduction method30. We found that 
neurons in layer 1 had Gabor �lter or color patch-like sensitivity (Fig. 1b, layer 1), while those in increasingly later 
layers had increasingly larger RFs and sensitivity to complex forms (due to copyright shown without RF visualiza-
tion; for full visualization of RFs for all neurons in layers 1–5 see http://brainmodels.csail.mit.edu/dnn/rf/). �is 
showed that the object DNN had representations in a hierarchy of increasing complexity, akin to representations 

Figure 1. Deep neural network architecture and properties. (a) �e DNN architecture comprised 8 layers. 
Each of layers 1–5 contained a combination of convolution, max-pooling and normalization stages, whereas 
the last three layers were fully connected. �e DNN takes pixel values as inputs and propagates information 
feed-forward through the layers, activating model neurons with particular activation values successively at 
each layer. (b) Visualization of example DNN connections. �e thickness of highlighted lines (colored to ease 
visualization) indicates the weight of the strongest connections going in and out of neurons, starting from a 
sample neuron in layer 1. Neurons in layer 1 are represented by their �lters, and in layers 2–5 by gray dots. 
For combined visualization of connections between neurons and neuron RF selectivity please visit http://
brainmodels.csail.mit.edu/dnn/drawCNN/.

http://brainmodels.csail.mit.edu/dnn/rf/
http://brainmodels.csail.mit.edu/dnn/drawCNN/
http://brainmodels.csail.mit.edu/dnn/drawCNN/
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in the primate visual brain hierarchy5,7. To visualize neuronal connectivity (as illustrated by colored lines in 
Fig. 1b for an example neuron starting in layer 1) and RF selectivity of all neurons in layers 1–5 together we devel-
oped an online tool (for full visualization see http://brainmodels.csail.mit.edu/dnn/drawCNN/).

Representational similarity analysis was used as the integrative framework for DNN-brain 
comparison. To compare representations in the object DNN and human brains, we used a 118-image set of 
natural objects on real-world backgrounds (for visualization please see http://brainmodels.csail.mit.edu/images/
stimulus_set.png). Note that these 118 images were not used for training the object DNN to avoid circular infer-
ence. We determined how well the network performed on our image set by inspecting its 1 and 5 most con�dent 
classi�cation labels for each image (i.e., top-one and top-�ve classi�cation accuracy). Top-�ve classi�cation accu-
racy is a popular and particularly suited success measure for real world image classi�cation, as natural images are 
likely to contain more than just one object at a time, rendering a top-one classi�cation approach too restrictive. 
Voting on each of the 118 images is available at http://brainmodels.csail.mit.edu. �e network classi�ed on the 
top-one classi�cation task 103/118 (87% success rate) and on the top-�ve classi�cation task 111/118 images cor-
rectly (94% success rate), and thus at a level comparable to humans18.

We also recorded fMRI and MEG in 15 participants viewing random sequences of the same 118 real-world 
object image set while conducting an orthogonal task. �e experimental design was adapted to the speci�cs of the 
measurement technique (Suppl. Fig. 1).

We compared fMRI and MEG brain measurements with the DNN in a common analysis framework with 
representational similarity analysis31 (Fig. 2). �e basic idea is that if two images are similarly represented in the 
brain, they should also be similarly represented in the DNN. To quantify, we �rst obtained signal measurements 
in temporally speci�c MEG sensor activation patterns (1 ms steps from − 100 to + 1,000 ms), in spatially speci�c 
fMRI voxel patterns, and in layer-speci�c model neuron activations of the DNN. To make the di�erent signal 
spaces (fMRI, MEG, DNN) comparable, we abstracted signals to a similarity space. In detail, for each signal 
space we computed dissimilarities (1-Spearman’s R for DNN and fMRI, percent decoding accuracy in pair-wise 
classi�cation for MEG) between every pair of conditions (images), as exempli�ed by images 1 and 2 in Fig. 2. �is 

Figure 2. Comparison of MEG, fMRI and DNN representations by representational similarity. In each 
signal space (fMRI, MEG, DNN) we summarized representational structure by calculating the dissimilarity 
between activation patterns of di�erent pairs of conditions (here exempli�ed for two objects: bus and orange). 
�is yielded representational dissimilarity matrices (RDMs) indexed in rows and columns by the compared 
conditions. We calculated millisecond resolved MEG RDMs from − 100 ms to + 1,000 ms with respect to image 
onset, layer-speci�c DNN RDMs (layers 1 through 8) and voxel-speci�c fMRI RDMs in a spatially unbiased 
cortical surface-based searchlight procedure. RDMs were directly comparable (Spearman’s R), facilitating 
integration across signal spaces. Comparison of DNN with MEG RDMs yielded time courses of similarity 
between emerging visual representations in the brain and DNN. Comparison of the DNN with fMRI RDMs 
yielded spatial maps of visual representations common to the human brain and the DNN. Object images 
shown as exemplars are not examples of the original stimulus set due to copyright; the complete stimulus set is 
visualized at http://brainmodels.csail.mit.edu/images/stimulus_set.png.

http://brainmodels.csail.mit.edu/dnn/drawCNN/
http://brainmodels.csail.mit.edu/images/stimulus_set.png
http://brainmodels.csail.mit.edu/images/stimulus_set.png
http://brainmodels.csail.mit.edu
http://brainmodels.csail.mit.edu/images/stimulus_set.png
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yielded 118 ×  118 representational dissimilarity matrices (RDMs) indexed in rows and columns by the compared 
conditions. �ese RDMs were time-resolved for MEG, space-resolved for fMRI, and layer-resolved in DNN. 
Comparing DNN RDMs with MEG RDMs resulted in time courses highlighting how DNN representations cor-
related with emerging visual representations. Comparing DNN RDMs with fMRI RDMs resulted in spatial maps 
indicative of how representations in the object DNN correlated with brain activity.

Representations in the object DNN correlated with emerging visual representations in the 
human brain. Visual information processing in the brain is a process that rapidly evolves over time3,20,21, and 
a model of object recognition in cortex should mirror this temporal evolution. While the DNN used here does 
not model time, it has a clear sequential structure: information �ows from one layer to the next in strict order. 
We thus investigated whether representations in the object DNN correlated with emerging visual representations 
in the �rst few hundred milliseconds of vision in sequential order. For this we determined representational sim-
ilarity between layer-speci�c DNN representations and MEG data in millisecond steps from − 100 to + 1000 ms 
with respect to image onset and layer-speci�c DNN representations. We found that all layers of the object DNN 
were representationally similar to human brain activity, indicating that the model captures emerging brain visual 
representations (Fig. 3a, P <  0.05 cluster de�nition threshold, P <  0.05 cluster threshold, lines above data curves 
color-coded same as those indicate signi�cant time points, for details see Suppl. Table 2). We next investigated 
whether the hierarchy of the layered architecture of the object DNN, as characterized by an increasing size and 
complexity of model RFs feature selectivity, corresponded to the hierarchy of temporal processing in the brain. 
�at is, we examined whether there was a hierarchical relationship between layer number of the object DNN and 
the peak latency of the correlation time courses between object DNN and MEG RDMs. Subject-average data are 
plotted in Fig. 3b. While for the �rst four DNN layers the relationship was weak and negative, for the last four lay-
ers the relationship was strongly positive. When quanti�ed over all layers, the relationship was modestly positive 
and signi�cant (n =  15, Spearman’s R =  0.35, P =  0.0007).

Together these analyses established a correspondence in the sequence of processing steps of a DNN trained for 
object recognition and the time course with which visual representations emerge in the human brain23.

Correlation of representations in the visual brain with the object DNN revealed the hierarchical 
topography in the human ventral and dorsal visual streams. To localize visual representations com-
mon to brain and the object DNN, we used a spatially unbiased surface-based searchlight approach. Comparison 
of representational similarities between fMRI data and object DNN RDMs yielded 8 layer-speci�c spatial maps 
identifying the cortical regions where representations in the object DNN correlated with brain activity (Fig. 4, 
cluster de�nition threshold P =  0.05, cluster-threshold P =  0.05 Bonferroni-corrected for multiple comparisons 
by 16 (8 layers *  2 hemispheres); di�erent viewing angles available in Suppl. Movie 1).

�e results indicate a hierarchical correspondence between model network layers and the human visual sys-
tem. For low DNN layers, similarities of visual representations were con�ned to the occipital lobe, i.e. low- and 
mid-level visual regions, and for high DNN layers in more anterior regions in both the ventral and dorsal visual 
stream. A supplementary volumetric searchlight analysis (Suppl. Text 1, Suppl. Fig. 2; using a false discovery rate 
correction allowing voxel-wise inference reproduced these �ndings, yielding corroborative evidence across anal-
ysis methodologies. Further, as layer-speci�c RDMs are correlated with each other (Suppl. Fig. 3a), we conducted 
a supplementary analysis determining the correlation between layer unique components and brains using par-
tial correlation analysis (Suppl. Fig. 3b). �is again yielded evidence for a hierarchical correspondence between 
model network layers and the human visual system.

Figure 3. Representations in the object DNN correlated with emerging visual representations in the human 
brain in an ordered fashion. (a) Time courses with which representational similarity in the brain and layers of 
the deep object network emerged. Color-coded lines above data curves indicate signi�cant time points (n =  15, 
cluster de�nition threshold P =  0.05, cluster threshold P =  0.05 Bonferroni-corrected for 8 layers; for onset and 
peak latencies see Suppl. Table 2). Gray vertical line indicates image onset. (b) Overall peak latency of time 
courses increased with layer number (n =  15, R =  0.35, P =  0.0007, sign permutation test). Error bars indicate 
standard error of the mean determined by 10,000 bootstrap samples of the participant pool.
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�ese results suggest that hierarchical systems of visual representations emerge in both the human ventral and 
dorsal visual stream as the result of task constraints of object categorization posed in everyday life, and provide 
strong evidence for object representations in the dorsal stream independent of attention or motor intention.

Factors determining the correlation between representations in DNN’s and cortical visual rep-
resentations emerging in time. �e observation of a positive and hierarchical relationship between the 
object DNN and brain temporal dynamics poses the fundamental question of the origin of this relationship. �ree 

Figure 4. Spatial maps of visual representations common to brain and object DNN. �ere was a correspondence 
between object DNN hierarchy and the hierarchical topography of visual representations in the human brain. 
Low layers had signi�cant representational similarities con�ned to the occipital lobe of the brain, i.e. low- and 
mid-level visual regions. Higher layers had signi�cant representational similarities with more anterior regions 
in the temporal and parietal lobe, with layers 7 and 8 reaching far into the inferior temporal cortex and inferior 
parietal cortex (n =  15, cluster de�nition threshold P <  0.05, cluster-threshold P <  0.05 Bonferroni-corrected for 
multiple comparisons by 16 (8 DNN layers *  2 hemispheres).
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fundamental factors shape DNNs: architecture, task, and training procedure. Determining the e�ect of each is 
crucial to understanding the emergence of the brain-DNN relationships on the real-world object categorization 
task. To this goal, we created several di�erent DNN models (Fig. 5a). We reasoned that a comparison of brain with 
(1) an untrained DNN, i.e. a DNN with the same architecture as the DNN, but random (unlearned) connection 
weights would reveal the e�ect of DNN architecture alone, (2) a DNN trained on an alternate categorization task, 
scene categorization, would reveal the e�ect of speci�c task, and (3) a DNN trained on an image set with random 
unecological assignment of images to category labels, or a DNN trained on noise images, would reveal the e�ect 
of the training procedure per se.

To evaluate the hierarchy of temporal and spatial relationships between the human brain and DNNs, we com-
puted layer-speci�c RDMs for each DNN. To allow direct comparisons across models, we also computed a single 
summary RDM for each DNN model based on concatenated layer-speci�c activation vectors.

Concerning the role of architecture, we found that representations in the untrained DNN signi�cantly corre-
lated with emerging brain representations (Fig. 5b). �e untrained DNN correlated signi�cantly worse than the 
object DNN a�er 166 ms (95% con�dence interval 128–198 ms), suggesting late processing stages (Fig. 5c, Suppl. 
Table 3b). A supplementary layer-speci�c analysis identi�ed every layer as a signi�cant contributor to this corre-
lation (Suppl. Fig. 4a). Even though the relationship between layer number and the peak latency of brain-DNN 
similarity time series was hierarchical, it was negative (R =  − 0.6, P =  0.0003, Suppl. Fig. 4b) and thus reversed 
and statistically di�erent from the object DNN (∆ R =  0.96, P =  0.0003). �is shows that DNN architecture alone, 
independent of task constraints or training procedures, induces representational similarity to emerging visual 
representations in the brain, but that constraints imposed by training on a real-world categorization task signi�-
cantly increases this e�ect a�er 160 ms and reverses the direction of the hierarchical relationship.

Figure 5. Architecture, task, and training procedure in�uence the correlation between representations in 
DNNs and temporally emerging brain representations. (a) We created 5 di�erent models: 1) a model trained 
on object categorization (object DNN; Fig. 1); 2) an untrained model initialized with random weights (untrained 
DNN) to determine the e�ect of architecture alone; 3) a model trained on a di�erent real-world task, scene 
categorization (scene DNN) to investigate the e�ect of task; and 4,5) a model trained on object categorization 
with random assignment of image labels (unecological DNN), or spatially smoothed noisy images with random 
assignment of image labels (noise DNN), to determine the e�ect of the training operation independent of task 
constraints. (b) All DNNs had signi�cant representational similarities to human brains (layer-speci�c analysis 
in Suppl. Fig. 4). (c) We contrasted the object DNN against all other models (subtraction of corresponding time 
series shown in (b). Representations in the object DNN were more similar to brain representations than any 
other model except the scene DNN. Lines above data curves signi�cant time points (n =  15, cluster de�nition 
threshold P =  0.05, cluster threshold P =  0.05 Bonferroni corrected by 5 (number of models) in (b), and 4 
(number of comparisons in (c)); for onset and peak latencies see Suppl. Table 3a,b). Gray vertical lines indicates 
image onset.
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Concerning the role of task, we found that representations in the scene DNN also correlated with emerging 
brain representations. In the direct comparison between the scene and the object DNN the object DNN per-
formed better with a cluster threshold p-value of 0.04, thus not surviving Bonferroni correction (Fig. 5b,c, Suppl. 
Fig. 4c). �is suggests that task constraints in�uence the model and possibly also brain in a partly overlapping, 
and partly dissociable manner. Further, the relationship between layer number and brain-DNN similarity time 
series was positively hierarchical for the scene DNN (R =  0.44, P =  0.001, Suppl. Fig. 4d), and not di�erent from 
the object DNN (∆ R =  − 0.09, P =  0.41), further suggesting overlapping neural mechanisms for object and scene 
perception.

Concerning the role of the training operation, we found that representations in both the unecological and 
noise DNNs correlated with brain representations (Fig. 5b, Suppl. Fig 4e,g), but worse than the object DNN 
(Fig. 5c). Further, there was no evidence for a hierarchical relationship between layer number and brain-DNN 
similarity time series for either DNN (unecological DNN: R =  − 0.01; P =  0.94; noise DNN: R =  − 0.04, P =  0.68; 
Suppl. Fig. 4f,h), and both had a weaker hierarchical relationship than the object DNN (unecological DNN:  
∆ R =  0.39, P =  0.0107; noise DNN: ∆ R =  0.36, P =  0.0052). �us the training operation per se has an e�ect on 
the relationship to the brain, but only training on real-world categorization increases brain-DNN similarity and 
hierarchy.

In summary, we found that although architecture alone was enough for a correlation between DNNs and 
temporally emerging visual representations, training on real-world categorization was necessary for a hierarchical 
relationship to emerge. �us, both architecture and training crucially in�uence the similarity between DNNs and 
brains over the �rst few hundred milliseconds of vision.

Factors determining the topographically ordered correlation between representations in DNN 
and cortical visual representations in cortex. �e observation of a positive and hierarchical relation-
ship between the object DNN structure and the brain visual pathways motivates an inquiry, akin to the temporal 
dynamics analysis in the previous section, regarding the role of architecture, task demands and training opera-
tion. For this we systematically investigated three regions-of-interest (ROIs): the early visual area V1, and two 
regions up-stream in the ventral and dorsal stream, the inferior temporal cortex IT and a region encompassing 
intraparietal sulcus 1 and 2 (IPS1&2), respectively. We examined whether representations in DNN correlated with 
brain representations in these ROIs (Fig. 6a), and also whether this correlation was hierarchical (Fig. 6, Suppl. 
Table 4a).

Concerning the role of architecture, we found that representations in the untrained DNN correlated with 
brain representations better than representations in the object DNN in V1, but worse in IT and IPS1&2 (Fig. 6a,c). 
Further, the relationship was hierarchical (negative) only in IT (R =  − 0.47, P =  0.002) (Fig. 6b; stars above bars). 
�us depending on cortical region the DNN architecture alone is enough to induce similarity between a DNN 
and the brain, but the hierarchy absent (V1, IPS1&2) or reversed (IT) without proper DNN training.

Concerning the role of task, we found the scene DNN had largely similar, albeit weaker, similarity to the 
brain than the object DNN for all ROIs (Fig. 6a,c), with a signi�cant hierarchical relationship in V1 (R =  − 0.68, 
P =  0.002), but not in IT (R =  0.26, P =  0.155) or IPS1&2 (R =  0.30, P =  0.08) (Fig. 6b). In addition, comparing 
results for the object and scene DNNs directly (Fig. 6c), we found stronger e�ects for the object DNN in several 

Figure 6. Architecture, task constraints, and training procedure in�uence the topographically ordered 
correlation in representations between DNNs and human brain. (a) Comparison of fMRI representations 
in V1, IT and IPS1&2 with the layer-speci�c DNN representations of each model. Error bars indicate standard 
error of the mean as determined by bootstrapping (n =  15). (b) Correlations between layer number and 
brain-DNN representational similarities for the di�erent models shown in (a). Non-zero correlations indicate 
hierarchical relationships; positive correlations indicate an increase in brain-DNN similarities towards higher 
layers, and vice versa for negative correlations. Bars color-coded as DNNs, stars above bars indicate signi�cance 
(sign-permutation tests, P <  0.05, FDR-corrected, for details see Suppl. Table 4a). (c) Comparison of object 
DNN against all other models (subtraction of corresponding points shown in a). (d) Same as (b), but for the 
curves shown in (c) (for details see Suppl. Table 4b).
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layers in all ROIs. Together these results corroborate the conclusions of the MEG analysis, showing that task 
constraints shape brain representations along both ventral visual streams in a partly overlapping, and partly dis-
sociable manner.

Concerning the role of the training operation, we found that representations in both the unecological and 
noise DNNs correlated with cortical representations in V1 and IT, but not IPS1&2 (Fig. 6a), and with smaller 
correlation than the object DNN in all regions (Fig. 6c). A hierarchical relationship was present and negative in 
V1 and IT, but not IPS1&2 (Fig. 6b, unecological DNN: V1 R =  − 0.40, P =  0.001, IT R =  − 0.38, P =  0.001, IPS1&2 
R =  − 0.03, P =  0.77; noise DNN: V1 R =  − 0.08, P =  0.42, IT R =  –0.29, P =  0.012, IPS1&2 R =  − 0.08, P =  0.42).

�erefore the training on a real-world categorization task, but not the training operation per se, increases the 
brain-DNN similarity while inducing a hierarchical relationship.

Discussion
Summary. By comparing the spatio-temporal dynamics in the human brain with a deep neural network 
(DNN) model trained on object categorization, we provided a formal model of object recognition in cortex. We 
found a correspondence between the object DNN and the brain in both space (fMRI data) and time (MEG data). 
Both cases demonstrated a hierarchy: in space from low- to high-level visual areas in both ventral and dorsal 
stream, in time over the visual processing stages in the �rst few hundred milliseconds of vision. A systematic 
analysis of the fundamental determinants of this DNN-brain relationship identi�ed that the architecture alone 
induces similarity, but that training on a real-world categorization task was necessary for a hierarchical relation-
ship to emerge. Our results demonstrate the explanatory and discovery power of the brain-DNN comparison 
approach to understand the spatio-temporal neural dynamics underlying object recognition. �ey provide novel 
evidence for a role of parietal cortex in visual object categorization, and give rise to the idea that the organization 
of the visual cortex may be in�uenced by processing constraints imposed by visual categorization the same way 
that DNN representations were in�uenced by object categorization tasks.

Representations in the object DNN correlate with brain representations in space and time in a 
hierarchical fashion. A major impediment in modeling human object recognition in cortex is the lack of 
principled understanding of exact neuronal tuning in mid- and high-level visual cortex. Previous approaches thus 
extrapolated principles observed in low-level visual cortex, with limited success in capturing neuronal variability 
and a much inferior to human behavioral performance8,9.

Our approach allowed us to obviate this limitation by relying on an object recognition model that learns neu-
ronal tuning. By comparing representations between the DNN and the human brain we found a hierarchical cor-
respondence in both space and time: with increasing DNN layer number DNN representations correlated more 
with cortical representations emerging later in time, and in increasingly higher brain areas in both the dorsal and 
ventral visual pathway. Our results provide algorithmically informed evidence for the idea of visual processing as 
a step-wise hierarchical process in time3,20,32,33 and along a system of cortical regions2,7,34.

Regarding the temporal correspondence, our results provide evidence for a hierarchical relationship between 
computer models of vision and the brain. �is corroborates and extends previous MEG research showing an 
ordered correspondence between brain activity and two layers in the HMAX model23 over time and in source 
space to 8-layer DNNs. Peak latencies between layers of the object DNN and emerging brain activations ranged 
between approximately 100 and 160 ms. While in agreement with prior �ndings about the time necessary for 
complex object processing35, our results go further by making explicit the step-wise transformations of rep-
resentational format that may underlie rapid complex object categorization behavior.

In regards to the spatial correspondence, previous studies compared DNNs to the ventral visual stream only, 
mostly using a spatially limited region-of-interest approach26–28. Here, using a spatially unbiased whole-brain 
approach36, we discovered a hierarchical correspondence in the dorsal visual pathway. While previous studies 
have documented object selective responses in dorsal stream in monkeys37,38 and humans39,40, it is still debated 
whether dorsal visual representations are better explained by di�erential motor action associations or ability 
to engage attention, rather than category membership or shape representation41,42. Crucially, our results defy 
explanation by attention or motor-related concepts, as neither played any role in the DNN and thus brain-DNN 
correspondence. �is argues for a stronger role in object recognition than previously appreciated.

Our results thus challenge the classic descriptions of the dorsal pathway as a spatially- or action oriented 
‘where’ or ‘how’ pathway1,4, and suggest that current theories describing parietal cortex as related to spatial work-
ing memory, visually guided actions and spatial navigation6 should be complemented with a role for the dorsal 
visual stream in object categorization40.

Origin and implications of brain-DNN representation similarities. Investigating the in�uence of 
crucial parameters determining DNNs, we found an in�uence of both architecture and task constraints induced 
by training the DNN on a real-world categorization task. �is suggests that that similar architectural principles, 
i.e. convolution, max pooling and normalization govern both model and brains, concurrent with the origin of 
those principle by observation in the brain8. �e stronger similarity with early rather than late brain regions might 
be explained by the fact that neural networks initialized with random weights that involve a convolution, nonlin-
earity and normalization stage exhibit Gabor-like �lters sensitive to oriented edges, and thus similar properties 
an neurons in early visual areas43.

Although architecture alone induced similarity, training on a real-world categorization task increased similar-
ity – in particular with higher brain regions and processing a�er ~160 ms – and was necessary for a hierarchical 
relationship in processing stages between the brain and the DNN to emerge in space and time. �is demon-
strates that learning constraints imposed by a real-world categorization task crucially shape the representational 
space of a DNN28, and suggests that the processing hierarchy in the human brain is a the result of computational 
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constraints imposed by visual object categorization. Such constraints may originate in high-level visual regions 
such as IT and IPS, be propagated backwards from high-level visual regions through the visual hierarchies 
through abundantly present feedback connections in the visual stream at all levels44 during visual learning45, and 
provide the basis of learning at all stages of the processing in visual brain46.

Summary statement. In sum, by comparing deep neural networks to human brains in space and time, we 
provide a spatio-temporally unbiased algorithmic account of visual object recognition in human cortex.

Methods
Participants. 15 healthy human volunteers (5 female, age: mean ±  s.d. =  26.6 ±  5.18 years, recruited from a 
subject pool at Massachusetts Institute of Technology) participated in the experiment. �e sample size was based 
on methodological recommendations in literature for random-e�ects fMRI and MEG analyses. Written informed 
consent was obtained from all subjects. �e study was approved by the local ethics committee (Institutional 
Review Board of the Massachusetts Institute of Technology) and conducted according to the principles of the 
declaration of Helsinki. All methods were carried out in accordance with the approved guidelines.

Visual stimuli. �e stimuli presented to humans and computer vision models were 118 color photographs of 
everyday objects, each from a di�erent category, on natural backgrounds from the ImageNet image database47. 
For visualization please visit http://brainmodels.csail.mit.edu/images/stimulus_set.png.

Experimental design and task. Participants viewed images presented at the center of the screen (4° visual 
angle) for 0.5 s and overlaid with a light gray �xation cross. �e presentation parameters were adapted to the 
speci�c requirements of each acquisition technique (Suppl. Fig. 1).

For MEG, participants completed 15 runs of 314 s duration. Each image was presented twice in each MEG run 
in random order with an inter-trial interval (ITI) of 0.9–1 s. Participants were asked to press a button and blink 
their eyes in response to a paper clip image shown randomly every 3 to 5 trials (average 4). �e paper clip image 
was not part of the image set, and paper clip trials were excluded from further analysis.

For fMRI, each participant completed two independent sessions of 9–11 runs (486 s duration each) on two 
separate days. Each run consisted of one presentation of each image in random order, interspersed randomly with 
39 null trials (i.e. 25% of all trials) with no stimulus presentation. During the null trials the �xation cross turned 
darker for 500 ms. Participants reported changes in �xation cross hue with a button press.

MEG acquisition. MEG signals were acquired continuously for the whole session from 306 channels (204 
planar gradiometers, 102 magnetometers, Elektra Neuromag TRIUX, Elekta, Stockholm) at a sampling rate of 
1,000 Hz, and �ltered online between 0.03 and 330 Hz. Head movement parameters were acquired using continu-
ous HPI measurement. To compensate for head movements and to perform noise reduction with spatiotemporal 
�lters48,49 we pre-processed data using Max�lter so�ware (Elekta, Stockholm). We used default parameters (har-
monic expansion origin in head frame =  [0 0 40] mm; expansion limit for internal multipole base =  8; expansion 
limit for external multipole base =  3; bad channels automatically excluded from harmonic expansions =  7 s.d. 
above average; temporal correlation limit =  0.98; bu�er length =  10 s). Note that no bad channels were detected. 
�e resulting �ltered time series were analyzed with Brainstorm (http://neuroimage.usc.edu/brainstorm/). We 
extracted each trial with a 100 ms baseline and 1,000 ms post-stimulus recordings, removed baseline mean, 
smoothed data with a 20 ms sliding window, and normalized each channel with its baseline standard deviation. 
�is yielded 30 preprocessed trials per condition and participant.

Note that there was a systematic delay of 26 ms between the stimulus computer and the projector response (as 
determined previously by photodiode measurements). We accounted for this delay during data acquisition and 
therefore all reported times are exact.

fMRI acquisition. Magnetic resonance imaging (MRI) was conducted on a 3T Trio scanner (Siemens, 
Erlangen, Germany) with a 32-channel head coil. We acquired structural images using a standard T1-weighted 
sequence (192 sagittal slices, FOV =  256 mm2, TR =  1,900 ms, TE =  2.52 ms, �ip angle =  9°).

For fMRI, we conducted 9–11 runs in which 648 volumes were acquired for each participant (gradient-echo 
EPI sequence: TR =  750 ms, TE =  30 ms, �ip angle =  61°, FOV read =  192 mm, FOV phase =  100% with a partial 
fraction of 6/8, through-plane acceleration factor 3, bandwidth 1816Hz/Px, resolution =  3 mm3, slice gap 20%, 
slices =  33, ascending acquisition). �e acquisition volume covered the whole cortex.

Anatomical MRI analysis. We reconstructed the cortical surface of each participant using Freesurfer on the 
basis of the T1 structural scan50. �is yielded a discrete triangular mesh representing the cortical surface used for 
the surface-based two-dimensional (2D) searchlight procedure outlined below.

fMRI analysis. We preprocessed fMRI data using SPM8 (http://www.�l.ion.ucl.ac.uk/spm/). For each partic-
ipant and session separately, fMRI data were realigned and co-registered to the T1 structural scan acquired in the 
�rst MRI session. Data was neither normalized nor smoothed. We estimated the fMRI response to the 118 image 
conditions with a general linear model. Image onsets and duration were entered into the GLM as regressors and 
convolved with a hemodynamic response function. Movement parameters entered the GLM as nuisance regres-
sors. We then converted each of the 118 estimated GLM parameters into t-values by contrasting each condition 
estimate against the implicitly modeled baseline. Additionally, we determined the grand-average e�ect of visual 
stimulation independent of condition in a separate t-contrast of parameter estimates for all 118 image conditions 
versus the implicit baseline.

http://brainmodels.csail.mit.edu/images/stimulus_set.png
http://neuroimage.usc.edu/brainstorm/
http://www.fil.ion.ucl.ac.uk/spm/
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Definition of fMRI regions of interest. We de�ned three regions-of-interest for each participant: V1 
corresponding to the central 4° of the visual �eld, inferior temporal cortex (IT), and intraparietal sulcus regions 
1 and 2 combined (IPS1&2). We de�ned the V1 ROI based on an anatomical eccentricity template51. For this, we 
registered a generic V1 eccentricity template to reconstructed participant-speci�c cortical surfaces and restricted 
the template to the central 4° of visual angle. �e surface-based ROIs for the le� and right hemisphere were resa-
mpled to the space of EPI volumes and combined.

To de�ne inferior temporal cortex (IT), we used an anatomical mask of bilateral fusiform and inferior tempo-
ral cortex (WFU Pickatlas, IBASPM116 Atlas). To de�ne IPS1&2, we used a combined probabilistic mask of IPS1 
and IPS252. Masks in MNI space were reverse-normalized to single-subject functional space. We then restricted 
the anatomical de�nition of each ROI for each participant by functional criteria to the 100 most strongly activated 
voxels in the grand-average contrast of visual stimulation vs. baseline.

fMRI surface-based searchlight construction and analysis. To analyze fMRI data in a spatially unbi-
ased (unrestricted from ROIs) approach, we performed a 2D surface-based searchlight analysis following the 
approach of Chen et al.53. We used a cortical surface-based instead of a volumetric searchlight procedure as the 
former promises higher spatial speci�city. �e construction of 2D surface-based searchlights was a two-point 
procedure. First, we de�ned 2D searchlight disks on subject-speci�c reconstructed cortical surfaces by identify-
ing all vertices less than 9 mm away in geodesic space for each vertex v. Geodesic distances between vertices were 
approximated by the length of the shortest path on the surface between two vertices by Dijkstra’s algorithm50. 
Second, we extracted fMRI activity patterns in functional space corresponding to the vertices comprising the 
searchlight disks. Voxels belonging to a searchlight were constrained to appear only once in a searchlight, even 
if they were nearest neighbor to several vertices. For random e�ects analysis, i.e. to summarize results across 
subjects, we estimated a mapping between subject-speci�c surfaces and an average surface using freesurfer50 
(fsaverage).

Convolutional neural network architecture and training. We used a deep neural network 
(DNN) architecture as described by Krizhevsky et al.29 (Fig. 1a). We chose this architecture because it was the 
best-performing neural network in the ImageNet Large Scale Visual Recognition Challenge 2012, it is inspired 
by biological principles. �e network architecture consisted of 8 layers; the �rst �ve layers were convolutional; 
the last three were fully connected. Layers 1 and 2 consisted of three stages: convolution, max pooling and nor-
malization; layers 3–5 consisted of a convolution stage only (enumeration of units and features for each layer in 
Suppl. Table 5). We used the last processing stage of each layer as model output of each layer for comparison with 
fMRI and MEG data.

We constructed 5 di�erent DNN models that di�ered in the categorization task they were trained on (Fig. 5a): 
(1) object DNN, i.e. a model trained on object categorization; (2) untrained DNN, i.e. an untrained model initial-
ized with random weights; (3) scene DNN, i.e. a model trained on scene categorization; (4) unecological DNN, i.e. 
a model trained on object categorization but with random assignment of label to the training image set; and (5) 
noise DNN, i.e. a model trained to categorize structured noise images. In detail, the object DNN was trained with 
900k images of 683 di�erent objects from ImageNet47 with roughly equal number of images per object (~1300). 
�e scene DNN, was trained with the recently released PLACES dataset that contains images from di�erent scene 
categories30. We used 216 scene categories and normalized the total number of images to be equivalent to the 
number of images used to train the object DNN. For the noise DNN we created an image set consisting of 1000 
random categories of 1300 images each. All noise images were sampled independently of each other and had size 
256 ×  256 with 3 color channels. To generate, each color channel and pixel was sampled independently from a 
uniform [0, 1] distribution, followed by convolution with a 2D Gaussian �lter of size 10 ×  10 with standard devi-
ation of 80 pixels. �e resulting noise images had small but perceptible spatial gradients.

All DNNs except the untrained DNN were trained on GPUs using the Ca�e toolbox (http://ca�e.berkeley-
vision.org/) with the learning parameters set as follows: the networks were trained for 450k iterations, with the 
initial learning rate set to 0.01 and a step multiple of 0.1 every 100k iterations. �e momentum and weight decay 
were �xed at 0.9 and 0.0005 respectively.

To ascertain that we successfully trained the networks, we determined their performance in predicting the 
category of images in object and scene databases based on the output of layer 7. As expected, the deep object- and 
scene networks performed comparably to previous DNNs trained on object and scene categorization, whereas the 
unecological and noise networks performed at chance level (Suppl. Table 1).

To determine classi�cation accuracy of the object DNN on the 118-image set used to probe the brain here, 
we determined the 5 most con�dent classi�cation labels for each image. We then manually veri�ed whether the 
predicted labels matched the expected object category. Manual veri�cation was required to correctly identify 
categories that were visually very similar but had di�erent labels e.g., backpack and book bag, or airplane and 
airliner. Images belonging to categories for which the network was not trained (i.e., person, apple, cattle, sheep) 
were marked as incorrect. Overall, the network classi�ed 111/118 images correctly, resulting in a 94% success 
rate, comparable to humans18 (image-speci�c voting results available online at http://brainmodels.csail.mit.edu).

Visualization of model neuron receptive field properties and DNN connectivity. We used a 
neuroscience-inspired reduction method to determine the receptive �eld (RF) properties size and selectivity of 
model neurons30. In short, for any neuron we determined the K =  25 most-strongly activating images. To deter-
mine the empirical size of the RF, we replicated the K images many times with small random occluders at di�er-
ent positions in the image. We then passed the occluded images into the DNN and compared the output to the 
original image, thus constructing a discrepancy map that indicates which portion of the image drives the neuron. 
Re-centering and averaging discrepancy maps generated the �nal RF.

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://brainmodels.csail.mit.edu
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To illustrate the selectivity of neuron RFs, we use shaded regions to highlight the image area primarily driving 
the neuron response (for visualization please see http://brainmodels.csail.mit.edu/dnn/rf/). �is was obtained by 
�rst producing the neuron feature map (the output of a neuron to a given image as it convolves the output of the 
previous layer), then multiplying the neuron RF with the value of the feature map in each location, summing the 
contribution across all pixels, and �nally thresholding this map at 50% its maximum value.

To illustrate the parameters of the object deep network, we developed a tool (DrawNet; http://brainmodels.
csail.mit.edu/dnn/drawCNN/) that plots for any chosen neuron in the model 1) the selectivity of the neuron for 
a particular image, and the strongest connections (weights) between the neurons in the previous and next layer. 
Only connections with weights that exceed a threshold of 0.75 times the maximum weight for a particular neuron 
are displayed. DrawNet plots properties for the pooling stage of layers 1, 2 and 5 and for the convolutional stage 
of layers 3 and 4.

Analysis of fMRI, MEG and computer model data in a common framework. To compare brain 
imaging data (fMRI, MEG) with the DNN in a common framework we used representational similarity analysis 
(Fig. 2)27,31. �e basic idea is that if two images are similarly represented in the brain, they should be similarly 
represented in the computer model, too. Pair-wise similarities, or equivalently dissimilarities, between the 118 
condition-speci�c representations can be summarized in a representational dissimilarity matrix (RDM) of size 
118 ×  118, indexed in rows and columns by the compared conditions. �us representational dissimilarity matri-
ces can be calculated for fMRI (one fMRI RDM for each ROI or searchlight), for MEG (one MEG RDM for each 
millisecond), and for DNNs (one DNN RDM for each layer). In turn, layer-speci�c DNN RDMs can be compared 
to fMRI or MEG RDMs yielding a measure of brain-DNN representational similarity. �e speci�cs of RDM con-
struction for MEG, fMRI and DNNs are given below.

Multivariate analysis of fMRI data yields space-resolved fMRI representational dissimilarity 
matrices. To compute fMRI RDMs we used a correlation-based approach. �e analysis was conducted inde-
pendently for each subject. First, for each ROI (V1, IT, or IPS1&2) and each of the 118 conditions we extracted 
condition-speci�c t-value activation patterns and concatenated them into vectors, forming 118 voxel pattern 
vectors of length V =  100. We then calculated the dissimilarity (1 minus Spearman’s R) between t-value patterns 
for every pair of conditions. �is yielded a 118 ×  118 fMRI representational dissimilarity matrix (RDM) indexed 
in rows and columns by the compared conditions for each ROI. Each fMRI RDM was symmetric across the diag-
onal, with entries bounded between 0 (no dissimilarity) and 2 (complete dissimilarity).

To analyze fMRI data in a spatially unbiased fashion we used a surface-based searchlight method. 
Construction of fMRI RDMs was similar to the ROI case above, with the only di�erence that activation pat-
tern vectors were formed separately for each voxel by using t-values within each corresponding searchlight, thus 
resulting in voxel-resolved fMRI RDMs.

Construction of DNN layer-resolved and summary DNN representational dissimilarity matrices.  
To compute DNN RDMs we again used a correlation-based approach. For each layer of the DNN, we extracted 
condition-speci�c model neuron activation values and concatenated them into a vector. �en, for each condi-
tion pair we computed the dissimilarity (1 minus Spearman’s R) between the model activation pattern vectors. 
�is yielded a 118 ×  118 DNN representational dissimilarity matrix (DNN RDM) summarizing the representa-
tional dissimilarities for each layer of a network. �e DNN RDM is symmetric across the diagonal and bounded 
between 0 (no dissimilarity) and 2 (complete dissimilarity).

For an analysis of representational dissimilarity at the level of whole DNNs rather than individual layers we 
modi�ed the aforementioned procedure (Fig. 5b). Layer-speci�c model neuron activation values were concat-
enated before entering similarity analysis, yielding a single DNN RDM per model. To balance the contribution 
of each layer irrespective of the highly di�erent number of neurons per layer, we applied a principal compo-
nent analysis (PCA) on the condition- and layer-speci�c activation patterns before concatenation, yielding 
117-dimensional summary vectors for each layer and condition. Concatenating the 117-dimensional vector 
across 8 layers yielded a 117 ×  8 =  936 dimensional vector per condition that entered similarity analysis.

Multivariate analysis of MEG data yields time-resolved MEG representational dissimilarity 
matrices. To compute MEG RDMs we used a decoding approach with a linear support vector machine 
(SVM)20,54. �e idea is that if a classi�er performs well in predicting condition labels based on MEG data, then the 
MEG visual representations must be su�ciently dissimilar. �us, decoding accuracy of a classi�er can be inter-
preted as a dissimilarity measure. �e motivation for a classi�er-based dissimilarity measure rather than 1 minus 
Spearman’s R (as above) is that a SVM classi�er selects MEG sensors that contain discriminative information in 
noisy data without human intervention. A dissimilarity measure over all sensors might be strongly in�uenced by 
noisy channels, and an a-priori sensor selection might introduce a bias, and neglect the fact that di�erent chan-
nels contain discriminate information over time.

We extracted MEG sensor level patterns for each millisecond time point (100 ms before to 1,000 ms a�er image 
onset) and for each trial. For each time point, MEG sensor level activations were arranged in 306 dimensional 
vectors (corresponding to the 306 MEG sensors), yielding M =  30 pattern vectors per time point and condition). 
To reduce computational load and improve signal-to-noise ratio, we sub-averaged the M vectors in groups of 
k =  5 with random assignment, thus obtaining L =  M/k averaged pattern vectors. For each pair of conditions, we 
assigned L-1 averaged pattern vectors to a training data set used to train a linear support vector machine in the 
LibSVM implementation (www.csie.ntu.edu.tw/~cjlin/libsvm). �e trained SVM was then used to predict the 
condition labels of the le�-out testing data set consisting of the Lth averaged pattern vector. We repeated this pro-
cess 100 times with random assignment of the M raw pattern vectors to L averaged pattern vectors. We assigned 

http://brainmodels.csail.mit.edu/dnn/rf/
http://brainmodels.csail.mit.edu/dnn/drawCNN/
http://brainmodels.csail.mit.edu/dnn/drawCNN/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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the average decoding accuracy to a decoding accuracy matrix of size 118 ×  118, with rows and columns indexed 
by the classi�ed conditions. �e matrix was symmetric across the diagonal, with the diagonal unde�ned. �is 
procedure yielded one 118 ×  118 matrix of decoding accuracies and thus one MEG representational dissimilarity 
matrix (MEG RDM) for every time point.

Representational similarity analysis compares brain data to DNNs. We used representational 
similarity analysis to compare layer-speci�c DNN RDMs to space-resolved fMRI RDMs or time-resolved MEG 
RDMs (Fig. 2). In particular, fMRI or MEG RDMs were compared to layer-speci�c DNN RDMs by calculating 
Spearman’s correlation between the lower half of the RDMs excluding the diagonal. All analyses were conducted 
on single-subject basis.

A comparison of time-resolved MEG RDMs and DNN RDMs (Fig. 2) yielded the time course with which 
visual representations common to brains and DNNs emerged. For the comparison of fMRI and DNNs RDMs, 
fMRI searchlight (Fig. 2) and ROI RDMs were compared with DNN RDMs, yielding single ROI values and 
2-dimensional brain maps of similarity between human brains and DNNs respectively.

For the searchlight-based fMRI-DNN comparison procedure in detail, we computed the Spearman’s R 
between the DNN RDM of a given layer and the fMRI RDM of a particular voxel in the searchlight approach. 
�e resulting similarity value was assigned to a 2D map at the location of the voxel. Repeating this procedure for 
each voxel yielded a spatially resolved similarity map indicating common brain-DNN representations. �e entire 
analysis yielded 8 maps, i.e. one for each DNN layer. Subject-speci�c similarity maps were transformed into a 
common average cortical surface space before entering random-e�ects analysis.

Statistical testing. For random-e�ects inference we used sign permutation tests. In short, we randomly 
changed the sign of the data points (10,000 permutation samples) for each subject to determine signi�cant e�ects 
at a threshold of P <  0.05. To correct for multiple comparisons in cases where neighboring tests had a meaningful 
structure, i.e. neighboring voxels in the searchlight analysis and neighboring time points in the MEG analysis, we 
used cluster extent (i.e., each data point equally weighted) inference with a cluster extent threshold of P <  0.05, 
Bonferroni-corrected for multiple comparisons. In other cases, we used FDR correction.

To provide estimates of the accuracy of a statistic we bootstrapped the pool of subjects (1,000 bootstraps) and 
calculated the standard deviation of the sampled bootstrap distribution. �is provided the standard error of the 
statistic.

References
1. Ungerleider, L. G. & Mishkin, M. In Analysis of Visual Behavior 549–586 (MIT Press, 1982).
2. Felleman, D. J. & Van Essen, D. C. Distributed Hierarchical Processing in the Primate Cerebral Cortex. Cereb. Cortex 1, 1–47 (1991).
3. Bullier, J. Integrated model of visual processing. Brain Res. Rev. 36, 96–107 (2001).
4. Milner, A. D. & Goodale, M. A. �e visual brain in action. (Oxford University Press, 2006).
5. Kourtzi, Z. & Connor, C. E. Neural Representations for Object Perception: Structure, Category, and Adaptive Coding. Annu. Rev. 

Neurosci 34, 45–67 (2011).
6. Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 

217–230 (2011).
7. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How Does the Brain Solve Visual Object Recognition? Neuron 73, 415–434 (2012).
8. Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat Neurosci. 2, 1019–1025 (1999).
9. Riesenhuber, M. & Poggio, T. Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12, 162–8 (2002).

10. Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M. & Gallant, J. L. Bayesian Reconstruction of Natural Images from Human Brain 
Activity. Neuron 63, 902–915 (2009).

11. David, S. V., Hayden, B. Y. & Gallant, J. L. Spectral Receptive Field Properties Explain Shape Selectivity in Area V4. J. Neurophysiol. 
96, 3492–3505 (2006).

12. Wang, G., Tanaka, K. & Tanifuji, M. Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex. Science 272, 
1665–1668 (1996).

13. Yamane, Y., Carlson, E. T., Bowman, K. C., Wang, Z. & Connor, C. E. A neural code for three-dimensional object shape in macaque 
inferotemporal cortex. Nat. Neurosci. 11, 1352–1360 (2008).

14. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
15. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
16. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A. & Oliva, A. Learning Deep Features for Scene Recognition using Places Database. Adv. 

Neural Inf. Process. Syst. 27 (2014).
17. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
18. Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. ArXiv14090575 Cs (2014).
19. He, K., Zhang, X., Ren, S. & Sun, J. Delving Deep into Recti�ers: Surpassing Human-Level Performance on ImageNet Classi�cation. 

ArXiv150201852 Cs (2015).
20. Cichy, R. M., Pantazis, D. & Oliva, A. Resolving human object recognition in space and time. Nat. Neurosci. 17, 455–462 (2014).
21. Schmolesky, M. T. et al. Signal Timing Across the Macaque Visual System. J. Neurophysiol. 79, 3272–3278 (1998).
22. Cichy, R., Pantazis, D. & Oliva, A. Similarity-based fusion of MEG and fMRI reveals spatio-temporal dynamics in human cortex 

during visual object recognition. bioRxiv 32656 (2015). doi:10.1101/032656.
23. Clarke, A., Devereux, B. J., Randall, B. & Tyler, L. K. Predicting the Time Course of Individual Objects with MEG. Cereb. Cortex 25, 

3602–12 (2015).
24. Agrawal, P., Stansbury, D., Malik, J. & Gallant, J. L. Pixels to Voxels: Modeling Visual Representation in the Human Brain. 

ArXiv14075104 Cs Q-Bio (2014).
25. Cadieu, C. F. et al. Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition. PLoS. 

Comput. Biol. 10, e1003963 (2014).
26. Güçlü, U. & Gerven, M. A. J. van. Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the 

Ventral Stream. J. Neurosci. 35, 10005–10014 (2015).
27. Khaligh-Razavi, S.-M. & Kriegeskorte, N. Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation. 

PLoS. Comput. Biol. 10, e1003915 (2014).
28. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. 

Sci. USA 111, 8619–8624 (2014).



www.nature.com/scientificreports/

13Scientific RepoRts | 6:27755 | DOI: 10.1038/srep27755

29. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classi�cation with deep convolutional neural networks. In Advances in Neural 
Information Processing Systems (2012).

30. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Object Detectors Emerge in Deep Scene CNNs. Int. Conf. Learn. 
Represent. ICLR 2015 (2015).

31. Kriegeskorte, N. Representational similarity analysis – connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 
(2008).

32. Mormann, F. et al. Latency and Selectivity of Single Neurons Indicate Hierarchical Processing in the Human Medial Temporal Lobe. 
J. Neurosci. 28, 8865–8872 (2008).

33. Cichy, R. M., Khosla, A., Pantazis, D. & Oliva, A. Dynamics of scene representations in the human brain revealed by 
magnetoencephalography and deep neural networks. NeuroImage doi:10.1016/j.neuroimage.2016.03.063

34. Freiwald, W. A., Tsao, D. Y. & Livingstone, M. S. A face feature space in the macaque temporal lobe. Nat. Neurosci. 12, 1187–1196 
(2009).

35. �orpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520–522 (1996).
36. Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping. Proc. Natl. Acad. Sci. USA 103, 

3863–3868 (2006).
37. Janssen, P., Srivastava, S., Ombelet, S. & Orban, G. A. Coding of Shape and Position in Macaque Lateral Intraparietal Area.  

J. Neurosci. 28, 6679–6690 (2008).
38. Sawamura, H., Georgieva, S., Vogels, R., Vandu�el, W. & Orban, G. A. Using Functional Magnetic Resonance Imaging to Assess 

Adaptation and Size Invariance of Shape Processing by Humans and Monkeys. J. Neurosci. 25, 4294–4306 (2005).
39. Chao, L. L. & Martin, A. Representation of Manipulable Man-Made Objects in the Dorsal Stream. NeuroImage 12, 478–484 (2000).
40. Konen, C. S. & Kastner, S. Two hierarchically organized neural systems for object information in human visual cortex. Nat. Neurosci. 

11, 224–231 (2008).
41. Grill-Spector, K. et al. Di�erential processing of objects under various viewing conditions in the human lateral occipital complex. 

Neuron 24, 187–203 (1999).
42. Kourtzi, Z. & Kanwisher, N. Cortical Regions Involved in Perceiving Object Shape. J. Neurosci. 20, 3310–3318 (2000).
43. Saxe, A. M. et al. On random weights and unsupervised feature learning. in In NIPS Workshop on Deep Learning and Unsupervised 

Feature Learning (2010).
44. DeYoe, E. A., Felleman, D. J., Van Essen, D. C. & McClendon, E. Multiple processing streams in occipitotemporal visual cortex. 

Nature 371, 151–4 (1994).
45. Ahissar, M. & Hochstein, S. �e reverse hierarchy theory of visual perceptual learning. Trends Cogn. Sci. 8, 457–464 (2004).
46. Kourtzi, Z. & DiCarlo, J. J. Learning and neural plasticity in visual object recognition. Curr. Opin. Neurobiol. 16, 152–158 (2006).
47. Deng, J. et al. ImageNet: A large-scale hierarchical image database. in IEEE Conference on Computer Vision and Pattern Recognition, 

2009. CVPR 2009 248–255 (2009). doi:10.1109/CVPR.2009.5206848.
48. Taulu, S., Kajola, M. & Simola, J. Suppression of interference and artifacts by the Signal Space Separation Method. Brain Topogr. 16, 

269–275 (2004).
49. Taulu, S. & Simola, J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys. 

Med. Biol. 51, 1759 (2006).
50. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. Neuroimage 9, 

179–194 (1999).
51. Benson, N. C. et al. �e Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology. Curr. Biol. 22, 2081–2085 

(2012).
52. Wang, L., Mruczek, R. E. B., Arcaro, M. J. & Kastner, S. Probabilistic Maps of Visual Topography in Human Cortex. 25, 3911–31 

(2015).
53. Chen, Y. et al. Cortical surface-based searchlight decoding. NeuroImage 56, 582–592 (2011).
54. Cichy, R. M., Ramirez, F. M. & Pantazis, D. Can visual information encoded in cortical columns be decoded from 

magnetoencephalography data in humans? Neuroimage 121, 193–204 (2015).

Acknowledgements
We thank Chen Yi for assisting in surface-based searchlight analysis. �is work was funded by National Eye 
Institute grant EY020484 (to A.O.), a Google Research Faculty Award (to A.O.), a Feodor Lynen Scholarship 
of the Humboldt Foundation and the Emmy Noether Program of the Deutsche Forschungsgemeinschaft  
(CI 241/1-1) (to R.M.C), the McGovern Institute Neurotechnology Program (to A.O. and D.P.), National Science 
Foundation Award 1532591 (to A.O, A.T and D.P), and was conducted at the Athinoula A. Martinos Imaging 
Center at the McGovern Institute for Brain Research, Massachusetts Institute of Technology.

Author Contributions
All authors conceived the experiments. R.M.C. and D.P. acquired and analyzed brain data, A.K. trained and 
analyzed computer models. R.M.C. provided model-brain comparison. R.M.C., A.K., D.P. and A.O. wrote the 
paper, A.T. provided expertise and feedback. A.O., D.P., A.T. and R.M.C. provided funding.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing �nancial interests: �e authors declare no competing �nancial interests.

How to cite this article: Cichy, R. M. et al. Comparison of deep neural networks to spatio-temporal cortical 
dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755; doi: 
10.1038/srep27755 (2016).

�is work is licensed under a Creative Commons Attribution 4.0 International License. �e images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
	Introduction
	Results
	Construction of a deep neural network performing at human level in object categorization
	Representational similarity analysis was used as the integrative framework for DNN-brain comparison
	Representations in the object DNN correlated with emerging visual representations in the human brain
	Correlation of representations in the visual brain with the object DNN revealed the hierarchical topography in the human ventral and dorsal visual streams
	Factors determining the correlation between representations in DNN’s and cortical visual representations emerging in time
	Factors determining the topographically ordered correlation between representations in DNN and cortical visual representations in cortex

	Discussion
	Summary
	Representations in the object DNN correlate with brain representations in space and time in a hierarchical fashion
	Origin and implications of brain-DNN representation similarities
	Summary statement

	Methods
	Participants
	Visual stimuli
	Experimental design and task
	MEG acquisition
	fMRI acquisition
	Anatomical MRI analysis
	fMRI analysis
	Definition of fMRI regions of interest
	fMRI surface-based searchlight construction and analysis
	Convolutional neural network architecture and training
	Visualization of model neuron receptive field properties and DNN connectivity
	Analysis of fMRI, MEG and computer model data in a common framework
	Multivariate analysis of fMRI data yields space-resolved fMRI representational dissimilarity matrices
	Construction of DNN layer-resolved and summary DNN representational dissimilarity matrices
	Multivariate analysis of MEG data yields time-resolved MEG representational dissimilarity matrices
	Representational similarity analysis compares brain data to DNNs
	Statistical testing

	Additional Information
	Acknowledgements
	References


