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Abstract: High-resolution digital elevation models (DEMs) play a critical role in geospatial databases,
which can be applied to many terrain-related studies such as facility siting, hydrological analysis,
and urban design. However, due to the limitation of precision of equipment, there are big gaps to
collect high-resolution DEM data. A practical idea is to recover high-resolution DEMs from easily
obtained low-resolution DEMs, and this process is termed DEM super-resolution (SR). However,
traditional DEM SR methods (e.g., bicubic interpolation) tend to over-smooth high-frequency regions
on account of the operation of averaging local variations. With the recent development of machine
learning, image SR methods have made great progress. Nevertheless, due to the complexity of terrain
characters (e.g., peak and valley) and the huge difference between elevation field and image RGB
(Red, Green, and Blue) value field, there are few works that apply image SR methods to the task of
DEM SR. Therefore, this paper investigates the question of whether the state-of-the-art image SR
methods are appropriate for DEM SR. More specifically, the traditional interpolation method and
three excellent SR methods based on neural networks are chosen for comparison. Experimental
results suggest that SRGAN (Super-Resolution with Generative Adversarial Network) presents the
best performance on accuracy evaluation over a series of DEM SR experiments.

Keywords: DEM; super-resolution process; neural network; terrain features

1. Introduction

As one of the most important digital representations of terrain, DEMs record spatial
elevation information in a regular raster form [1]. Through visualizing fluctuating char-
acters of terrain surfaces, DEMs can be widely applied in the domains including facility
siting, hydrological analysis, and urban design [2–4]. With the rapid development of mea-
suring equipment, DEM data can be generated from various sources, which accelerate its
universality in landform analysis applications [5]. Specifically, the synthetic aperture radar
(SAR) has been used as the primary source of DEMs at a global scale for its robustness in
all weather conditions [6]. Despite the wide usage of SAR data, the limitation of equipment
precision can still result in systematic errors that reduce the resolutions of DEM products.
The inadequate spatial resolution of DEM data also restricts its usage in terrain-related
analyses [7,8]. For example, using recent and accurate topographic data rather than low-
resolution DEM data can obtain better accuracy for flood inundation modeling [9]. In
addition, higher-resolution DEM is able to return more accurate predicted terrain features
such as stream network and sub-basin classification [10]. The most direct solution to obtain
high-resolution DEM is to improve the precision of measuring equipment, but this pro-
cess is difficult, costly, and time-consuming. Therefore, generating high-resolution DEMs
without extra cost becomes a key concern of researchers from various fields [11,12].

Traditionally, a practical way to obtain high-resolution DEMs without extra cost is
to recover from easily obtained low-resolution DEMs, and this process is termed DEM
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super-resolution (SR) [12]. There are two major solutions for DEM SR, and the first solution
is to generate a high-resolution DEM from multiple low-resolution DEMs of the same
scene [13]. For example, Yue et al. [14] proposed a regularized SR method for DEM SR. In
this method, a wider and higher-resolution DEM can be obtained by the fusion of DEMs
with different spatial coverage, resolution, and accuracy. Different from the first solution,
the second is the single DEM SR, in which a high-resolution DEM can be generated by only
using one source of the corresponding low-resolution DEM. However, priori knowledge or
pre-training is usually needed [11]. For example, based on the priori knowledge that nearer
objects are more similar, spatial interpolation (e.g., bicubic interpolation) is commonly used
in the single DEM SR.

Although the first type of method can improve DEM resolution, it requires extra
topographic information, which is still hard to acquire in practical applications, especially
for a large area [15]. Therefore, the second solution is more adaptable for most application
scenarios, which is also the concern of this paper. Nowadays, with the rapid development
of machine learning, neural network methods give more possibility to solve difficulties that
used to have rare solutions [16], and there has been observed great progress in the field
of computer vision, especially for image SR [17,18]. For both the image SR and DEM SR,
the target is to improve the quality of field data from its blurred and down-scaled noisy
version [19]. Compared with traditional image SR methods, neural network SR methods
can greatly improve the quality of the result using a learning strategy [20]. Moreover,
the “end-to-end” architecture makes it easier for neural networks to learn the complex
restoration process in SR [21].

It is inspiring that the neural network SR methods are effective for various types of im-
ages, e.g., human faces, flowers, and animals [22,23]. However, whether these methods are
suitable for DEM SR is uncertain, considering that DEM data present much more complex
terrain characters (e.g., peak, saddle, and valley) than natural images [24,25]. In addition,
pattern recognition for images (e.g., faces) is based on features, not on continuous surfaces
such as in DEMs. Moreover, the significant differences between the terrain elevation field
and the image RGB field increase the difficulty of generating high-resolution DEMs from
a low-resolution one. The elevation field also usually has a much larger range than the
image RGB field. In addition, current image SR methods focus more on the perceptual
feeling of generated images [26], and this is different from the target of DEM SR, in which
the accuracy and terrain features of generated DEM are more concerned [27].

Some related pioneering studies suggested the huge potential to apply neural network
methods to DEM data [28]. However, the evaluation and comparison of these methods on
the task of DEM SR are urgently needed. Therefore, this paper investigates the effectiveness
of image SR methods on terrain data from a comprehensive perspective. More specifically,
the interpolation method (bicubic interpolation) and three excellent SR methods based
on neural networks are chosen for comparison. Among them, CEDGAN [28] is designed
for spatial interpolation, which has already been proved to be effective for DEM data.
ESRGAN [18] is an improved version of SRGAN [17], which focuses more on the perceptual
feeling of generated images, and its results are suggested to be more realistic [18]. Generally,
both SRGAN and ESRGAN are accepted to be outstanding image SR methods [29]. In this
paper, indexes related to terrain features including elevations and terrain derivatives were
compared to evaluate the effectiveness and suitability of these methods.

The remainder of this paper is organized as follows. Section 2 reviews the related work
of SR methods. Section 3 describes the interpolation method and three outstanding DEM
SR methods in detail. Section 4 introduces the design of the experimental evaluation and
presents results and discussions. Section 5 presents conclusions and discusses future work.

2. Related Work

SR is one of the key concerns in the field of computer science, which aims to gener-
ate a high-resolution image based on a single or several low-resolution images. Since it
was first proposed [30], researchers from various fields proposed many relevant methods,
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which are usually classified into three categories: interpolation-based, reconstruction-based,
and learning-based [11]. Firstly, interpolation-based methods improve the resolution of
low-resolution images by estimating values of unknown pixels in target high-resolution
images [31]. In this process, the interpolation kernel (or function) is the key concern; given
a specific interpolation kernel, values of unknown pixels can be calculated from their neigh-
boring pixels. However, although interpolation-based methods are less time consuming,
they tend to blur high-frequency regions during the estimation. Then, to tackle this problem,
reconstruction-based methods integrate image prior knowledge to generate high-resolution
images such as gradient profile prior [32] and natural image prior [33]. Therefore, com-
pared with the interpolation-based methods, the reconstruction-based methods have the
advantages of preserving edges and suppressing artifacts. However, this type of method
is not suitable to produce high-resolution images at relatively large magnification factors.
Finally, considering the learning-based strategies, the relevant methods attempt to con-
struct the direct relations between high-resolution images and low-resolution images. For
example, inspired by the idea of compress sensing, Yang et al. [19] proposed to jointly learn
two dictionaries for both high-resolution images and low-resolution images. In this way,
high-resolution images can be reconstructed by the sparse codes of low-resolution images
and the corresponding high-resolution dictionary. Although learning-based methods can
gather high-frequency information from a learning process, the quality of training data will
have a great impact on results [34].

DEM SR techniques developed along with the road of image SR, and the three types
of image SR methods can be also applied to DEM SR [35,36]. However, similar dilemmas
of these methods in image SR have also appeared in DEM SR. Then, researchers attempt to
solve this problem from other perspectives, and the development of neural networks brings
a new direction. For example, Dong et al. [21] introduced convolutional neural network
(CNN) for image SR, which learns an end-to-end mapping between low-resolution images
and high-resolution images. In this method, a lightweight but effective network structure
is adopted, which shows better overall image quality. Then, presenting the potential to
solve undetermined problems, generative adversarial networks (GANs) have also been
applied to image SR. For example, Ledig et al. [17] proposed a single image SR method
based on a generative adversarial network (SRGAN), which obtained effective results on
the perceptual feelings of images. Then, by improving the network structure of SRGAN,
Wang et al. [18] proposed ESRGAN to further enhance the visual quality of generated
images. Based on the performance of image SR methods, some researchers have also
applied these methods to DEM data [34]. However, the recent image SR methods based on
neural networks mainly focus on the visual quality of high-resolution images, while the
focus of DEM SR is more concerned with the accuracy and terrain features of generated
high-resolution DEM. Therefore, this paper aims to investigate whether image SR methods
with the target of visual quality are suitable for the task of DEM SR. More specifically,
three excellent SR methods based on neural networks (including SRGAN, ESRGAN, and
CEDGAN) and the commonly used interpolation method (bicubic interpolation) are chosen
for comparison. Details of these techniques are presented in Section 3.

3. Methods
3.1. SR Methods Based on Interpolation

Interpolation SR methods generate high-resolution images by estimating unknown
pixel values in the high-resolution grids [31,37]. In this process, the value of an unknown
pixel is calculated by its neighboring pixels based on a specific interpolation kernel. The
commonly used interpolation methods include nearest neighbor interpolation, bilinear
interpolation, and bicubic interpolation, among which the bicubic interpolation obtains
the best accuracy [38]. Therefore, in this paper, bicubic interpolation is chosen for compari-
son, and this interpolation process is presented in Figure 1. In the bicubic interpolation,
values of unknown pixels in the high-resolution grids (e.g., p(x,y)) are estimated based
on their nearest 16 pixels, and the formula is presented in Figure 1c. From this formula,
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high-frequency details will be easily smoothed for estimating unknown pixel values by the
weighted sum of neighboring pixel values. Moreover, the accuracy of the interpolation re-
sults depends on the interpolation kernel W. Therefore, for valid comparisons, a commonly
used interpolation kernel is chosen in this paper, which is described as Equation (1).

W(t) =


(a + 2)|t|3 − (a + 3)|t|2 + 1 |t| < 1

a|t|3 − 5a|t|2 + 8a|t| − 4a 1 < |t| < 2
0 otherwise

(1)

where t denotes distances between unknown pixels (e.g., p(x,y)) and existing pixels, and a
is a given parameter, which is usually set as −0.5.
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3.2. SR Methods Based on Neural Networks

Recently, neural networks have been introduced to various tasks of computer vision
including image segmentation, image classification, and image SR [39–41]. Compared with
traditional image SR methods (e.g., sparse reconstruction), neural network SR methods
can learn an end-to-end mapping between high-resolution (HR) and low-resolution (LR)
images, and complex features can be automatically learned by hidden layers. Therefore,
the pattern of hidden layers is critical to final results, for which most concerns have been
paid to the structure design of neural networks. Among the neural network structures,
generative adversarial networks (GANs) adopt a unique adversarial structure, which is
suggested to have the advantage of sidestepping the difficulty of approximating many
intractable probabilistic computations [42]. More specifically, there are two independent
neural networks in GAN, which include a generator (G) and a discriminator (D). During
the training process, the discriminator is trained to make the best judgment, while the
generator is trained to maximally confuse the discriminator. When applied to image
SR, the discriminator is trained to distinguish whether an image is real or generated by
the generator, while the generator is trained to generate fake realistic images that the
discriminator cannot distinguish. Therefore, with such a training strategy, when a training
balance is reached, the generator can automatically learn to generate high-resolution
images that are highly similar to the real images. This training process can be described as
Equation (2).

min
θG

max
θD

EIHR∼ptrain(IHR)

[
log DθD

(
IHR

)]
+EILR∼pG(ILR)

[
log(1− DθD

(
GθG (ILR

)
)
]

(2)

where log DθD

(
IHR) denotes that the discriminator (D) can correctly recognize real high-

resolution images (IHR), and log(1−DθD

(
GθG (ILR)) denotes that the discriminator (D) can
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correctly recognize fake images generated by the generator (GθG (ILR)). A general frame-
work of this training process is presented in Figure 2. The adversarial loss is obtained from
the discriminator, which can be automatically calculated during the process of adversarial
training. This type of loss function is also a unique characteristic of GAN, which means
that GAN can be trained without other specifically designed loss functions. Therefore, the
design of the generator and discriminator has a large impact on the final results, which is
also the major concern of scientists from many fields.
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Nowadays, there are some pioneering works that introduce GAN to the task of SR,
and the variations of the model include SRGAN and ESRGAN. A similar structural feature
of these models is to input LR (low-resolution) images and output HR (high-resolution)
images that preserve similar global data distribution patterns with the corresponding LR
images. This feature is also suitable for DEM data. Then, CEDGAN is specifically designed
for spatial interpolation, and experiments in terms of DEM data present that CEDGAN
is more effective than traditional interpolation methods (e.g., kriging interpolation) [28].
Therefore, in this paper, we will investigate their applicability to DEM SR in a systematic
manner. Details of their structures and advantages are discussed in the following sections.

3.2.1. SRGAN

The rise of convolutional neural networks (CNNs) had a substantial impact on image
SR, which greatly enhanced the accuracy of image SR. Before SRGAN, most image SR
methods based on neural networks are of supervised learning, the optimization target of
which is usually the minimization of the mean squared error (MSE) between recovered
images and corresponding real HR images. Although it is convenient for optimizing,
the training index of MSE is unable to capture perceptual features of images (e.g., high-
frequency texture detail), as it is defined based on pixel-wise image differences. Therefore,
Ledig et al. [17] firstly attempted to integrate GAN to improve the photo-realistic perception
during image SR, and a method named SRGAN is proposed. In this approach, a perceptual
loss function is well designed to replace the original commonly used pixel-based loss
function. There are two major parts in the perceptual loss function, i.e., adversarial loss and
content loss. Different from the most widely used pixel-based content loss (MSE), a VGG
loss, which is based on the ReLU activation layers of the pre-trained 19 layer VGG network
presented in [43], is defined to describe the content loss. In other words, high-level features
of real HR images and generated images from the generator are firstly extracted, and then,
the Euclidean distance between the two feature representations is calculated as the content
loss. In this way, more and finer perceptual texture features can be perceived during the
training process, which can be ultimately recovered on the generated images. Details of the
generator in SRGAN are presented in Figure 3. It can be observed that the residual block
with an identical layout is the major core of the generator. The residual block is proposed
by [44], which is proposed to solve training problems of deep neural networks. More
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specifically, deep neural networks are difficult to train, and the performance will degrade
when stacking excessive layers. With the residual block, features extracted by shallower
layers can be effectively transmitted to corresponding deeper layers. This advantage is
significant for image SR, since feature extraction is critical to the final generated results.
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Therefore, compared with other SR methods based on neural networks, SRGAN can
train the generator to perceive more perceptual features and generate more photo-realistic
images. Compared with images, there are some common features in DEM data. For
example, characters of terrain textures on plain areas are similar to image textures, as they
both present smooth transitions. However, as mentioned above, there are also some unique
terrain texture features in DEM data (e.g., ridge and river), which is very different from
the natural texture features in images. Moreover, the elevation differences in neighboring
cells are significant in many complex terrain areas (e.g., bluff areas), and that is much larger
than the largest difference between pixel values (i.e., the range of RGB value of 0–255).
Therefore, whether this natural image texture features-based method is suitable for DEM
SR task needs to be carefully explored, and more details of experiments are presented in
Section 4.

3.2.2. ESRGAN

ESRGAN is proposed based on SRGAN, which is suggested to improve the overall
perceptual quality of SR images [18]. In ESRGAN, there are two major modifications in the
generator, which are presented in Figure 4. The first modification is to remove all Batch
Normalization (BN) layers (Figure 4a), and the second is to replace the original residual
block with the proposed Residual-in-Residual Dense Block (RRDB, Figure 4b). Firstly,
in SRGAN, features extracted from former layers (e.g., convolution) will be normalized
by the BN layer using the mean and variance of each batch during training, and using
the estimated mean and variance of the whole training dataset during testing. In this
way, Wang et al. [18] suggest that BN layers will bring unpleasant artifacts and limit the
generation ability when there are huge differences between the statistics of training and
testing datasets. Therefore, BN layers are removed in this method. Then, based on the
observation that more layers and connections could always boost performance, the original
residual block in SRGAN is replaced by RRDB, which employs a deeper and more complex
structure (Figure 4b). With such two modifications, ESRGAN is suggested to be capable
of generating more realistic textures during image SR than SRGAN. Therefore, this paper
aims to investigate whether ESRGAN has a similar better performance than SRGAN on
DEM SR, and more details of experiments are presented in Section 4.
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3.2.3. CEDGAN

CEDGAN is specially designed for spatial interpolation, and that is an endeavor to
investigate the deep spatial knowledge using artificial intelligence [28]. Different from
the above two methods, this method introduces the structure of conditional generative
adversarial networks (cGAN), which is an extension of GAN [45]. In this method, an
encoder–decoder structure is used to construct the generator, which is suggested to be
suitable for spatial feature extraction [46], and the structure of the generator is presented
in Figure 5. It can be observed that compared with SRGAN or ESRGAN, the generator
in CEDGAN is a lightweight network, and fewer parameters make it easier to train. The
experimental results in Zhu et al. [28] present that with only several iterations, relatively
accurate DEMs can be generated by the generator. Then, with more iterations, this method
can generate more accurate DEMs than traditional spatial interpolation methods (e.g., the
kriging method). Therefore, this specially designed method is also chosen to compare with
image SR methods to show which is better for DEM SR, and more details of experiments
are presented in Section 4.
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3.3. Evaluation Indexes

Considering terrain features and the realistic demand of high-resolution DEM data,
several commonly used evaluation indexes related to the accuracy and features of DEM
are chosen for comparison, and they can be represented in general root mean square error
(RMSE) and mean error (ME) forms presented in Equation (3).

RMSEF =

√
∑n

i=1(Foi−Fgi)
2

n

MEF =
∑n

i=1|Foi−Fgi|
n

(3)
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where Foi and Fgi denote the attribute value of feature F (slope, aspect, and elevation) of
the ith cell in the original real HR DEM and generated fake HR DEM, respectively, n is the
total cell number of DEM, and MEF denotes the mean error of feature F. In this paper, three
types of features including elevation, slope, and aspect are chosen. Among these indexes,
the RMSE of elevation can reveal the global accuracy of generated DEMs, and features
of slope and aspect can reveal the extent of feature preservation of generated DEMs. In
addition to the evaluation of terrain structural features, the evaluation of terrain critical
points is also important [47]. Therefore, the displacement distances of peak points and
valley points between real HR DEM and generated HR DEM are used to evaluate the ability
of the methods to preserve terrain critical points. In our experiments, the top 20 peak points
and the lowest 20 valley points are chosen to calculate their displacement distances, and a
shorter distance represents a better feature preservation performance.

4. Experiments and Results
4.1. Data Descriptions and Parameters

To investigate the effectiveness of the selected methods on DEM SR (SRGAN, ESRGAN,
and CEDGAN), a dataset of digital elevation models (DEMs) with complex terrain features
is used in this paper, which was acquired from the USGS (United States Geological Survey).
More specifically, DEM data with the size of 3584 × 3584 from ten different regions are
selected, and terrain elevations in the dataset range from 0.5 to 3741 m. The resolution of
DEM data is 30 m, and an example region is presented in Figure 6. There can be observed
many typical terrain features such as ridges, rivers, and mountains, and there are also some
discrete areas with sudden elevation changes, which are much more complex than texture
details in natural images. After preprocessing, single-channel DEM tiles (1 × 64 × 64) with
no repetition are randomly cropped, and a total of 31,360 high-resolution DEM tiles are
obtained. To address the concerns of over-fitting and memorization of training samples, a
method of systematic sampling is used to sample 25,088 DEM tiles as training data and the
other 6272 DEM tiles as validation data. More specifically, an equal number of DEMs will
be sampled from every region. To accommodate the selected methods to DEM data, the
original three-channel network structures in SRGAN and ESRGAN are adapted for single-
channel data (CEDGAN is a single-channel network). Moreover, DEM tiles are normalized
into float tensor units ([−1.0, 1.0]) based on the respective maximum and minimum cell
values of each DEM [28], and this process is presented in Equation (4):

DEMi−n = 2× DEMi − Hmin
Hmax − Hmin

− 1 (4)

where DEMi−n denotes the normalized version of DEMi, and Hmax and Hmin denote the
maximum and minimum cell values of DEMi, respectively. In this way, the large elevation
gaps between DEM tiles from different areas (e.g., depression and plateau) can be avoided,
and tiny terrain features can be learned rather than overlooked during the training process.
That can help with terrain features recovery after DEM SR. Finally, all the elevation values
are mapped back to their original values in the reported accuracies, and the corresponding
evaluation indexes can be calculated based on the obtained back-mapped DEMs. The data
that support the findings of this study are available in [figshare.com] with the identifiers
(https://figshare.com/s/3fe0b1313938b0db994a (accessed on 13 May 2021)).

https://figshare.com/s/3fe0b1313938b0db994a
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Then, some parameters also need to be specified before the training process. Most of
the parameters (e.g., optimizer, the slope of the leak for layers with LeakyReLU activation)
are kept the same as their original setting in the above methods for performance compar-
isons. Then, the learning rates of different methods are tuned for the best training results
(0.0000001 in SRGAN, 0.0002 in ESRGAN, and 0.00001 in CEDGAN). All experiments are
conducted with a downsampling factor of 4, and LR DEMs are obtained by downsampling
the HR DEMs using a bicubic kernel with the same downsampling factor. All the models
are trained with 100 epochs, and the training images are divided in a random way in
each epoch.

4.2. Training Procedure

In this section, training details of the selected methods are described. Figures 7–9
respectively present the variation of model accuracy (RMSE-Elevation) and adversarial
losses for generator (G) and discriminator (D) in SRGAN, ESRGAN, and CEDGAN dur-
ing the training procedure. Firstly, as for SRGAN (Figure 7), values of the model error
drop dramatically at the first 20,000 batches and become stable after that. We train on
156,800 batches (100 epochs), and it presents that the average error of generated high-
resolution DEM gradually stabilized at 1.7 m, which is a surprising result considering
complex DEM training data and challenging parameters setting including the relatively
larger patch size (1 × 64 × 64) and downsampling factor (4×) used in our training process.
Then, the average errors of ESRGAN and CEDGAN are 2.2 meters and 6.4 m, respectively.
However, the bicubic interpolation method can obtain an average error of 2.1 m on training
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data without any pre-training. Therefore, it can be observed that only SRGAN outperforms
the bicubic interpolation method during the training process.
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In addition to values of accuracy during the training process, adversarial losses for D
and G of these methods are also described at the upper location in Figures 7–9. Firstly, in
Figure 7, there can be observed a decreasing tendency of both adversarial losses, which
reveals an intrinsic characteristic of GAN (that is, the adversary system results in the
development of both D and G). A similar phenomenon appears in the adversarial losses
in ESRGAN and CEDGAN (Figures 8 and 9), but their competitions present to be more
intense than that in SRGAN. For example, in CEDGAN, the loss of D decreased, and the
loss of G increased in the first 20,000 training batches, and that means D suppresses G.
Then, the competition state reverses after some training batches (i.e., G is stronger than
D). Finally, both D and G gradually become stable. Therefore, it can be concluded that the
three methods tend to converge to their game equilibrium during the training.

4.3. Results

Although these methods present different performances on training data, their ability
to generate high-resolution DEMs based on the validation set is more focused. Therefore,
in this section, we apply the three well-trained models on the validation set to test whether
they are over-fitting or memorize training samples. Three types of evaluation are proposed
on these methods.

4.3.1. Quantitative Evaluation

In this section, the evaluation indexes proposed in Section 3.3 are utilized to test the
effectiveness of the three well-trained models. The validation set consists of 6272 DEM
tiles from ten different regions, and the evaluated results of the generated high-resolution
DEMs are presented in Table 1. It should be noted that these evaluation index values
of all DEM tiles are respectively averaged for a global evaluation. From Table 1, the
main observation is that the three neural network-based methods (SRGAN, ESRGAN, and
CEDGAN) generate worse results in terms of RMSE-Elevation on the validation set than
those on the training data, and that is also a characteristic of learning methods. Nevertheless,
the results are still acceptable with small floating precision, and thus, our training is effective.
In addition, SRGAN outperforms the other three methods in terms of the indexes of RMSE-
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Elevation, RMSE-Slope, and RMSE-Aspect. However, considering the preservation of
critical points (i.e., peak and valley points), bicubic interpolation (Bicubic) obtains the
best results. This is caused by the difference between DEM generation mechanisms of
interpolation-based methods and neural network-based methods. More specifically, for
interpolation-based methods, some cell values are kept fixed, and only unknown cell
values are estimated in terms of existing cell values; as a comparison, all cell values will be
regenerated by neural network-based methods. In other words, there is a global restriction
framework in interpolation-based methods, which makes constraints for peak and valley
points (please see Figure 1). Then, as for neural network-based methods, SRGAN still
obtains the best results.

Table 1. Evaluation results of the fake high-resolution DEMs generated by the selected methods.

Evaluation Index Bicubic SRGAN ESRGAN CEDGAN

RMSE-Elevation 2.051 1.791 2.284 6.542
RMSE-Slope 3.615 3.284 3.762 7.000

ME-Slope 2.338 2.259 2.683 5.300
RMSE-Aspect 1.485 1.501 1.610 1.998

ME-Aspect 0.711 0.751 0.861 1.286
Distance-Peak Point 6.662 6.976 7.722 9.815

Distance-Valley Point 9.084 9.899 10.472 15.027

Next, more details of the performance of these methods on the validation set are
investigated. Firstly, the range of the obtained results of RMSE-Elevation by these methods
is divided into five grades (i.e., 0–1, 1–2, 2–3, 3–4, and larger than 4). Then, features
of terrain elevations on the corresponding real high-resolution DEM tiles in each grade
are analyzed. More specifically, if a method generates a fake high-resolution DEM with
the RMSE-Elevation larger than 4, the corresponding real high-resolution DEM will be
grouped into “>4” (please see Figure 10). Then, three indexes including the elevation
difference between the maximum and minimum, average value of elevations, and variance
of elevations of the high-resolution DEM tile are calculated to reveal its terrain complexity;
and the values of the three indexes of all DEM tiles in the group “>4” are respectively
averaged to reveal global characteristic. The results are presented in Figure 10. It can be
first observed a strong correlation between the RMSE-Elevation and terrain complexity.
That means DEMs with more complex terrain features (i.e., higher values of the three
indexes) are more difficult to recover (larger errors) during the SR process. Then, SRGAN
presents to be the most robust method to generate high-resolution DEM, for which SRGAN
can recover LR DEM tiles with the same level of terrain complexity to relatively higher
precision. Therefore, it can be concluded that SRGAN is better than the other three methods
for DEM SR considering both the robustness and preservation of accuracy and features on
the generated high-resolution DEMs.
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4.3.2. Visual Evaluation

Although SRGAN outperforms the other methods from the perspective of quantitative
evaluation, visual evaluation is needed, as there are many cases in image SR in which
images with better quantitative indexes present worse visual perception [17,18]. In this
section, a visual evaluation of these methods is implemented, and we selected from each
grade a representative DEM tile for illustrating the results (Figure 11). From Figure 11, it
can be observed that terrain textures are always over-smoothed in the results of bicubic
interpolation. Therefore, although bicubic interpolation outperforms ESRGAN in terms
of the index of RMSE-Elevation, the results of ESRGAN present a comparable (or better)
visual perception than bicubic interpolation (i.e., preserving more terrain details). However,
some local terrain textures seem to be distorted in the recovered DEMs by ESRGAN (red
boxes in Figure 11), which might be the factor to reduce its accuracy. As a comparison, this
phenomenon rarely appears in the results of SRGAN, and thus, SRGAN outperforms the
other methods from this perspective. Finally, considering CEDGAN, there are some noisy
signals in its results, and those seem to be much worse than the other methods. Therefore,
the visual results suggest that CEDGAN may not be appropriate for the task of DEM SR.
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4.3.3. Evaluation of Terrain Features Preservation

Finally, we investigate the effectiveness of the methods in recovering terrain features.
From the previous evaluations, it can be observed that CEDGAN generates the worst
results. Therefore, in this evaluation, only bicubic interpolation, SRGAN, and ESRGAN are
focused, and two DEM tiles in two accuracy grades with typical terrain features are chosen
for comparison.

Figures 12 and 13 present the slope and aspect results of the original DEMs and
the high-resolution DEMs generated by these methods, respectively. Considering the
evaluation of slope, intuitive perception is that the results of bicubic interpolation are much
smoother than those of SRGAN and ESRGAN, and some textures disappear in the results
of bicubic interpolation but are retained in SRGAN and ESRGAN. Then, compared with
SRGAN, the slope results of ESRGAN present a much more complex feature distribution
pattern (such as grid-line distribution). In the computer vision field, the advantage of
ESRGAN is that it can preserve more local perceptual features with a more complex
network structure when dealing with natural images [18] (see Figure 4). However, it
can be observed from the slope results that for DEM SR, without the constraint of global
structure (the global precision RMSE-Elevation), local features generated by ESRGAN
also present to be out of control. Intuitively, distortions in the results of ESRGAN are
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obvious compared with the results of SRGAN and bicubic interpolation. However, the
slope results of SRGAN present to keep a better balance between global precision and local
features, which may be the reason why SRGAN outperforms the other methods. Then,
considering the evaluation of aspect, the three methods generate comparable results, and
such a conclusion is consistent with the quantitative evaluation in Table 1.
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Figures 14–16 present the results of structural lines (river and ridge) and critical points
on the high-resolution DEMs generated by these methods, respectively. Firstly, it can
be observed that SRGAN can obtain the best matching rate of river and ridge features.
Then, ESRGAN outperforms bicubic interpolation in preserving river features, but bicubic
interpolation performs better in preserving ridge features. As for the preservation of critical
points (Figure 16), no obvious rule has been found in the two example results. In this
regard, statistical results may be a better solution to evaluate the preservation of critical
points, and the main conclusions can be obtained from Table 1 (please see Section 4.3.1).
Therefore, to sum up, SRGAN outperforms the other methods in preserving most of the
terrain features during DEM SR.
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Figure 16. Results of displacement distances of critical points of the selected methods.

4.4. Ablation Experiments
4.4.1. Quantitative Analysis of the Computational Performance

During the training process, all the experiments were implemented on the device with
a single Nvidia RTX 2080Ti GPU and Intell Core i9-10900X CPU @ 3.70 GHz, and all the
experiments are implemented using Python. The time and space costs required for training
are listed in Table 2.

Table 2. The time and space costs required for training by the selected methods.

Evaluation Index SRGAN ESRGAN CEDGAN

Time (h) 27.9 41.5 22.8
Space (MIB) 3375 4945 1110

4.4.2. Sensitivity of the Result on the Resolution

Generally, recovering DEM from lower-resolution will bring greater challenges to the
task of image SR or DEM SR, which means more details are required to be recovered. Most
traditional image SR methods can recover natural images from 3× downsampling [19].
With the development of SR techniques, SRGAN firstly used a framework to recover photo-
realistic images from 4× downsampling [17], and subsequent methods are proposed with
the benchmark of 4× downsampling to demonstrate their robustness and effectiveness.
Then, in this section, the impact of the resolution on different SR methods is investigated,
and the downsampling factor is set as 2× for comparison. The training details and the
obtained evaluation results based on testing data are presented in Figure 17 and Table 3,
respectively. Firstly, considering the training phase (Figure 17), the average error of the
generated high-resolution DEM obtained by SRGAN, ESRGAN, and CEDGAN gradually
stabilized at 0.65 m, 0.73 m, and 5.51 m, respectively. From the results, the training error
obtained in terms of 2× downsampling is lower than that of 4× downsampling (the
corresponding errors in terms of 4× downsampling obtained by SRGAN, ESRGAN, and
CEDGAN are 1.7 m, 2.2 m, and 6.4 m, respectively). Then, the evaluation results at the
testing phase present a similar tendency (see Section 4.3.1). Therefore, it can be concluded
that DEM SR is more difficult with the larger downsampling factors. Moreover, SRGAN
still outperforms the other methods in terms of the RMSE-Elevation.
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Figure 17. Training details of (a) SRGAN, (b) ESRGAN, and (c) CEDGAN based on the downsampling
factor of 2.

Table 3. Evaluation results of the fake high-resolution DEMs generated by the selected methods
based on the downsampling factor of 2.

Evaluation Index Bicubic SRGAN ESRGAN CEDGAN

RMSE-Elevation 0.701 0.684 0.768 5.351
RMSE-Slope 1.592 1.337 1.543 5.974

ME-Slope 0.884 0.867 0.981 4.407
RMSE-Aspect 0.933 1.089 1.090 1.848

ME-Aspect 0.309 0.425 0.423 1.121
Distance-Peak Point 5.247 5.763 5.716 8.678

Distance-Valley Point 7.636 8.557 8.448 13.691

4.4.3. Sensitivity of the Result on the Study Area

In the above experiments, we select DEMs from ten different regions including various
terrains (e.g., areas of plateau mountain and basin) to test the robustness of different
models. Usually, it is difficult for deep learning-based methods to deal with datasets they
are not familiar with, which means the deep spatial features in a new area are difficult
to be captured by a model trained with different datasets. Therefore, in this section, we
want to explore how these models perform when faced with datasets in new domains.
Therefore, the DEM dataset from a new area is used to test the sensitivity of the models.
From Figure 18, the DEM contains complex terrain features with the size of 448 × 448,
and the resolution is 20 m, which is also different from DEMs of 30 m resolution used in
the above experiments. All the results are obtained by using the well-trained models in
Section 4.2, and the results are listed in Table 4. The results present that bicubic outperforms
other methods when dealing with such a new area. This suggests that although these deep
learning models are trained with datasets from ten different regions, they are still weak to
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deal with new datasets. Then, compared with other deep learning methods, SRGAN still
obtains the best results (with only one evaluation index exception), which also shows its
robustness.
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Table 4. Evaluation results of the fake high-resolution DEMs generated by the selected methods
based on a new study area.

Evaluation Index Bicubic SRGAN ESRGAN CEDGAN

RMSE-Elevation 7.433 9.648 18.882 88.236
RMSE-Slope 9.136 8.848 11.394 23.206

ME-Slope 5.893 6.185 8.079 19.087
RMSE-Aspect 1.280 1.315 1.411 2.064

ME-Aspect 0.554 0.591 0.667 1.384
Distance-Peak Point 6.026 7.121 6.441 9.726

Distance-Valley Point 7.367 9.075 10.742 13.379

5. Conclusions and Future Work

SR is a classic topic in the field of computer vision, which can be widely applied in
relevant tasks. This technique has attracted the attention of researchers from different
fields for its easy understanding but important target, i.e., recovering high-quality texture
details from lower-grade images. Nowadays, with the rapid development of machine
learning (especially deep learning), image SR has made great progress. Although the task
of DEM SR presents to be similar to image SR, there are few works that introduce image SR
methods to DEM SR. The reason may be that DEM data have much more complex terrain
features and larger elevation differences than natural images do. Moreover, the lack of
DEM data for training may also be a limiting factor for previous research. Therefore, this
paper attempts to investigate the performance of image SR methods when applied to DEM
SR. More specifically, traditional bicubic interpolation method and three state-of-the-art SR
methods (SRGAN, ESRGAN, and CEDGAN) based on neural networks are selected, and
terrain-related evaluation indexes including slope, aspect, river, ridge, and critical points
are used for comparison.
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The results present that SRGAN outperforms the other three methods in terms of
most evaluation indexes, and CEDGAN presents to be the worst one. Considering these
two methods, there are two major differences. The first is that SRGAN designs a much
deeper generator network than CEDGAN, and the second is that SRGAN uses specific loss
functions and CEDGAN uses only adversarial loss. Network structure and loss function
are also the most concerning points of the methods based on neural networks. Therefore,
specifically designing the network structure and appropriate loss function for spatial data
is an operative road to integrate GIS tasks and artificial intelligence (AI). Then, ESRGAN
is proposed based on the adaptation of SRGAN, and ESRGAN is suggested to be able to
generate natural images with better visual perception performance. Although it can be
observed that many terrain features are learned by ESRGAN, these terrain features are
always distorted. Therefore, ESRGAN is appropriate for natural image SR, but this learning
process may not be suitable for DEM data. Finally, compared with methods based on neural
networks, bicubic interpolation can output relatively balanced results considering different
evaluation indexes. Moreover, this method can be applied to different terrain data without
a training process, which is more efficient than learning-based methods. However, the
main problem is that most of the terrain features are over-smoothed after the interpolation
process. Therefore, for the DEM SR task, SRGAN is recommended when adequate training
data and time are available, and bicubic interpolation can be used when efficiency rather
than terrain features are concerned.

In terms of the results, we plan to extend our work from the following perspectives: (1)
ESRGAN outperforms SRGAN in generating high-resolution natural images with realistic
visual perception. Although the original design of ESRGAN is inappropriate for DEM SR,
its idea of adapting SRGAN can be introduced to DEM SR, and that means specifically
designed structures of neural networks and loss functions for terrain data have great
potential to improve the effectiveness of terrain features preservation during DEM SR.
(2) The idea of SR can also be introduced to other GIS fields. For example, trajectory
points are usually collected between a fixed time interval (e.g., 1 min), which limits its
application when dense trajectory points are needed [48]. Therefore, designing methods
based on neural networks to increase the density of trajectory points is also a valuable
exploratory direction.
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