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Abstract

Background: Whole blood is frequently utilized in genome-wide association studies of DNA methylation patterns
in relation to environmental exposures or clinical outcomes. These associations can be confounded by cellular
heterogeneity. Algorithms have been developed to measure or adjust for this heterogeneity, and some have been
compared in the literature. However, with new methods available, it is unknown whether the findings will be
consistent, if not which method(s) perform better.

Results: Methods: We compared eight cell-type correction methods including the method in the minfi R package,
the method by Houseman et al., the Removing unwanted variation (RUV) approach, the methods in FaST-LMM-
EWASher, ReFACTor, RefFreeEWAS, and RefFreeCellMix R programs, along with one approach utilizing surrogate
variables (SVAs). We first evaluated the association of DNA methylation at each CpG across the whole genome with
prenatal arsenic exposure levels and with cancer status, adjusted for estimated cell-type information obtained from
different methods. We then compared CpGs showing statistical significance from different approaches. For the
methods implemented in minfi and proposed by Houseman et al., we utilized homogeneous data with
composition of some blood cells available and compared them with the estimated cell compositions. Finally, for
methods not explicitly estimating cell compositions, we evaluated their performance using simulated DNA
methylation data with a set of latent variables representing “cell types”.
Results: Results from the SVA-based method overall showed the highest agreement with all other methods except
for FaST-LMM-EWASher. Using homogeneous data, minfi provided better estimations on cell types compared to the
originally proposed method by Houseman et al. Further simulation studies on methods free of reference data
revealed that SVA provided good sensitivities and specificities, RefFreeCellMix in general produced high sensitivities
but specificities tended to be low when confounding is present, and FaST-LMM-EWASher gave the lowest
sensitivity but highest specificity.

Conclusions: Results from real data and simulations indicated that SVA is recommended when the focus is on the
identification of informative CpGs. When appropriate reference data are available, the method implemented in the
minfi package is recommended. However, if no such reference data are available or if the focus is not on
estimating cell proportions, the SVA method is suggested.
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Background
Whole blood is frequently utilized in genome-wide asso-
ciation studies of DNA methylation patterns in relation
to environmental exposures or clinical outcomes. How-
ever, for DNA methylation assessed from whole blood,
the association between DNA methylation and an expos-
ure of interest could be confounded by cellular hetero-
geneity [1, 2]. In larger epidemiological studies, it is not
feasible to isolate and profile every individual cell subset.
Thus, several algorithms have been developed to meas-
ure and adjust for cellular heterogeneity in whole blood.
Houseman et al. proposed a method to infer the cell

mixture proportions based on a regression calibration
technique, which uses an external validation dataset to
calibrate the model and correct for the bias [3]. Jaffe and
Irizarry [4] modified the Houseman et al.’s algorithm
and tailored it to predict cell mixture composition of
DNA-methylation profiles obtained from a different Illu-
mina platform. This cell type correction method is im-
plemented in Bioconductor [5] package minfi [6]. The
above two approaches require external validation data-
sets and are designed to identify cell mixtures in tissues
such as whole blood.
Apart from these two reference-based techniques,

non-reference-based methods have also been developed.
An advantage of these non-reference-based methods is
that they can be applied to other tissues in addition to
blood. Zou et al. developed a non-reference-based
method, FaST-LMM-EWASher. This approach is built
upon linear mixed models with top principal compo-
nents as the covariates. Another set of methods infer la-
tent variables for cell type compositions, which are then
included in association assessments. These methods in-
clude RefFreeEWAS and its recently improved version
(RefFreeCellMix), surrogate variable analysis (SVA), and
ReFACTor [7–10]. RefFreeEWAS [7] and RefFreeCellMix
[8] both utilize singular value decompositions (SVDs) and
extract latent subject and cell-specific effects, but RefFree-
CellMix incorporated additional constraints and utilities
aiming to reduce the occurrence of false positives. Surro-
gate variable analysis (SVA) [9], based on SVDs of resid-
uals in linear regressions, uses permutations to identify
statistically significant eigen-vectors and consequently
infer potential confounding factors (surrogate variables).
A Bioconductor package is available to estimate surrogate
variables using this approach [9]. Finally, ReFACTor [10]
is based on principal component analyses on a set of po-
tentially informative CpG sites.
Removing unwanted variation (RUV) is an approach dif-

ferent from the aforementioned methods and it was de-
signed to estimate cell type heterogeneity and built upon
factor analyses. This approach utilizes reference CpGs in-
ferred from a reference database, based on which factor
analyses are conducted. The factors are then included in

subsequent analyses for the purpose of adjusting for cell
type effects. Although a reference database is needed, this
method does not estimate cell type proportions as done in
the minfi package and in the Houseman et al. method.
In our earlier work Kaushal et al. [11], we compared

five methods, Houseman et al., minfi, FaST-LMM-
EWASher, RefFreeEWAS, and a method by use of SVA.
McGregor et al. [12] compared the methods noted above
except for ReFACTor and RefFreeCellMix and focused
on assessment of associations between DNA methylation
and a variable of interest by taking cell type composi-
tions into account. With the additional methods in-
cluded (ReFACTor and RefFreeCellMix), it was unclear
whether the findings would be consistent with those in
McGregor et al., Kaushal et al., and if not, which
method(s) might perform better. To this end, we first
applied each cell type correction method (Houseman
et al., minfi, RUV, FaST-LMM-EWASher, ReFACTor,
RefFreeEWAS, and RefFreeCellMix) as well as the surro-
gate variable analyses (SVA) to two real data sets. For
these real data sets, we evaluated the association be-
tween genome-scale DNA methylation and a variable
of interest adjusting for cell type compositions. We
assessed the agreement within each data set in terms of
identified CpGs between different methods and the
consistency of findings of each method between different
data sets. We also qualitatively compared different ap-
proaches based on existing knowledge about the sparsity
of informative genes, pathways and genetic functions.
For the method implemented in the minfi package and
that proposed by Houseman et al., we utilized a homoge-
neous real data set with some blood cells composition
available and compared the true cell counts with the es-
timated cell compositions. For methods free of reference
groups (FaST-LMM-EWASher, RefFreeEWAS, RefFree-
CellMix, ReFACTor, and SVA), we further utilized simu-
lated data generated under different scenarios to
compare different methods, which, combined with find-
ings from the real data, enabled us to comprehensively
assess each method.

Results
Findings from prenatal arsenic exposure and DNA
methylation data
We used genome-scale DNA methylation data from a
birth cohort study consisting of 64 cord blood samples
examining multiple prenatal factors in relation to child
health outcomes, pilot of the nationwide Taiwan Mater-
nal and Infant Cohort Study [13, 14].
Via linear regressions, we assessed the association of

DNA methylation at each CpG site across the whole
genome with prenatal urinary arsenic exposure levels
(a continuous measure), adjusting for cell-type effects
with cell type information inferred from one of the eight

Kaushal et al. BMC Bioinformatics  (2017) 18:216 Page 2 of 12



methods. For each method, we recorded the number of
CpGs showing statistically significant associations with
prenatal urinary arsenic exposure after adjusting for mul-
tiple testing by controlling false discovery rate (FDR) at
0.05. ReFACTor identified the largest number of CpGs
(~60,000) and no CpGs were detected by FaST-LMM-
EWASher (Table 1). RefFreeCellMix also identified a large
number of CpGs (~3000). SVA and RefFreeEWAS de-
tected more CpGs compared to the remaining methods.
(Table 1). Next, we assessed the number of identified
CpGs that overlapped between different methods. The
diagram in Fig. 1 shows the overlap of CpG sites from four
approaches (Houseman et al., minfi, RefFreeEWAS, and
SVA) as well as the analyses without adjusting for cell
types (we did not include all eight methods in this Venn
diagram for clarity). Results from SVA showed the best
agreement with findings from the other four analyses
(Fig. 1). Two identified CpG sites cg06434480 and
cg10662395 were common to all these five analytical
methods labeled in Fig. 1. Further comparisons indicated
that CpG site cg10662395 was also identified by RefFree-
CellMix and RUV, and was the only CpG site to overlap
among all seven analyses (Houseman et al., minfi,
RefFreeEWAS, SVA, RefFreeCellMix and RUV, as well as
the analyses without adjusting for cell types). Although
ReFACTor identified the largest number of CpGs, they
did not overlap with the joint findings from the aforemen-
tioned seven analyses. Overall, CpGs identified via SVA
overlapped with those from the Houseman et al. method,
minfi and RefFreeEWAS (p-value < 0.0001, Table 1, Fig. 1.
The definition of percentage overlap is given in the
Methods section). One of the two CpGs (cg06434480 and
cg10662395), cg06434480, is located within 200 base pairs

of the transcription start site of gene HMGCR (3-hydroxy-
3-methylglutaryl-CoA reductase) which is known to be as-
sociated with inorganic arsenic exposure [15]. In a study
conducted in humans, Mono-methylated arsenic (MMA)
was found to downregulate the gene expression of
HMGCR, a gene involved in cholesterol biosynthesis [16].
The other CpG, cg10662395, is located in the body region
of gene HCN2 (hyperpolarization activated cyclic nucleo-
tide gated potassium channel 2). This gene was not found
to be directly associated with arsenic exposure in the lit-
erature, but HCN2 has been known to regulate pacemaker
activity in the heart and the brain of mice and humans
[17, 18]. Arsenic has been found to induce QT interval
(i.e., time between initial deflection of QRS complex to
the end of T wave) prolongation probably by altering po-
tassium ion channel [19].
The motivation of adjusting for cell types was due to

the potential confounding effects of cell type composi-
tions with respect to the association of arsenic exposure
with DNA methylation, caused by the association of ar-
senic exposure with cell type compositions [20–23]. Our
assessment on the correlations between total arsenic
exposure and estimated cell type proportions also
supported the potential confounding-role of cell types
(Additional file 1: Material S1). To support the ex-
istence of such confounding effects, we assessed the
associations with and without adjusting for cell type
proportions at all CpG sites. We found that at more
than 99% of all the CpGs the effects (regression co-
efficients) of prenatal arsenic exposure changed by
more than 10% when not adjusting for cell type (the
median of the coefficients was 2.32 with 5th percentile
of 0.40 and 95th percentile of 3.46) to adjusting for
cell type (the corresponding statistics were 0.080,
0.0073 and 0.25), indicating a need of adjusting for
cell types.
Overall, the analysis based on SVA identified CpG

sites that had better overlap with the CpGs identified
by other methods. To acquire the biological relevance
of CpGs uniquely identified by use of SVA, we imple-
mented DAVID to perform Gene Ontology (GO) ana-
lysis and to identify KEGG pathways. The 455 (out of
498) significant CpGs identified uniquely by SVA
were mapped to genes using Illumina annotation file
for 450 K DNA methylation array. Of great interest,
GO categories related to transcription and regulation
of RNA metabolic process were enriched after con-
trolling FDR at 0.05, as well as three KEGG pathways,
endocytosis, cancer pathway and MAPK signaling
pathway (a complete list is included in Additional file
2: Material S2). A discussion on the connection of ar-
senic exposures and the identified GO categories and
KEGG pathways is presented in the Discussion
section.

Table 1 Number of significant CpG sites with and without cell
type correction and overlap with the SVA method (data on
prenatal arsenic exposure and DNA methylation)

Method Identified
CpGs (N)#

Overlap
with SVA (%)

p-value##

Houseman et al. 10 1.20 <0.0001

minfi 57 4.62 <0.0001

SVA 498 – –

RefFreeEWAS 133 6.01 <0.0001

RefFreeCellMix 2932 0.60 1.0

ReFACTor 58,871 13.03 1.0

EWASher a 0 0.0 –

RUV 356 0.20 1.0

Unadjusted b 3 0.60 <0.0001
#The selection of CpG sites is based on FDR-adjusted p-values (FDR is
controlled at 0.05)
##P-value is based on Fishers exact test for overlap with results from SVA. The
null hypothesis is that there is no overlap with the CpGs identified based
on SVA
aThe FasT-LMM-EWASher method
bUnadjusted: cell type compositions were not included in the analyses
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Findings from example data on cancer
We repeated the same analysis on an example data set
provided by the FasT-LMM-EWASher package. A tutor-
ial website for applying all the cell type composition in-
ference methods to this example data is available at
https://akhilesh362.wordpress.com/. This data set in-
cludes DNA methylation from the Illumina 27 K array
and measures of a binary variable (cancer status) for 204
subjects. In total, 7648 CpGs were included in our study
based on initial screening done by the FasT-LMM-
EWASher package. The purpose of the initial screening

is to exclude probes that are essentially not methylated
or completely methylated. In this example data, cell type
proportions were likely to be different on average be-
tween subjects with cancer and those without cancer,
based on two-sample t-tests applied to logit-transformed
sample proportions (Additional files 3 and 4: Materials
S3 and S4), explaining the potential need to adjust for
their confounding effects. Since Illumina 27 K focuses
more on cancer genes, DNA methylation at a large num-
ber of CpG sites showed statistically significant associa-
tions with cancer status (Table 2). Some similar findings

Fig. 1 Venn diagram illustrating the overlap of identified CpG sites that were associated with prenatal arsenic exposure at FDR level of 0.05 after
incorporating estimated cell type compositions by different methods for the association study of prenatal arsenic exposure with DNA-methylation.
Results from Houseman et al., minfi, RefFreeEWAS, and SVA as well as the analyses without adjusting for cell types are displayed (Results from other
methods are in the text). “UN”: results from an analysis without adjusting for cell type compositions

Table 2 Number of significant CpG sites with and without cell-correction methods and overlap of CpG sites with those from the
SVA method (example data from FasT-LMM-EWASher package)

Method Identified
CpGs (N)#

Overlap with
SVA (%)

p-value## J-index c

Houseman et al. 1835 54.71 <0.0001 0.40

minfi 3589 84.59 <0.0001 0.40

SVA 1888 – – –

RefFreeEWAS 788 30.51 <0.0001 0.30

RefFreeCellMix 1006 18.38 <0.0001 0.10

ReFACTor 4224 87.45 <0.0001 0.40

EWASher a 3 0.16 <0.0001 0

RUV 6008 99.95 <0.0001 0.30

Unadjusted b 3768 82.89 <0.0001 0.40
#The selection of CpG sites is based on FDR-adjusted p-values (FDR is controlled at 0.05)
## P-value is based on Fishers exact test for overlap. The null hypothesis is that there is no overlap with the CpGs identified based on SVA
aThe FasT-LMM-EWASher method
bUnadjusted: cell type compositions were not incorporated into the analyses
cJ-index is Jaccard index
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as in Table 1 were observed. ReFACTor identified a large
number of CpGs, Fast-LMM-EWASher identified the least
number of CpG sites, and SVA agreed nicely with minfi
(Jaccard similarity index = 0.4). A unique observation from
this analysis is that RUV identified the largest number of
CpGs (6008 CpGs, close to the number of CpGs in the
candidate pool, 7648 CpGs). Since the original Houseman
et al. method was designed specifically for Illumina 27 K
platform, it is understandable that SVA showed a better
overlap with results from this approach (Jaccard similarity
index = 0.4) compared to the results in the prenatal arsenic
exposure and DNA methylation data. In total, 3 identified
CpGs (cg22029275 located in the 1st Exon of FAM123A
gene, cg07080358 located in 1st Exon of CNRIP1, and
cg15202954 located within 200 base pair of transcription
start site of NALCN gene) were common to all the eight
cell correction methods as well as to the analyses without
cell type composition adjusted. There is evidence that these
three genes (FAM123A, CNRIP1 and NALCN) are associ-
ated with the risk of colorectal cancer [24–26].
DAVID analysis of genes associated with the significant

CpGs identified uniquely by SVA led to the identification
of three GO categories related to plasma membrane at
FDR of 0.05 (integral to plasma membrane, intrinsic to
plasma membrane, and plasma membrane part), as well as
KEGG pathways such as pathways in cancer and signaling
pathways (Additional file 2: Material S2), which indicates
that genes corresponding to these CpG sites may play a
role in the regulation of cancer.

Findings from breast cancer status and DNA-methylation
data
This analysis uses a data set discussed in Smith et al.
[27]. Breast cancer status, DNA-methylation, and cell
counts for granulocytes, monocyte, and lymphocytes for
61 subjects at baseline and a subset of 39 subjects at
6 months follow up are implemented in the analyses.
Among all the methods discussed, the method imple-
mented in the minfi package and the original Houseman
et al. method were able to estimate cell proportions. We
used minfi and the Houseman et al. approach to esti-
mate the proportions of granulocyte, monocyte and
lymphocyte cells. Lymphocyte proportions were derived
by adding the proportions of B cell, T cell and Natural
Killer (NK) cells. For the three cell types (granulocyte,
monocyte and lymphocyte), Pearson correlations be-
tween estimated (minfi) and true cell proportions were
0.85, 0.79, 0.88 at baseline and 0.84, 0.78, 0.87 at the
6 month follow up, respectively. For the correlations
based on the Houseman et al. method, they were
0.84, 0.78 and 0.88 at baseline and 0.78, 0.73 and
0.83 at the 6 month follow up, respectively. All the
correlations showed statistically significant difference from
zero (p-value < 0.05).

Findings from simulated data
We simulated data applying two scenarios with the first
scenario focusing on latent variable effects (comparable
to effects of cell composition) and the second focusing
on latent variable effects with confounding (comparable
to effects of cell composition as well as confounding ef-
fects). In total, 100 data sets were simulated under each
scenario. Details of the simulation scenarios are given in
the Methods section. The simulated data were used to
evaluate the five methods that do not estimate cell pro-
portions nor need reference databases, specifically,
FaST-LMM-EWASher, RefFreeEWAS, RefFreeCellMix,
ReFACTor, and SVA.
For data under all scenarios, we applied each of the

five methods to each simulated data to draw information
on cell compositions. We then incorporated the infor-
mation to assess the associations of “DNA methylation”
with the variable of interest at each pseudo CpG site,
and compared each method by assessing the sensitivity
and specificity of the selected CpG sites across all 100
data sets. Regardless of the number of important CpGs,
FaST-LMM-EWASher resulted in the lowest sensitivity
but the highest specificity for both scenarios, consistent
with findings from real data (Table 3). Findings from
RefFreeEWAS, RefFreeCellMix, ReFACTor, and SVA
are, in general, comparable for data simulated under sce-
nario 1, but SVA gives consistently higher sensitivity and
specificity in all settings (Table 3). For data simulated
under scenario 2 with high correlations (ρ = 0.7), SVA
outperformed FaST-LMM-EWASher, RefFreeEWAS,
RefFreeCellMix and ReFACTor and had higher sensitiv-
ity and specificity. Compared with RefFreeEWAS, overall
RefFreeCellMix outperformed when confounding effects
were present, showing much higher sensitivities with
relatively lower specificities. Results from ReFACTor in-
dicated extremely low specificity under scenario 2, which
is consistent with the rather large numbers of CpGs
identified in real data. The performance of FaST-LMM-
EWASher was similar between the two scenarios and
was inferior to all other methods. On the other hand,
the SVA method performed well under both scenar-
ios, followed by RefFreeEWAS and RefFreeCellMix
with RefFreeEWAS being weaker in capturing
confounding effects. We also considered a situation with
ρ = 0.3, mimicking a situation of moderate confounding
(Additional file 5: Material S5), and similar patterns
observed as those from the relatively two extreme cases
(ρ = 0 and ρ = 0.7).
In the above simulations, we fixed the regression coef-

ficients of the important CpGs. To demonstrate the pat-
tern of sensitivity and specificity, we implemented
receiver operating characteristic (ROC) plots. In total,
100 data sets were simulated under scenario 1 with re-
gression coefficients for the variable of interest ranged
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from 0.01 to 0.3. For each data set, we calculated sensi-
tivity and specificity of selected CpGs, based on which
we estimated the ROC curves. Sensitivities from FaST-
LMM-EWASher were substantially low and were not
considered in this demonstration. The performance of
RefFreeEWAS, RefFreeCellMix, and ReFACTor was
comparable under scenario 1 (Table 3). We therefore
only presented ROC curves for ReFreeEWAS and SVA
for the purpose of comparison (Fig. 2). The findings are
consistent with what we observed from Table 2 for sce-
nario 1, that is, SVA performed better than RefFreeE-
WAS. In addition, the results indicated that both SVA
and RefFreeEWAS have high specificity regardless of the
underlying regression coefficients, indicating the conser-
vativism when selecting informative CpGs.

Discussion
We compared eight cell-type correction methods using
real and simulated data. Based on DNA methylation in a

cohort study, the methods in ReFACTor identified the
largest number of CpGs (~60 K CpGs), none of which
overlapped with the common CpGs detected by other
methods including the analysis without adjusting for cell
type compositions (but excluding the method in FaST-
LMM-EWASher). The method in FaST-LMM-EWASher
did not identify any CpG sites. Except for ReFACTor
and FaST-LMM-EWASher, at least one detected CpG
was shared between all the other methods. More than
50% of CpGs identified by the Houseman et al. method
and by the approach implemented in minfi were also
detected by the SVA method; The overlap in CpGs was
much less between these two methods and the remaining
methods. The genes associated with CpGs uniquely identi-
fied by using SVA with prenatal urinary arsenic as primary
exposure led to the enrichment of GO categories and
KEGG pathways that were consistent with our under-
standing with respect to the effect of arsenic on DNA
methylation. Arsenic exposure leads to generation of

Table 3 Summary of sensitivity, specificity of Unadjusted, FaST-LMM-EWASher, RefFreeEWAS, SVA, ReFACTor and RefFreeCellMix for
100 simulated data across three settings

Sensitivity (Median, 95% interval) Specificity (Median, 95% interval)

Scenario 1 (ρ = 0) Scenario 2 (ρ = 0.7) Scenario 1 (ρ = 0) Scenario 2 (ρ = 0.7)

Number of Important CpGs =50

Unadjusted 0.960 (0.470, 1.000) 1.000 (1.000, 1.000) 1.000 (0.987, 1.000) 0.000 (0.000, 0.000)

Ewasher a 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 1.000 (0.999, 1.000) 1.000 (0.999, 1.000)

RefEWAS b 1.000 (0.960, 1.000) 0.000 (0.000,0.494) 0.997 (0.994, 0.999) 0.579 (0.055,1.000)

CellMix c 1.000 (0.980, 1.000) 1.000 (1.000, 1.000) 0.997 (0.993, 0.999) 0.546 (0.199, 0.923)

ReFACTor 1.000 (0.960, 1.000) 1.000 (1.000, 1.000) 0.996 (0.825, 1.000) 0.000 (0.000, 0.000)

SVA d 1.000 (0.980, 1.000) 1.000 (0.960, 1.000) 0.998 (0.996, 1.000) 0.998 (0.996, 1.000)

Number of Important CpGs =100

Unadjusted 0.980 (0.664, 1.000) 1.000 (1.000, 1.000) 0.999 (0.976, 1.000) 0.000 (0.000, 0.000)

Ewasher a 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 1.000 (0.999, 1.000) 1.000 (0.999, 1.000)

RefEWAS b 1.000 (0.965,1.000) 0.000 (0.000,0.403) 0.995 (0.991, 0.998) 0.520 (0.014,1.000)

CellMix c 1.000 (0.975, 1.000) 1.000 (1.000, 1.000) 0.988 (0.968, 0.996) 0.211 (0.047, 0.525)

ReFACTor 1.000 (0.965, 1.000) 1.000 (1.000, 1.000) 0.994 (0.808, 0.998) 0.000 (0.000, 0.000)

SVA d 1.000 (0.990,1.000) 0.990 (0.965, 1.000) 0.996 (0.993, 0.999) 0.996 (0.993, 0.999)

Number of Important CpGs =150

Unadjusted 0.993 (0.723, 1.000) 1.000 (1.000, 1.000) 0.999 (0.965, 1.000) 0.000 (0.000, 0.000)

Ewasher a 0.000 (0.000,0.000) 0.000 (0.000,0.000) 1.000 (0.999,1.000) 1.000 (0.999,1.000)

RefEWAS b 0.993 (0.973,1.000) 0.000 (0.000,0.294) 0.992 (0.986, 0.997) 0.496 (0.013,1.000)

CellMix c 1.000 (0.983, 1.000) 1.000 (1.000, 1.000) 0.975 (0.929, 0.993) 0.098 (0.022, 0.293)

ReFACTor 1.000 (0.980, 1.000) 1.000 (1.000, 1.000) 0.989 (0.794, 0.997) 0.000 (0.000, 0.000)

SVA d 1.000 (0.993,1.000) 0.993 (0.970, 1.000) 0.992 (0.988, 0.996) 0.993 (0.988, 0.996)

ρ = correlation between primary covariate and latent variables
ρ = 0 corresponds to data simulated from Scenario 1, while ρ = 0.7 corresponds to data simulated from Scenario 2
aFasT-LMM-EWASher
bRefFreeEWAS
cRefFreeCellMix
dSurrogate variable analysis
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reactive oxygen species (ROS) which induces DNA dam-
age [28]. This reactive oxygen species play a crucial role in
signal transduction pathways, transcription factor regula-
tion [29], and mitogen activated protein kinases (MAPKs)
signal transduction pathway is one such pathway that is
affected by ROS [30]. DAVID analysis of genes associated
with the CpGs uniquely identified by SVA for FaST-
LMM-EWASher example dataset led to enrichment of
KEGG pathways in cancer. All these imply that the CpGs
uniquely identified by using SVA are potentially inform-
ative. Using the example dataset provided by FasT-LMM-
EWASher method, we found that all methods except for
FasT-LMM-EWASher identified a large number of CpG

sites. This was likely due to the platform used to measure
DNA methylation levels (Illumina 27 K), which is centered
more on cancer genes. However, CpGs identified based on
ReFACTor and RUV were close to the number of CpGs in
the pool of candidate CpGs, indicating possible inflations.
On the other hand, results from minfi showed the greatest
overlap with the SVA method (Table 2). Based on these
two real data sets, results from the method in the minfi
package and those from SVA were most agreeable. How-
ever, for real data, the underlying truth was unknown,
which was the motivation of incorporating a data set with
cell counts known and the use of a series of simulation
studies. Findings from these data were further discussed
in this section.
Using the available cell counts in the cancer status and

DNA methylation dataset we observed agreements be-
tween cell types estimated by Houseman et al. and minfi,
but minfi showed a better agreement. The Houseman et
al. approach was designed for the Illumina 27 K bead-
chip array, which may not fit the 450 K array as noted in
the literature [4]. The modification of the Houseman
et al. approach implemented in the minfi package,
on the other hand, is suitable for both 27 K and
450 K array. The reference data were from six adult
white European males. It has been shown that DNA
methylation patterns vary by sex, age and ancestry
[31–35]. Generalizing the cell mixtures estimated by
minfi to studies with both genders and non-
Europeans of different age groups may potentially
introduce bias.
Further simulations investigating reference-free

methods supported the findings from real data.
Regardless of the number of important CpGs, FaST-
LMM-EWASher showed the lowest sensitivity, indi-
cating low power to identify truly important CpGs if
using that method to adjust for cell type composi-
tions. ReFACTor produced the lowest specificity when
confounding effects were present, supporting the ra-
ther low overlapping with findings from other
methods. On the other hand, findings from ReFAC-
Tor, RefFreeEWAS, RefFreeCellMix and SVA were in
general comparable for data simulated under scenario
1 (no-confounding effects) but SVA gave consistently
higher sensitivity and specificity when cofounding ef-
fects present.
The SVA approach does not provide estimates on cell

type compositions; however, our ultimate goal was not
to estimate cell counts. The goal was to identify an ap-
proach that best assesses DNA methylation differenti-
ation due to exposure or diseases, corrected for a
potential cell type bias. From this viewpoint and the
findings from real data and the high sensitivities and
specificities from simulations (under both scenarios,
confounding and no confounding), using SVA to adjust

Fig. 2 Plots of sensitivity vs. 1-specificity and estimated ROC curves,
a) SVA. b) RefFreeEWAS
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for cell type compositions seems to be an appropriate
method and may perform better than other existing
methods. After including two additional methods
(ReFACTor and RefFreeCellMix) and implementing
more stringent conditions of confounding in simula-
tions (by assuming higher correlations and dynamic
correlations in nearby CpGs), we reached the same
conclusion as in McGregor et al. [12] when the focus
was on assessing associations. We would like to point
out that since the method in minfi focuses on estimat-
ing cell type compositions, it does not have the ability
to address variations in any unknown factors. Thus, it
is expected that this approach will not outperform the
SVA approach in association studies, as found in
McGregor et al., although the method in minfi provides
better estimates on cell type proportions. It is also
worth noting that information included in the surrogate
variables produced by the SVA method may also in-
clude other information in addition to cell type compo-
sitions. There is a potential of over-adjustment by use
of this approach. Furthermore, we note that all these
reference-free methods can be directly applied to
genome-wide bisulfite sequencing data and we expect
similar findings in terms of their ability in inferring cell
type compositions.

Conclusions
When appropriate reference data are available and if in-
ferences on cell type compositions are needed, the
method implemented in the minfi package is recom-
mended. However, if no such reference data are available
or if the focus is not on estimating cell proportions, the
SVA method is suggested to correct for bias resulting
from varying cell mixtures, the same conclusion given
by McGregor et al. [12].

Methods
In this section we briefly describe the existing techniques
for estimating cell proportions or inferring latent variables
due to cell compositions, data sets (real and simulated) to
assess these methods, and statistical methods used in the
analyses. All the analyses were programmed in R and a tu-
torial website including all the programs demonstrating
the methods is available at https://akhilesh362.wordpress.-
com/, and can also be accessed via http://www.memphi-
s.edu/sph/people/faculty_profiles/zhang.php.

Existing methods for cell compositions

Reference-based methods: Houseman et al. [3]
developed a method for cell type correction that
capitalizes on the idea that differentially methylated
regions (DMRs) can serve as a signature for the
distribution of different types of white blood cells. It

uses these DMRs as a surrogate in a regression
calibration based technique to identify the cell
mixture distribution. Regression calibrations can lead
to bias estimates, thus an external validation data is
used to calibrate the model and to correct for the
bias [36]. Their method was specifically for the
Illumina 27 k beadchip array (Illumina, Inc., San
Diego, CA, USA).
The method by Jaffe and Irizarry [4] was adapted
from the Houseman et al. [3] method and is tailored
for Illumina450k along with 27 k array. The
algorithm in Houseman et al. identified 500 CpG
sites used to estimate cell mixture proportions from
the Illumina 27 k array. The modification of Jaffe
and Irizarry was motivated because of the existence
of probe SNPs in the 500 CpG sites and the
inconsistency of CpG sites between the 27 k and
450 k arrays. In addition, the flow-sorted data of the
six adult male subjects were used as references [37]
when DNA methylation was measured in peripheral
blood. For DNA methylation in cord blood, cord
blood reference data were used [38].
The method of removing unwanted variation (RUV)
uses information from a reference database, but it
does not estimate cell type proportions. Instead, this
approach is based on the information on negative
control probes and performs factor analysis on these
probes to identify factors due to unmeasured
confounders. These factors are then included in
subsequent analyses to adjust for cell type effects. The
negative control probes were chosen as the top 500 CpG
sites from the reference database of DNA methylation
known to be correlated with the cell types [39].
Reference-free methods: In total, four commonly used
or recently developed reference-free methods are im-
plemented in our study, FaST-LMM-EWASher,
RefFreeEWAS, RefFreeCellMix, and ReFACTor.
These methods do not need any external validation
datasets and have the potential to adjust for cell
mixture arising from any tissue, including blood.
FaST-LMM-EWASher [40] applies the maximum
likelihood (ML) approach in linear mixed models
and optimizes spectral decomposition to estimate
cell types [41]. RefFreeEWAS utilizes singular value
decomposition (SVD) to decompose the residuals of
unadjusted linear models along with unadjusted
linear coefficient estimates, and estimates latent
subject and cell-specific effects. Bootstrap estimates
for coefficient standard errors are used to account
for the correlation in the error structure.
Surrogate variable analysis (SVA) estimates potential
confounding factors from a singular value
decomposition (SVD) of residuals and was initially
applied to gene expression data [42]. SVA utilizes the
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concept of expression heterogeneity while estimating
surrogate variables. Expression heterogeneity (EH)
refers to certain plausible biological profiles of the
subject, which may not be captured by the covariates in
study. Compared to the method in RefFreeEWAS, SVA
decomposes the residual matrix and utilizes
permutations to identify statistically significant eigen-
vectors which serve as a representative of EH (the so-
called eigengenes), and then infers surrogate variables
based on theses “eigengenes”. Surrogate variables from
SVA have the potential to cover information on cell
types in DNA methylation from blood cells.
The method built in the R package RefFreeCellMix
is improved from that in RefFreeEWAS. It uses a
variant of non-negative matrix factorization to de-
compose the total methylation sites into CpG-
specific methylation states for a pre-specified number
of cell types and subject-specific cell-type distribu-
tions [8]. Another approach in the R package,
ReFACTor, implements a variant form of principal
component analysis (PCA) to adjust for the cell type
effects. This method assumes that a small number of
methylation sites are affected by underlying cell
mixtures. It filters out CpGs if the variation is not
large enough (the default cutoff is standard devi-
ation = 0.02). To avoid filtering out too many CpGs,
in our analyses, we excluded CpGs such that their
standard deviations were in the lower 5th percentile.
By default this method searches for top 500 most
informative methylation sites and performs PCA
with a fixed number of components on these CpG
sites to obtain the components. These ReFACTor
components can be used as a covariate in epige-
nome wide association study or can be added one
at time to remove the inflation due to cell type
composition [10].

Three real data sets used to compare the approaches
These three data sets include data on prenatal arsenic
exposure and DNA methylation, an example data
from FaST-LMM-EWASher, and data on breast can-
cer status and DNA methylation. The first two data
sets were utilized to demonstrate each of the five
methods for cell type compositions and their agree-
ment in terms of identified CpGs potentially associ-
ated with a variable of interest. The third data set
was used to assess the agreement between the esti-
mated cell type proportions (using the Houseman et
al. method and the method in minfi) and the physical
counts of the cells. This data set served as a bench-
mark and was critical for the comparison between the
Houseman et al. method and the method in minfi.
The benchmark data used to compare reference-free

methods were simulated data, as discussed in the next
section.

Prenatal arsenic exposure and DNA methylation data:
The data were from a birth cohort study examining
multiple prenatal and postnatal factors in relation to
child health outcomes, part of the nationwide
Taiwan prenatal and infant cohort study [13, 14]
established in Taiwan in 2000–2001. In total, 64
subjects with genome-scale DNA methylation mea-
sured in cord blood and levels of prenatal arsenic
exposure were included in our study. DNA methyla-
tion data were pre-processed including quantile
normalization, probe-type correction, and probe
SNPs exclusion. After pre-processing, in total,
385,183 CpG sites were included in the analyses. All
the five methods were applied to this data set. This
and the following example data set were used to
compare the performance of the five methods.
An example cancer data from FaST-LMM-EWASher:
This is an example data provided by the FaST-LMM-
EWASher package [43]. It was originally used to
illustrate the method incorporated in FaST-LMM-
EWASher. In total, 204 subjects with cancer status and
DNA methylation from Illumina 27 K array on 25,978
CpG sites are available.
Breast cancer status and DNA methylation data: This
data set has been previously described [27] and has
genome-scale DNA methylation and breast cancer
status available on 61 subjects at baseline and on 39
subjects at 6 month follow-up along with complete
blood counts. After pre-processing, 484,489 CpG
sites were included in the study. In this article, we
focus on granulocytes, monocyte and lymphocytes
cells since proportions of these cells can be esti-
mated by use of the minfi package and the original
Houseman et al. approach. In our study, proportions
of these cells from the physical counts were com-
pared to the cell proportions estimated by minfi and
the Houseman et al. method.
Both studies (the arsenic and DNA methylation related
study and the breast cancer and DNA methylation
related study) were approved by internal review board.
Nurses and doctors were involved in the data
collections. None of the authors were involved in data
collection and handling. The data used in this analysis
were de-identified.

Simulated data sets to compare the approaches
To further evaluate the three reference-free methods
(FaST-LMM-EWASher, RefFreeEWAS, RefFreeCell-
Mix, ReFACTor, and SVA), we simulated DNA me-
thylation data under different settings with “latent”

Kaushal et al. BMC Bioinformatics  (2017) 18:216 Page 9 of 12



variables representing “cell types”. These data sets
served as benchmark data for comparing reference-
methods because the underlying truth was known.
Two simulation scenarios were employed to evaluate
the methods.

Scenario 1: We simulated DNA methylation data at
2000 CpG sites across 600 samples, of which the
first n CpG sites were associated with covariates of
interest (e.g., level of arsenic exposure) and a set of
latent variables, and the remaining CpG sites were
only associated with the latent variables. The set of
latent variables represent “cell types”. One covariate
of interest was considered and generated from a
Normal distribution with mean 0 and variance 1
(N(0, 1)), The coefficient of this covariate was set at
0.3 and the intercept in the regressions was set to
0.5. Five “latent” variables were used and generated
from five different Normal distributions: N(0,5),
N(3,1), N(0,1), N(2,4), N(0,3), respectively. The
association of DNA methylation and the latent
variables was assumed linear and the coefficients
were generated from N (0.5, 0.01). The distribution
of random errors in the linear regressions was
assumed to be Normal with mean 0 and variance
1.2 for the n CpGs, mean 0 and variance of 1.2 for
the next 100 CpGs, and mean 0 and variance 2 for
the remaining CpGs. The last setting with larger
variance in random errors was for situations where
the influence of cell types on DNA methylation was
weaker.
We took three values of n, n = 50, 100, and 150,
representing different sparsity levels (from high
to low) of informative CpGs. In total, 100 data
sets for each n were simulated. Note that under
this scenario, the covariates and latent variables
were generated separately and had no correlations.
Scenario 2: Latent variables generated under this
scenario have potential confounding effects. The
overall setting is the same as in scenario 1, except
that the covariate of interest and the five latent
variables (6 variables in total) were correlated
such that correlation is equal to 0.7|i-j|, i, j = 1, 2, 3,
4, 5, 6. For instance, the correlation of the
continuous covariate with the first latent variable
was 0.7, and with the second latent variable was
0.72 = 0.49.

The flow of the analyses plan
The overall flow of the analyses plan is as follows:
Step 1. We applied all the eight methods to two real
data sets (the prenatal arsenic exposure and DNA
methylation data and the example cancer data from
FaST-LMM-EWASher) to assess the agreement within

each data set in terms of identified CpGs between
different methods, assess the consistency of each
method between different data sets, and use existing
knowledge and tools to qualitatively compare each ap-
proach. Step 2. We used the breast cancer status and
DNA methylation data which had cell counts available
to quantitatively compare the two reference-based ap-
proaches (the method in minfi and the method by
Houseman et al.) in terms of their agreement with
the true cell counts. Step 3. We implemented simu-
lated data to compare the reference-free methods
based on sensitivities and specificities. The inability of
quantitative comparison in Step 1 (where the under-
lying truth was unknown) motivated the subsequent
comparisons in Steps 2 and 3 (underlying truth was
known).

Statistical analyses
Linear regression-based analyses were used to assess
the associations of DNA methylation with variables
of interest with cell type heterogeneity adjusted
using eight different methods. In the analyses of the
two real data sets (the arsenic and DNA methylation
data, and the FasT-LMM-EWASher example data),
we recorded CpG sites showing statistically sig-
nificant association with variables of interest (i.e.,
arsenic exposure and cancer) after implementing dif-
ferent cell type heterogeneity inference methods. We
also inferred the number of statistically significant
CpG sites without adjusting for cell type heterogen-
eity. To compare the eight cell type heterogeneity
inference methods (Houseman et al., minfi, FaST-
LMM-EWASher, RefFreeEWAS, RefFreeCellMix, ReFAC-
Tor, RUV, and SVA), we assessed the percentage of over-
lap between different methods in the number of identified
CpG sites that showed statistical significance, and calcu-
lated a similarity index, Jaccard index (J-index) [44]. The
percentage of overlap is calculated as the number of
identified CpGs overlapped with that from SVA di-
vided by the number of CpGs identified by SVA. We
used Fisher exact test to assess the significance of
overlap. Jaccard index measures the similarity be-
tween two finite sample sets. We used a Bioconduc-
tor package GeneOverlap to calculate this index. To
assess whether the CpGs uniquely identified by the
SVA approach were informative, we used the Data-
base for Annotation, Visualization and Integrated
Discovery (DAVID) [45, 46] to analyze the enrich-
ment in Gene ontology (GO) [47] categories and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
[48, 49] pathways.
As for each simulated data set, we calculated sensi-

tivity and specificity of the selected CpG sites for each
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cell type heterogeneity inference method. They were
calculated by comparing the detected CpGs with the
truly important CpGs. For each of the five methods,
median of sensitivity and specificity along with 95%
empirical intervals across 100 data sets were recorded
for each setting under each simulation scenario.
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