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Abstract 

In a systematic study we compared the performance of 

spectral analysis and detrended fluctuation analysis 

(DFA) to discriminate sleep stages and sleep apnea.  

We investigated 14 healthy subjects, 33 patients with 

moderate, and 31 patients with severe sleep apnea with 

polysomnography.  

Discriminance analysis was used on a person and 

sleep stage basis to determine the best method for the 

separation of sleep stages and sleep apnea severity. 

Using spectral parameters 69.7% of the apnea severity 

assignments and 54.6% of the sleep stage assignments 

were correct, while using scaling analysis these numbers 

increased to 74.4% and 85.0%, respectively. Changes in 

heart rate variability are better quantified by scaling 

analysis than by spectral analysis. 

 

1. Introduction 

Sleep as the absence of wakefulness and the missing 

ability to react on external stimuli is regarded as a 

unbiased test situation for the autonomic nervous system 

[1]. Sleep is not just a constant state controlled by 

metabolic needs for the body being at rest. Instead sleep 

consists of different well defined sleep stages which 

follow a well structured temporal order in normal 

restorative sleep. Heart rate and heart rate variability vary 

with the sleep stages, and their normal variability is 

affected in sleep disorders. It has been shown that 

autonomic activity changes from waking to sleep. Big 

differences were found between non-REM and REM 

sleep [2]. Sympathetic tone drops progressively from 

wakefulness over sleep stage 1 to 4. In contrast REM 

sleep was characterized by increased sympathetic tone 

[3]. Parasympathetic tone increases from wakefulness to 

non-REM sleep. Periods of wakefulness during sleep 

were found to have an intermediate position between 

non-REM and REM sleep [4]. 

Sleep apnea affects heart rate variability during sleep 

described as cyclical variation of heart rate [5]. The 

recording of cyclical variation of heart rate together with 

snoring has been used in order to detect obstructive sleep 

apnea with ambulatory recording devices [6]. It can be 

assumed that the cyclical variation of heart rate can be 

detected by spectral analysis if the appropriate frequency 

range is investigated. The pattern of bradycardia and 

tachycardia during apnea has been attributed to an 

effective parasympathetic control of heart rate during 

sleep [7] interrupted by sympathetic activation 

accompanying the intermittent apnea-terminating 

arousals. 

Spectral analysis of heart rate variability is well 

established and provides a quantitative evaluation of 

sympathetic and parasympathetic activation of the 

heartbeat [8]. Three major oscillatory components were 

identified. The physiological interpretation of the very-

low-frequency (VLF) component (< 0.04 Hz) is still 

discussed, the low-frequency (LF) component (0.04 –

 0.15 Hz) reflects baroreflex sympathetic control of blood 

pressure, and the high-frequency (HF) component (0.15 –

 0.4 Hz) reflects respiratory rhythm and is believed to be 

related to parasympathetic control of heart rate [9].  

Detrended fluctuation analysis (DFA) method has 

become a widely-used technique for the detection of 

long-range correlations in noisy, non-stationary time 

series. In the DFA method, long-range correlations 

between interbeat intervals separated by several beats are 

detected by investigating the scaling behavior of the 

heartbeat fluctuations on different time scales 

disregarding trends and non-stationarities in the data [10].  

This study was performed on existing sleep recordings 

to compare spectral analysis of heart rate and DFA in 

their ability to distinguish sleep stages in normal and 

sleep apnea subjects. We also wanted to see whether 

sleep apnea severity can be distinguished using 

parameters derived from spectral analysis and DFA and 

which one performs better. 

2. Methods 

Sixty-four patients with symptoms of excessive 

daytime sleepiness and arterial hypertension were 

recruited. Patients had to be free of any cardiovascular 

medication. Patients with apparent cardiac arrhythmias 

were excluded. 33 patients with mild to moderate 

obstructive sleep apnea with an apnea-hypopnea index 

AHI < 40 events/hour and 31 patients with severe sleep 

apnea AHI > 40 events/hour were selected for this study. 
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Table 1.  Results of sleep stage scoring and evaluation of 

breathing are given for healthy persons and the two sleep 

apnea groups. Body mass index (BMI), apnea-hypopnea 

index (AHI) and total sleep time (TST) are listed. 
 

 healthy moderate 

sleep apnea 

severe 

sleep apnea 

subjects (n) 14 33 31 

age (years) 33.0 ± 6.4 47.9 ± 9.1 50.0 ± 8.0 

BMI (kg/m2) 21.7 ± 2.4 28.4 ± 4.2 33.7 ± 6.7 

AHI (n/h) 0.6 ± 1.4  19.0 ± 8.0  65.1 ± 18.4 

TST (min) 393 ± 37 361 ± 42 358 ± 49 

wake (min) 64 ± 27 98 ± 45 103 ± 45 

light sleep (min) 248 ± 39 235 ± 41 281 ± 40 

deep sleep 

(min) 

58 ± 19 50 ± 28  11 ± 16 

REM sleep 

(min) 

87 ± 23 75 ± 27 66 ± 21 

 

 

In order to compare our results with normal subjects 

14 healthy persons participated in the study. These 

normal controls had no symptoms of sleepiness and no 

sleep apnea.  

All subjects underwent two subsequent nights of 

polysomnography with EEG, EOG, EMG, recording of 

oro-nasal airflow, respiratory movements, snoring, 

oxygen saturation, and ECG as required for sleep studies 

[11]. Sleep was evaluated according to Rechtschaffen and 

Kales. For subsequent analysis some sleep stages were 

grouped together. We distinguished 'light sleep' (stage 1 

and 2), 'deep sleep' (stage 3 and 4), 'REM sleep', and 

'wakefulness'. 

Together with the other signals ECG lead II had been 

digitized at 100 Hz for patients and 200 Hz for normal 

subjects. The interbeat intervals were derived from the 

ECG as RR intervals using an R-wave detector. The time 

series were obtained for the entire duration of the sleep 

recording. All annotated periods of wakefulness, light 

sleep, deep sleep and REM sleep were analyzed 

separately.  

Based on discussions with our cardiologist on 

arrhythmia related artifacts in interbeat time series we 

chose the following practical criteria for automatic 

preprocessing: sleep recordings from our patients were 

excluded from our retrospective analysis, if more than 

one percent of the interbeat intervals failed to meet the 

following criteria: 0.33 s < interbeat interval < 1.5 s and 

0.66 s maximum difference from the previous interbeat 

interval. All recording epochs, where one sleep stage 

persisted shorter than 3 minutes or had more than one 

percent of RR intervals violating the criteria were 

excluded.  In addition, the violating intervals in accepted 

epochs were also excluded, concatenating the remaining 

parts of the series.  

 

Fig. 1.  The calculation of the spectral parameters using 

FFT in 5 minute segments was performed separately for 

the sleep stages. The summed spectra for each sleep stage 

were plotted and used to calculate the spectral bands. The 

figure depicts the heart rate and the sleep stage records as 

well as the power spectra for light sleep, deep sleep, 

REM sleep, and wake for a patient with moderate sleep 

apnea. For the spectra the y-axis for light sleep has a 

different scale in order to show the pronounced VLF peak 

being characteristic for sleep apnea during light sleep.  

 
In order to investigate 'clean' sleep stage effects on 

heart rate variability without sleep stage transition effects 

and non-stationarities associated with them we removed 

the initial and the final 45 seconds of each sleep stage 

period. Time domain and frequency domain measures 

were calculated according to standard definitions [9]. 

Mean RR intervals and the standard deviation of all RR 

intervals (SDNN) were calculated in the time domain.  

For the calculation of the power spectra, the RR 

interval time series was resampled at 3.41 Hz using linear 

interpolation. Consecutive segments of 5 minutes (1024 

points) inside each sleep stage were analyzed by spectral 

analysis (FFT) separately. We calculated total power, 

VLF (~ 0.04 Hz), LF (0.04 – 0.15 Hz), HF (0.15 –

 0.4 Hz) and the ratio LF/HF for the individual sleep 

stages separately. 

The detrended fluctuation analysis is calculated as the 

average over all segments and takes the square root to 

obtain the fluctuation function F(t): 
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It is apparent that F(t) will increase with increasing t, 

since the deviations from the fits will become larger for 

larger segments. If the data are long-range power-law 

correlated, F(t) increases, for large values of t, as a 

power-law, 

F t t( ) ~ .c  

When the fluctuation function F(t) is plotted as a 

function of t on double logarithmic scales, the fluctuation 

scaling exponent c can be determined by a linear fit. For 

uncorrelated data, the scaling exponent is c = 0.5. For 

short-range correlated data c is larger than 0.5 on small 

scales t, but a crossover to c = 0.5 is observed on large 

scales t. Power-law behavior with c @ 0.5 on large scales 

t indicates long-range correlations in the data. 

 

 

Fig 2.  The top part illustrates the disturbed heart rate 

together with the sleep stages of a patient with sleep 

apnea. The lower part depicts the DFA in double-

logarithmic plot as a mean value for 20 subjects with 

sleep apnea. The different slopes for the sleep stages can 

be observed. 

 

Differences between sleep stages with the classes 'light 

sleep', 'deep sleep', 'REM sleep', 'wake' and differences in 

sleep apnea severity with the classes 'normal', 'mild to 

moderate, AHI < 40', 'severe, AHI > 40 events/hour', 

were tested for two sets of dependent variables. The 

dependent variables were mean RR intervals, SDNN, 

VLF, LF, HF, and LF/HF in the first set and mean RR 

intervals, SDNN, c1, c2 calculated with DFA2 in the 

second set. A multiple analysis of variance (MANOVA) 

was applied for both sets. In order to check the 

differences between the individual groups Bonferroni 

tests were applied afterwards for both sets. Statistical 

significance was stated for p < 0.05. The statistical test 

was performed by SPSS version 10 (SPSS Inc, Chicago 

Il. USA). 

In order to compare the set of parameters derived by 

spectral analysis with the set of parameters given by DFA 

to determine their ability to discriminate between sleep 

stages and between differences in severity of sleep apnea 

we choose discriminance analysis. As parameters derived 

by DFA we choose c1 and c2 calculated with DFA2 as 

used in the MANOVA. From the spectral analysis we 

choose the variables VLF, LF, HF, and LF/HF as used in 

the MANOVA. The target variables for sleep were 'light 

sleep', 'deep sleep', 'REM sleep', and 'wake' derived for 

each subject and for apnea were 'normal', AHI < 40, and 

AHI > 40 events/hour. The model derived by 

discriminance analysis creates hyperplanes in the 

hyperspace. The hyperplanes for the independent 

variables were applied to predict the correct assignment 

of each single subject into the corresponding class of 

sleep and apnea – corresponding to the segment in the 

hyperspace. The numbers of correct assignments were 

calculated in percent. 

3. Results 

By applying discriminance analysis which separates 

the hyperspace created by the dependent parameters with 

hyperplanes we could prove that separation of sleep 

stages was performed best using c1 and c2 derived by 

DFA. 78.4% of sleep assignments were correct. If mean 

RR intervals and SDNN were added, the correct 

assignments increased to 85.0%. The assignments of 

sleep stages based on spectral analysis parameters 

resulted in 51.4%. If mean RR interval and SDNN were 

added 54.6% of correct assignments were reached for 

sleep stages.  

Separation of apnea severity based on spectral 

parameters performed better than based on DFA 

parameters. 63.6% of apnea severity assignments were 

correct. If mean RR intervals and SDNN were added to 

the discriminance analysis model, the correct assignments 

increased to 69.7%. The assignments of apnea severity 

based on DFA parameters resulted in 60.1%. If mean RR 

interval and SDNN were added 74.4% of assignments 

were correct. This was slightly better than the spectral 

parameter set together with time domain parameters.  
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If both classes were separated at the same time, and the 

corresponding discriminant model was applied, DFA 

analysis was better with 54.9% of correct assignments 

compared to spectral parameters with 36.3% correct 

assignments. In both cases, mean RR intervals and SDNN 

were included in the model. 

As a last test, all variables, derived by DFA, the 

spectral parameters, mean RR intervals, and SDNN were 

taken together. Then we achieved 84.1% correct 

assignments for sleep, 72.9% for apnea and 56.1% for 

separating both classes at the same time.  

4. Discussion 

This is the first study which systematically compared 

the method of spectral analysis of heart rate variability 

and DFA in a group with a defined disorder of high 

interest. We used both methods to compare the ability to 

discriminate sleep stages and sleep apnea severity. The 

separation of sleep stages was performed best using the 

two parameters derived by DFA together with time 

domain measures. The separation of apnea severity was 

also better using the parameters derived by DFA taken 

together with time domain measures. If only spectral 

parameters were compared to DFA parameters, they were 

better in the case of apnea severity. The results indicate 

that DFA derived parameters reflect heart rate regulation 

properties which complement time domain measures and 

their combination performs better than spectral measures 

when we want to distinguish sleep stage and apnea 

severity. 

A limitation of our study is, that the age and body mass 

index of our healthy control subjects (employees of the 

hospital) is considerably lower than age and body mass 

index of our patients. Both factors play a role in heart rate 

regulation. Our patients had no other cardiac or 

pulmonary disorder beside sleep apnea. These other 

disorders were excluded prior to the study. The patients 

with sleep apnea had an elevated office blood pressure at 

the time of being recruited for this study.  

Age and body mass index are very typical for sleep 

apnea patients. As the influence of age and body mass 

index on our results cannot be completely excluded this 

presents a limitation of our study. This specific limitation 

is a very common limitation to most studies on sleep 

disordered breathing.  

Our results do indicate that it might be possible to 

improve heart rate analysis in such a way that it is 

possible to recognize the severity of sleep apnea in rough 

classes as had been used here and sleep stages in a 

general way which distinguishes wake, light sleep, deep 

sleep and REM sleep. In order to prove these hypotheses 

prospective studies with implementations of the 

discriminance functions must be performed on subjects 

with sleep disordered breathing as well as in subjects 

which suffer from other disorders affecting the autonomic 

system.  
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