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From the principle of independent component analysis (ICA) and the uncertainty of amplitude, order, and number of source signals,
this paper expounds the root reasons for modal energy uncertainty, identi	ed order uncertainty, andmodal missing in output-only
modal analysis based on ICAmethods. Aiming at the problem of lack of comparison and evaluation of di
erent ICA algorithms for
output-only modal analysis, this paper studies the di
erent objective functions and optimization methods of ICA for output-only
modal parameter identi	cation. Simulation results on simply supported beam verify the e
ectiveness, robustness, and convergence
rate of 	ve di
erent ICA algorithms for output-only modal parameters identi	cation and show that maximization negentropy with
quasi-Newton iterative of ICA method is more suitable for modal parameter identi	cation.

1. Introduction

Identi	cation of modal parameters including modal fre-
quencies, modal shapes, and damping ratio is an impor-
tant research for structure dynamic characteristics. Modal
analysis is a kind of “inverse problem” analysis method in
structural dynamics 	eld, which is di
erent from traditional
methods including 	nite element analysis (FEA)method and
theoretical modelingmethod. On the basis of actual dynamic
test on engineering structure, modal analysis deals with the
dynamic problems through combining the experiment with
the theory.

In output-only modal analysis, modal parameters are
identi	ed only according to the output response data when
the input excitation and system are unknown. Comparing
with experimental modal analysis, output-only modal anal-
ysis has numerous positive features. It is e
ective to solve
the modal identi	cation problem when the input excitation
of engineering structure is di�cult to measure. What is
more, there is no need to consume plenty of materials in the
laboratory to simulate the engineering structure. In addition,
because the response data are tested in theworking condition,
the identi	ed modal parameters can well re�ect the actual
situation of engineering structure and boundary conditions.

Blind source separation (BSS) is a technique that recovers
unknown independent source signals only from observed
signals. At present, there are someBSSmethods developed for
output-only modal analysis [1]. Kerschen et al. [2] explained
the one-to-one relationship between vibration modes of
mechanical systems and modes computed through a BSS
technique called independent component analysis (ICA) and
then applied BSS technique to the free and random responses
ofmechanical systems [3, 4]. Zhou andChelidze [5] proposed
a method for linear normal mode identi	cation based on
BSS and veri	ed its e
ectiveness in a vibration system.
Antoni [6] advocated the use of Fourier-domain separation
techniques based on the short-time Fourier transformation.
In recent years, experts and scholars continued to study
BSS of operation modal analysis [7, 8]. Abazarsa et al. [9]
adopted a second-order blind identi	cation (SOBI) tech-
nique to nonclassically damped systems. Antoni et al. [10]
showed that several separation criteria purposely dedicated
to operational modal analysis (OMA) can be deduced from
general physical considerations. Sadhu et al. [11–13] took
use of multirank parallel factor decomposition, time-series
analysis-based BSS, and a decentralized BSS algorithm for
ambient modal identi	cation. Hazra et al. [14] applied hybrid
time-frequency BSS to full-scale structure data for a variety
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of conditions including the presence of supplemental damp-
ing devices. At the same time, it also can be applied in
earthquake-excited structures [15], building vibration [16],
and civil engineering structures [17].�ere are somemethods
to deal with decentralized modal identi	cation with limited
sensors by taking use of sparse component analysis [18, 19].
When the mechanical system is complex, such as nonlinear
system, a convolutive BSS towards modal identi	cation was
employed [20].

In recent years, output-only modal analysis based on BSS
has been further developed [21, 22] and widely applied in
practice. Modal identi	cation issue was incorporated into
the BSS formulation and transformed into a time-frequency
framework [23]. Furthermore, independent component anal-
ysis (ICA) combinedwith wavelet transform has been used to
identify damage for time-varying systems [24].�erefore, the
study of output-only modal analysis based on ICA is of great
signi	cance [7–13].

A generic approach to ICA consists of preprocessing
the data, de	ning measures, and optimizing an objective
function [25]. �e classical measure method of maximiza-
tion non-Gaussianity includes maximization, kurtosis, and
negentropy. And the three common approaches in ICA
algorithms are minimum mutual information, Infomax, and
maximum likelihood estimation [25, 26]. Based on the
theoretically described method as mentioned, a comparison
of di
erent ICA algorithms for output-only modal analysis
is made. �is paper mainly focuses on comparison and
evaluation of di
erent ICA algorithms for output-onlymodal
analysis and then 	nds out which method is of the best
accuracy and robustness.

�e remainder of this paper is organized as follows. In
Section 2, from the principle of ICA and the uncertainty of
amplitude, order, and number of source signals, we expound
the root causes for modal energy uncertainty, order uncer-
tainty, and modal missing in output-only modal analysis
based on ICA methods. Di
erent objective functions and
optimization methods of ICA algorithms for output-only
modal analysis are compared and evaluated in Section 3. �e
simulation veri	es e
ectiveness, robustness, and convergence
rate of di
erent ICA algorithms for output-only modal
analysis and judges the most suitable method for output-only
modal analysis in Section 4. At the end of this paper, the
conclusions and further research directions of the study are
summarized in Section 5.

2. ICA Based Output-Only Modal Analysis

2.1. Modal Decomposition of Dynamic Response and Output-
Only Modal Analysis of Multi-Degree-of-Freedom System.
Dynamic characteristic of the system is an intrinsic property,
which re�ects the linear relationship between the input and
output of the system. Mechanical system is usually thought
of as a proportional viscous damping system. Based on
structural dynamic theory, for �-degree-of-freedomvibration
system, the equation of motion is

MẌ (�) + CẊ (�) + KX (�) = F (�) , (1)

where F(�) ∈ R
�×� is excitation vector of additional load and

Ẍ(�), Ẋ(�), and X(�) ∈ R
�×� are on behalf of acceleration

vector, velocity vector, and displacement vector, respectively.
M, C, and K ∈ R

�×� are mass matrix, damping matrix, and
sti
ness matrix of the vibration system, respectively.

For general engineering of small damping, the displace-
ment response can be expressed in modal coordinates as
follows:

X (�) = ΦQ (�) =
�
∑
�=1
	⃗�
⃗� (�) , (2)

where Φ ∈ R
�×� is modal matrix made up of order modal

shape 	⃗� ∈ R
� and 	⃗� and 	⃗� are normalized and orthogonal

mutually, while Q(�) ∈ R
�×� is the vector matrix composed

of order modal response 
⃗�(�) ∈ R
�, while 
⃗�(�) and 
⃗�(�) are

mutually independent.
Classical modal parameter identi	cation is to extract a

series of mode shape 	�, mode frequency ��, and modal
damping ratio �� from external excitation F(�) and response
signal X(�) of the system. While in output-only modal
analysis, modal parameters are identi	ed only according to
the output response signalX(�)when the input excitationF(�)
and system are unknown.

2.2. ICA for BSS. A�er Jutten and Herault [26] published
the paper on the signal processing in 1991, ICA became an
e
ective solution to BSS. ICA is a method for 	nding under-
lying source signals from observed mixing signals. In order
to estimate the source signals, ICA assumes that the source
signals are statistically independent and the distributions
of the components are non-Gaussian. Finally, to keep ICA
model simpler, the linear systemde	ned by themixingmatrix
is invertible.

�e linear model of ICA without measurement noise is

X (�) = AS (�) , � = 1, 2, . . . , 
, (3)

where X(�) = [�⃗1(�), �⃗2(�), . . . , �⃗�(�)]� ∈ R
�×� is observa-

tion signal, A ∈ R
�×� is mixing matrix, and S(�) = [ ⃗�1(�),⃗�2(�), . . . , ⃗��(�)]� ∈ R
�×� represents source signal.

�e goal of ICA algorithm is to isolate the source signals
and the information about mixingmatrix only from observa-
tion signals. In order to separate the statistically independent
source signals from observation signals, it is necessary to 	nd
a separate matrix, shown in Figure 1. Its equation can be
expressed as follows:

Y (�) = WX (�) , � = 1, 2, . . . , 
, (4)

where Y(�) = [�⃗1(�), �⃗2(�), . . . , �⃗�(�)]� ∈ R
�×� is optimal es-

timation of source signals S(�).
It is impossible to determine speci	c values of mixing

matrix A and source signals S(�) simultaneously without any
prior knowledge. But it is easy to 	nd that there are some
fuzzy factors and uncertainties from the model of ICA. It can
be summarized as three uncertainties.
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Figure 1: �e essence of ICA method for BSS.

2.2.1.
e Energy of ICA Is Uncertain. SupposeD is a diagonal
matrix; then, the linear instantaneous mixture modal can be
expressed as

X (�) = [AD−1]DS (�) ⇐⇒
X (�) = AS (�) .

(5)

So, the amplitude of separated signals is inconsistent with
the amplitude of source signals.

2.2.2. 
e Order of ICA Is Uncertain. Suppose P is a permu-
tation matrix; the linear instantaneous mixture modal can be
expressed as

X (�) = [AP−1]PS (�) ⇐⇒
X (�) = AS (�) ,

(6)

where PS(�) is a new source signals matrix a�er reordering

and AP
−1 is a new mixing matrix.

2.2.3. 
e Number of Independent Components Is Uncer-
tain. If the contribution of independent components is not
enough, it is hard to identify and separate them. So, without
any prior knowledge, determination of the number of inde-
pendent components or sources by ICA algorithm is di�cult.

2.3. ICA Based Output-Only Modal Analysis. Comparing (2)
with (3), the dynamic response modal coordinates decom-
position of multi-degree-of-freedom system under the e
ect
of free vibration or random excitation can be regarded as a
special case of ICA [2–4]. �erefore, as shown in Figure 2,
there are a one-to-one relationship between vibration modal
shapes of dynamicmechanical systems and separatingmatrix
and a one-to-one relationship between modal responses and
independent components.

On account of three assumptions of ICA method, the
identi	ed modal parameters are of the following character-
istics.

(1) Every order of modal shape is with di
erent ampli-
tude. In case of ICAmethod, the energy of separation
matrix is not unique, and independent component
also loses amplitude information. Unlike principal

Response signals X(t)

ICA decomposition for X(t) 

Mode shapes Φ

Independent components Y(t) 

Mode coordinate response matrix Q(t)

IDOF �tting techniques

Separating matrix W

Mixing matrix A

Natural frequencies �i
Damping ratios �i

Figure 2: One-to-one corresponding relations between dynamic
response modal coordinates decomposition and ICA.

component analysis method [27], ICA method can-
not get the contribution ratio information of each
modal. Modal shape is a relative quantity rather
than an absolute value. So, in order to compare the
modal shapewith the realmodal shape, the separation
matrix and modal shape identi	ed by ICA method
should be normalized.

(2) �e order of modal parameter identi	ed by ICA is
uncertain. Modal identi	ed by ICA method is not in
accordance with the order from small to large. In fact,
the 	rst separated output source and vector are the
ones whose independence is the strongest rather than
the 	rst-order modal parameter. �erefore, in order
to compare the natural frequencies with the real nat-
ural frequencies, the modal parameters identi	ed by
ICA need to be reordered by the modal frequencies.

(3) If the contribution of independent components is
not enough, it is hard to identify and separate them
and to determine the number of modal parameters.
So, in ICA based output-only modal analysis, if
the modal parameter is with small contribution to
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independence, ICA may barely identify it, which
would cause modal parameter missing.

3. Different Objective Functions and
Optimization Methods of ICA for
Output-Only Modal Analysis

3.1. Di�erent Objective Functions of ICAAlgorithm forOutput-
Only Modal Analysis. �e objective functions of ICA algo-
rithm mainly include the measurement of maximization
non-Gaussianity (kurtosis and negentropy), minimization
of mutual information, Infomax method, and maximum
likelihood estimation.

3.1.1. Maximization Kurtosis. A non-Gaussian measure is
kurtosis, and kurtosis represents fourth-order statistics of a
randomvariable. A randomvariable �⃗(�)with zero-mean and
kurtosis is de	ned as

kurt (�⃗ (�)) = � {(�⃗ (�))4} − 3 (� {(�⃗ (�))2})2 . (7)

If �⃗(�) is Gaussian random variables, kurt(�⃗(�)) = 0.
However, for a non-Gaussian variable, its kurtosis usually is
not equal to zero.

When kurt(�⃗(�)) > 0, �⃗(�) represents a super-Gaussian
variable, and when kurt(�⃗(�)) < 0, �⃗(�) represents a sub-
Gaussian variable, and the greater the non-Gaussianity of
�⃗(�), the greater the absolute value of kurtosis. �erefore,
ICA problem can be converted into calculating themaximum
of the absolute value or square of kurtosis of source signal
component.

3.1.2. Maximization Negentropy. Another non-Gaussian meas
ure is negentropy. According to information theory, Gaussian
variables have the maximum entropy of all the random
variables with the same variance.

�e negentropy of random variable �⃗(�) is de	ned as

� (�⃗ (�)) = � (�⃗Gauss (�)) − � (�⃗ (�)) , (8)

where �⃗Gauss(�) and �⃗(�) are Gaussian random variables
with the same covariance matrix and �(�⃗(�)) =
− ∫��⃗(	)( ) log��⃗(	)( )! is di
erential entropy. �e neg-
entropy value is always nonnegative and �(�⃗(�)) = 0 if and
only if �⃗(�) is the Gaussian distribution.

To overcome the disadvantage of dyscalculia of negen-
tropy, an approximate representation with high-order cumu-
lant can be expressed as

� (�⃗ (�)) ∝ [� {$ (�⃗ (�))} − � {$ (]⃗ (�))}] , (9)

where ]⃗(�) is a Gaussian variable with zero-mean and unit
variance and �⃗(�) is a variable with zero-mean and unit
variance, while $(⋅) and �{⋅} are nonquadratic function and
expectation, respectively.

3.1.3. Minimization of Mutual Information. For - random
variables �⃗�(�), / = 1, 2, . . . , -, their mutual information is
de	ned as

4 (�⃗1 (�) , �⃗2 (�) , . . . , �⃗� (�))

=
�
∑
�=1
�(�⃗� (�)) − � (Y (�)) (10)

for invertible linear transformation Y(�) = WX(�), so
4 (�⃗1 (�) , �⃗2 (�) , . . . , �⃗� (�))

=
�
∑
�=1
�(�⃗� (�)) − � (X (�)) − log |detW| . (11)

When �⃗�(�) and �⃗�(�) are not related to each other

and the variance of �⃗�(�) and �⃗�(�) is a unit matrix, then

�{Y(�)Y�(�)} = W�{X(�)X�(�)}W� = I.
So,

det I = 1 = det (W� {X (�)X� (�)}W�)
= (detW) det (� {X (�)X� (�)}) (detW�) .

(12)

From (12), detW must be a constant, because
�{X(�)X�(�)} is independent ofW, so

4 (�⃗1 (�) , �⃗2 (�) , . . . , �⃗� (�)) = 5 −∑
�
� (�⃗� (�)) . (13)

According to (13), it suggests the basic relationship of
maximization negentropy and mutual information. So the
ICA problem of maximizing non-Gaussian transforms into
the problem of minimizing mutual information.

3.1.4.MaximumLikelihood Estimation. Maximum likelihood
estimation can be interpreted as follows: when likelihood
function reaches the maximum, its parameter corresponds to
the separated matrix. �e goal is to 	nd the inverse matrix

of mixing matrix; namely,W = A
−1. �e likelihood function

is de	ned as density function of variable density, with mixed
matrix A as parameter.

Assume that �̂�(X(�)) is estimation of probability density
function ��(X(�)) of observed signals X(�). �e probability
density function of source signals �
(S(�)) is known, accord-
ing to the relationship of two probability density functions;
therefore, �̂�(X(�)) satis	es the following equation:

�̂� (X (�)) = �
 (A−1X (�))
|detA| . (14)

For the given model, the likelihood function of observed
signals X(�) is function of parameter A and can be de	ned as

7 (A) = � {log2 �̂� (X (�))}
= ∫�� (X (�)) log2 �
 (A−1X (�)) !�

− log2 |detA| .
(15)
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Table 1: Comparison of 	ve objective functions.

Evaluation factor
Maximization

kurtosis
Maximization
negentropy

Minimization of
mutual information

Maximum likelihood
estimation

Infomax

Estimate the component at
once

One One All All All

Estimated components
must be irrelevant

Yes Yes No Yes Yes

Prior knowledge No No No Yes No

Robustness to outliers Low High Middle Middle Middle

When the parameter becomes separation matrix W =
A
−1, the log-likelihood function is

7 (W) ≈ 1
�
�
∑
�=1

{log2 �
 (WX (�))} + log2 |detW| , (16)

where - represents the number of source signals and �
represents the sample number of observed signals with
independent and identical distribution.

3.1.5. Infomax. If we consider the �ow of information in a
neural network, in order to realize the e
ective information
transmission, it is necessary to maximize the mutual infor-
mation between the input and output.

Supposing thatX(�) is the input of a neural network, then
the output can be expressed as

�⃗� (�) = 	� (:⃗�� X (�)) + �⃗ (�) , (17)

where 	�(⋅) is a nonlinear scalar function, :⃗� represents
weight vector of neural network, and �⃗(�) is additivemeasure-
ment noise.

So, the output entropy is

�(�⃗� (�)) = � (	1 (:⃗�1X (�)) , . . . , 	� (:⃗��X (�))) . (18)

In the absence of measurement noise, maximization
mutual information between input and output equals max-
imization output entropy.

3.1.6. Comparison of Di�erent Objective Functions of ICA for
Output-Only Modal Analysis. Five objective functions have
been introduced as mentioned above, and all the objective
functions are interrelated. In fact, all the estimation theories
are the same, and the only di
erence is the concrete forms.
So there are some di
erences between the objective functions
[28]:

(a) Some objective functions such as maximization kur-
tosis and negentropy can estimate a component at
once, but others estimate all the components at once.

(b) Some objective functions such as maximization
negentropy adopt the nonpolynomial function, but
others adopt polynomial functionwhich is in connec-
tion with cumulant.

(c) Among the objective functions, the constraint of esti-
mating independent component is irrelevant. How-
ever, when mutual information is the minimum, the

independent components may not be irrelevant from
each other.

(d) In the objective function of maximum likelihood
estimation, the density of independent component is
certainwith prior knowledge, and it does notmeet the
model of ICA. However, maximization negentropy
adopts approximation algorithm, without need of any
prior knowledge.

(e) An important evaluation index is the robustness to
outliers. It means that single and wrong observed
values will not in�uence estimating independent
components.

Above all, the advantages and disadvantages are summed
up in Table 1.

3.2. Di�erent Optimization Methods of ICA for Output-Only
Modal Analysis. Gradient descent [29], stochastic gradient
descent [30], and quasi-Newton method [31] are three com-
monly used optimization methods.

3.2.1. Gradient Descent. Gradient descent is an optimization
algorithm, the essence of which is to make the change of
steps and 	nally attain the minimal error. We minimize or
maximize the objective function �(:⃗) = �{;(:⃗, �⃗(�))} itera-
tively by starting from an initial point :⃗(0), then compute the
gradient of �(:⃗) at this point, andmove in the direction of the
negative gradient or with the steepest descent from a suitable
distance. A�er that, we repeat the same procedure at the new
point and so on. Finally, we get the update rule as follows:

:⃗ (?) = :⃗ − @ (?) A� {; (:⃗, �⃗ (�))}
A:⃗

BBBBBBBBB�⃗=�⃗(�−1) , (19)

where A�{;(:⃗, �⃗(�))}/A:⃗ represents the gradient of �(:⃗) and
@(�) is step ofmoving in the direction of the negative gradient.

3.2.2. Stochastic Gradient Descent. Stochastic gradient
descent is a method combining random procedure with
optimization method. Its basic idea is not to calculate the
exact value of gradient directly but unbiasedly estimate the
gradient as the direction of the negative gradient.

If the objective function of ICA is �(:⃗) = �{;(:⃗, �⃗(�))},
we would like to minimize or maximize it. Firstly, we also
need to initialize point :⃗(0) and compute the gradient.Unlike
gradient descent, what stochastic gradient descent method
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Table 2: Comparison of three optimization methods.

Evaluation factor
Gradient
descent

Stochastic
gradient descent

Quasi-
Newton

Computational
complexity

Middle Simple Complex

Need step
parameter

Yes Yes No

Iterative times Middle High Low

Convergence rate Middle Slow Fast

Iterative e�ciency High Middle Low

computes is;(:⃗, �⃗(�)) rather than�{;(:⃗, �⃗(�))}. And thenwe
move in the direction of the negative gradient or the steepest
descent by a suitable distance and repeat the same procedure
until we 	nd the optimum point. �erefore, the update rule
is as follows:

:⃗ (?) = :⃗ − @ (?) A; (:⃗, �⃗ (�))A:⃗
BBBBBBBB�⃗=�⃗(�−1) . (20)

3.2.3. Quasi-Newton. In the optimal aspect, Newton’s
method is with fast convergence speed and high precision
while it has the shortcoming of expensive computing,
because it needs to calculate the second derivative and
inverse of Hessian matrix. In order to keep its merits and to
overcome the shortcoming, quasi-Newtonmethod appeared.
Quasi-Newton method calculates the second derivative and
inverse of a quadratic function instead of Hessian matrix.

For the objective function of ICA is �(:⃗), if we want to
minimize or maximize it, its update rule is

:⃗ (?) = :⃗ − �−1 A� (:⃗)A:⃗
BBBBBBBB�⃗=�⃗(�−1) , (21)

where��� = A2�(:⃗)/:⃗�:⃗� is a Hessian matrix.
However, it is quite di�cult to calculate the inverse

of Hessian matrix. And quasi-Newton method takes the
measure by replacing the Hessian matrix with a quadratic
function, so the update rule becomes

:⃗ (?) = :⃗ − $ (� (:⃗)) A� (:⃗)A:⃗
BBBBBBBB�⃗=�⃗(�−1) , (22)

where $(⋅) represents a quadratic function.
3.2.4. Comparison of Di�erent Optimization Methods of ICA
for Output-Only Modal Analysis. Gradient descent, stochas-
tic gradient descent, and quasi-Newton are optimization
algorithms, but each method is with respective advantages
and disadvantages. Gradient descent is relatively easy but
it is with low convergence rate and easy to be trapped in
local minima. Stochastic gradient descent is simpler than
gradient descent, but with the shortcoming of reaching the
convergence precision more hardly. Quasi-Newton method
is with fast convergence speed and high precision but with
themore complex computation than themethodsmentioned
above. Table 2 shows comparison of three optimization
methods with di
erent evaluation factors.

4. Simulation Verification and
Results Analysis

A�er weighing the advantages and disadvantages of di
erent
objective functions and optimization methods, we think
the following 	ve methods are more suitable to output-
only modal parameters identi	cation. �e methods include
maximization of kurtosis with gradient descent method,
maximization negentropy with quasi-Newton method, min-
imum mutual information with gradient descent method,
maximum likelihood estimation with stochastic gradient
descent method, and Infomax with gradient descent method.

4.1. Establishment of Simulation Model and

Parameters Setting of Data

(1) Parameters setting of simulation model is a sim-
ply supported beam without damping, the length
of which is 1 meter, elasticity modulus is 205Gpa,
Poison’s ratio ofmaterial is 0.3, and density ofmaterial
is 7850.

(2) �is beam is divided into 1000 equal pieces and the
number of measured stations is 1001.

(3) Response data are obtained by the resonance method
excited by sine signals. And the sine signals are
composed of the frequencies that are 205Hz, 91.3Hz,
366Hz, 572Hz, 824Hz, 1121Hz, and 22Hz with pow-
ers that are 60, 30, 30, 30, 30, 30, and 30, respectively.
�e loads are concentrated resistor loadings in the
distance of 0.2 meters of a simply supported beam.

(4) Sampling frequency is 4096Hz and sampling number
is 4096.

(5) �e real modal shapes and natural frequencies are all
calculated by FEA.

4.2. Simulation Parameter Setting and Modal Assurance
Criterion. In maximization kurtosis and negentropy, non-
quadratic function is $(�⃗(�)) = tanh(�⃗(�)) and its 	rst di
er-
ential is$
(�⃗(�)) = 1−tanh2(�⃗(�)). Inminimization ofmutual
information, maximum likelihood estimation, and Infomax,
when independent componentsmeet sub-Gauss distribution,
nonquadratic function is$(�⃗(�)) = −2 tanh(�⃗(�)); otherwise,
nonquadratic function is $(�⃗(�)) = tanh(�⃗(�)) − �⃗(�). For
all the ICA algorithms, the convergence criteria are ‖:⃗(?) −
:⃗(?−1)‖2 < 10−10. Response data is divided into two groups:
data without measurement noise and data with 1% Gauss
measurement noise.

To re�ect the accuracy ofmodal shapes in experiment, the
modal assurance criterion (MAC) is introduced into [5]. And
the formula is as follows:

EMAC = (F⃗��	⃗�)2

(F⃗��F⃗�) (	⃗��	⃗�)
, (23)

where EMAC varies between 0 (no coincidence) and 1 (com-
plete coincidence).
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Table 3: Error of natural frequencies identi	ed by maximization
kurtosis with gradient descent method.

Modal order
Real natural
frequency

(Hz)

Frequency
identi	ed
(Hz)

Percentage of
relative error

1 22.89 23 0.481%

2 91.55 92 0.492%

3 205.99 206 0.005%

4 366.23 367 0.210%

6 824 825 0.121%

7 1121.6 1122 0.036%

Table 4: �e convergence times and MAC value of modal shapes.

Identi	ed order
Number of
convergences

Modal order
of FFE

E
MAC

1 13 4 1.0000

2 18 6 1.0000

3 9 2 1.0000

4 7 3 1.0000

5 8 1 1.0000

6 2 7 0.9998

4.3. Results of Simulation Veri
cation without Measurement
Noise and Results Analysis. With the purpose of verifying the
e
ect of 	ve methods mentioned above for modal parameter
identi	cation and judging which method is more suitable for
operation modal analysis, the results of simulation veri	ca-
tion without measurement noise are as follows.

4.3.1. Maximization Kurtosis with Gradient Descent Method.
According to the process of modal parameters identi	ed by
maximization kurtosis with gradient descent method, Fig-
ure 3 shows fast Fourier transform (FFT) of each independent
component.

�e abscissa of main peak in each sub	gure of Fig-
ure 3 corresponds to each natural frequency identi	ed
by maximization kurtosis with gradient descent method.
And Table 3 shows the errors of natural frequencies
identi	ed by maximization kurtosis with gradient descent
method.

According to the identi	ed frequency value, Figure 4
shows the modal shapes which compared the real modal
shapes calculated by FEA.

Table 4 shows the convergence times and MAC value of
modal shapes.

4.3.2. Maximization Negentropy with Quasi-Newton Method.
According to the process of modal parameters identi	ed
by maximization negentropy with quasi-Newton method,
Figure 5 shows FFT of each independent component.

�e abscissa of main peak in each sub	gure in Figure 5
is each natural frequency identi	ed by maximization negen-
tropy with quasi-Newton method. Table 5 shows error of
natural frequencies identi	ed by maximization negentropy
with quasi-Newton method.

Table 5: Error of natural frequencies identi	ed by maximization
negentropy with quasi-Newton method.

Modal order
Real natural
frequency

(Hz)

Frequency
identi	ed
(Hz)

Percentage of
relative error

1 22.89 24 0.485%

2 91.55 92 0.492%

3 205.99 206 0.005%

4 366.23 367 0.210%

6 824 825 0.121%

7 1121.6 1123 0.125%

Table 6: �e convergence times and MAC value of modal shapes.

Identi	ed order
Number of
convergences

Modal order
of FEA

E
MAC

1 16 4 1.0000

2 7 6 0.9988

3 20 2 1.0000

4 18 3 1.0000

5 13 7 0.9999

6 2 1 0.9999

Table 7: Error of natural frequencies identi	ed byminimummutual
information with gradient descent method.

Modal order
Real natural
frequency

(Hz)

Frequency
identi	ed
(Hz)

Percentage of
relative error

1 22.89 23 0.481%

2 91.55 92 0.492%

3 205.99 207 0.490%

4 366.23 367 0.210%

6 824 825 0.121%

7 1121.6 1122 0.036%

According to the identi	ed frequency value, Figure 6
shows the modal shapes which compared the real modal
shapes calculated by FEA.

Table 6 shows the convergence times and MAC value of
modal shapes.

4.3.3. Minimum Mutual Information with Gradient Descent
Method. According to the process of modal parameters
identi	ed by minimum mutual information with gradient
descent method, Figure 7 shows FFT of each independent
component.

�e abscissa of main peak in each sub	gure in Figure 7
is each natural frequency identi	ed by minimum mutual
information with gradient descent method. Table 7 shows
error of natural frequencies identi	ed by minimum mutual
information with gradient descent method.

According to the identi	ed frequency value, Figure 8
shows the modal shapes which compared the real modal
shapes calculated by FEA.
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Figure 3: FFT of each independent component identi	ed by maximization kurtosis with gradient descent method.
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Figure 4: Modal shape comparison between FEA and separating vector by maximization kurtosis with gradient descent method.
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Figure 6: Modal shape comparison between FEA and separating vector by maximization negentropy with quasi-Newton.
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Figure 7: FFT of each independent component identi	ed by minimum mutual information with gradient descent method.
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Figure 8: Modal shape comparison between FEA and separating vector by minimum mutual information with gradient descent method.
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Table 8: �e identi	ed order and MAC value of modal shapes.

Identi	ed order Modal order of FEA E
MAC

1 7 1.0000

2 6 0.9993

3 4 1.0000

4 3 0.9602

5 2 1.0000

6 1 0.9991

Table 9: Error of natural frequencies identi	ed by maximum
likelihood estimation with stochastic gradient descent method.

Modal order
Real natural
frequency

(Hz)

Frequency
identi	ed
(Hz)

Percentage of
relative error

1 22.89 23 0.481%

2 91.55 92 0.492%

3 205.99 206 0.005%

4 366.23 367 0.210%

6 824 825 0.121%

7 1121.6 1122 0.036%

Table 10: Identi	ed order and MAC value of modal shapes.

Identi	ed order Modal order of FEA E
MAC

1 7 0.5432

2 3 0.8121

3 4 0.9515

4 1 0.9138

5 2 0.9925

6 6 0.9726

Table 8 shows the identi	ed order and MAC value of
modal shapes.

4.3.4. Maximum Likelihood Estimation with Stochastic Gra-
dient Descent Method. According to the process of modal
parameters identi	cation bymaximum likelihood estimation
with stochastic gradient descent method, Figure 9 shows FFT
of each independent component.

�e abscissa of main peak in each sub	gure of Figure 9
is each natural frequency identi	ed by maximum likelihood
estimation with stochastic gradient descent method. Table 9
shows errors of natural frequencies identi	ed by maxi-
mum likelihood estimation with stochastic gradient descent
method.

According to the identi	ed frequency value, Figure 10
shows the modal shapes which compared the real modal
shapes calculated by FEA.

Table 10 shows the identi	ed order and MAC value of
modal shapes.

4.3.5. Infomax with Gradient Descent Method. According to
the process of modal parameters identi	cation by Infomax
with gradient descent method, Figure 11 shows FFT of each
independent component.

Table 11: Error of natural frequencies identi	ed by Infomax with
gradient descent method.

Modal order
Real natural
frequency

(Hz)

Frequency
identi	ed
(Hz)

Percentage of
relative error

1 22.89 23 0.481%

2 91.55 92 0.492%

3 205.99 206 0.005%

4 366.23 367 0.210%

6 824 825 0.121%

7 1121.6 1122 0.036%

Table 12: �e identi	ed order and MAC value of modal shapes.

Identi	ed order Modal order of FEA E
MAC

1 1 0.8930

2 4 0.9039

3 6 0.8954

4 7 0.2543

5 3 0.4066

6 2 0.9914

�e abscissa of main peak in each sub	gure of Figure 11
is each natural frequency identi	ed by Infomax with gradient
descent method. Table 11 shows errors of natural frequencies
identi	ed by Infomax with gradient descent method.

According to the identi	ed frequency value, Figure 12
shows the modal shapes which compared the real modal
shapes calculated by FEA.

Table 12 shows the identi	ed orders and MAC values of
modal shapes.

4.3.6. Results Analysis. Comparing the results of output-only
modal parameters identi	cation with 	ve objective functions
of ICA algorithms, results analysis can be gained from the
following respects:

(1) From Figures 3–12, the e
ectiveness of 	ve ICA
algorithms for output-only modal parameter identi-
	cation is veri	ed.

(2) In Figures 3 and 5, natural frequencies identi	ed are
with no second peak. But in Figures 7, 9, and 11,
natural frequencies identi	ed are with second peak.
A big reason for the di
erence is that the process
of maximization kurtosis and negentropy for output-
only modal analysis is in a serial manner, and other
methods are in parallel manner.

(3) In Tables 4, 6, 8, 10, and 12, the order of identi	ed
modal parameters is di
erent from the order of
those calculated by FEA, and the reason is that ICA
algorithms are with three uncertainties, with all the
modal shapes normalized which are shown in Figures
4, 6, 8, 10, and 12.

(4) From Figures 3–12, by comparing the modal shapes
and natural frequencies as shown in Tables 3–12, we
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Figure 9: FFT of each independent component identi	ed by maximum likelihood estimation with stochastic gradient descent method.



16 Shock and Vibration

Independent of ICA

 Real modal shape

500 1000 15000

Length

−1

−0.5

0

0.5

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

(a) �e 7th-order modal shape

500 1000 15000

Length

−1

−0.5

0

0.5

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

Independent ICAof

Real modal shape

(b) �e 3rd-order modal shape

500 1000 15000

Length

N
o

rm
ed

 m
o

d
e 

va
lu

e

−0.5

0.5

−1

0

1

Independent ICAof

Real modal shape

(c) �e 4th-order modal shape

500 1000 15000

Length

0

0.2

0.4

0.6

0.8

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

Independent ICAof

Real modal shape

(d) �e 1st-order modal shape

500 1000 15000

Length

−1

−0.5

0

0.5

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

Independent ICAof

Real modal shape

(e) �e 2nd-order modal shape

500 1000 15000

Length

−1

−0.5

0

0.5

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

Independent ICAof

Real modal shape

(f) �e 6th-order modal shape

Figure 10: Modal shape comparison between FEA and separating vector bymaximum likelihood estimation with stochastic gradient descent
method.
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Figure 11: FFT of each independent component identi	ed by Infomax with gradient descent method.



18 Shock and Vibration

Independent ICAof
Real modal shape

500 1000 15000

Length

0

0.2

0.4

0.6

0.8

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

(a) �e 1st-order modal shape

500 1000 15000

Length

−1

−0.5

0

0.5

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

Independent ICAof

Real modal shape

(b) �e 4th-order modal shape

500 1000 15000

Length

−1

−0.5

0

0.5

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

Independent ICAof

Real modal shape

(c) �e 6th-order modal shape

500 1000 15000

Length

N
o

rm
ed

 m
o

d
e 

va
lu

e

−0.5

0.5

−1

0

1

Independent ICAof

Real modal shape

(d) �e 7th-order modal shape

500 1000 15000

Length

−1

−0.5

0

0.5

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

Independent ICAof

Real modal shape

(e) �e 3rd-order modal shape

−1

−0.5

0

0.5

1

N
o

rm
ed

 m
o

d
e 

va
lu

e

500 1000 15000

Length

Independent ICAof

Real modal shape

(f) �e 2nd-order modal shape

Figure 12: Modal shape comparison between FEA and separating vector by Infomax with gradient descent method.
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Table 13: Error of natural frequencies identi	ed by maximization
kurtosis with gradient descent method.

Modal order
Real natural
frequency

(Hz)

Frequency
identi	ed
(Hz)

Percentage of
relative error

1 22.89 23 0.481%

2 91.55 — —

3 205.99 207 0.490%

4 366.23 — —

6 824 825 0.121%

7 1121.6 — —

Table 14: �e convergence times and MAC value of modal shapes
when observed signals are with measurement noise.

Identi	ed order
Number of
convergences

Modal order
of FFE

EMAC

1 42 1 0.4550

2 27 6 0.1091

3 39 3 0.0447

4 29 3 0.0978

5 35 6 0.0472

6 24 6 0.9306

conclude that the e
ect of modal parameters iden-
ti	cation is the best when the objective function is
maximization non-Gaussian and the values of MACs
are close to 1.

4.4. Results of SimulationVeri
cationwithMeasurementNoise
and Results Analysis. From the results above, it is veri	ed
that the e
ect of modal parameters identi	ed by the method
is better than others when the objective function is non-
Gaussian. However, a maximization non-Gaussian measure
contains maximization kurtosis and negentropy. In order to
verify the robustness of maximization kurtosis and negen-
tropy, the response data are added with 1% measurement
noise.

4.4.1. Maximization Kurtosis with Gradient Descent Method.
When observed signals are with measurement noise, Fig-
ure 13 shows FFT of each independent component.

�e abscissa of main peak in each sub	gure of Fig-
ure 13 corresponds to each natural frequency identi	ed by
maximization kurtosis with gradient descent method. And
Table 13 shows errors of natural frequencies identi	ed by
maximization kurtosis with gradient descent method.

According to the identi	ed frequency value, Figure 14
shows the modal shapes, which compared the real modal
shapes calculated by FEA.

Table 14 shows the convergence times andMAC values of
modal shapes when observed signals are with measurement
noise.

4.4.2. Maximization Negentropy with Quasi-Newton Method.
Figure 15 shows FFT of each independent component when
observed signals are with measurement noise.

Table 15: Error of natural frequencies identi	ed by maximization
negentropy with quasi-Newton iterationmethod withmeasurement
noise.

Modal order
Real natural
frequency

(Hz)

Frequency
identi	ed
(Hz)

Percentage of
relative error

1 22.89 — —

2 91.55 92 0.492%

3 205.99 207 0.490%

4 366.23 367 0.210%

6 824 825 0.121%

7 1121.6 1122 0.036%

Table 16: �e convergence times and MAC value of modal shapes
when observed signals are with measurement noise.

Identi	ed order
Number of
convergences

Modal order
of FEA

E
MAC

1 253 2 0.7665

2 128 4 0.9410

3 27 2 0.9996

4 224 7 0.7871

5 361 6 0.9891

6 147 3 0.1148

�e abscissa of main peak in each sub	gure of Figure 15
is each natural frequency identi	ed by maximization negen-
tropy with quasi-Newton method. And Table 15 shows errors
of natural frequencies identi	ed bymaximization negentropy
with quasi-Newton method.

According to the identi	ed frequency values, Figure 16
shows the modal shapes, which compared the real modal
shapes calculated by FEA.

Table 16 shows the convergence times andMAC values of
modal shapes when observed signals are with measurement
noise.

4.4.3. Results Analysis. From Figures 3–12 above, we can
see that when observed signals are with 1% measurement
Gauss noise, maximization negentropy is more robust to
measurement noise than maximization kurtosis. However,
minimum mutual information and Infomax method as well
as maximum likelihood estimation are with no advantage
even when there is no measurement noise.

5. Conclusions

�is paper veri	ed the e
ectiveness of di
erent objective
functions and di
erent optimization methods of ICA algo-
rithm for output-only modal parameters identi	cation. �e
methods are di
erent from each other in content, but they
are equivalent in essence. �e simulation veri	cation results
show that modal parameters identi	cation is the best when
the objective function is maximization non-Gaussian and the
values of MACs are close to 1, and maximization negentropy
is more robust to measurement noise than kurtosis.
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Figure 13: FFT of each independent component identi	ed by maximization kurtosis with gradient descent method with measurement noise.
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Figure 14: Modal shape comparison between FEA and separating vector by maximization kurtosis with gradient descent method with
measurement noise.
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Figure 15: FFT of each independent component identi	ed by maximization negentropy with quasi-Newton iteration method with
measurement noise.
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Figure 16: Modal shape comparison between FEA and separating vector by maximization negentropy with quasi-Newton iteration method
with measurement noise.
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However, ICA algorithms are sensitive to measurement
noise and the mode is easy to miss. So how to 	nd the
missedmodal with prior knowledge and how to fuse di
erent
objective functions to search for a more robustness objective
function or optimization method and improve the accuracy
of identifying modal parameters are the further research
directions.
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