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Abstract 

Objectives: The aim of the present study was to investigate different fluorescence-based, two- 

colour viability assays for visualization and quantification of initial bacterial adherence and to 

establish reliable alternatives to the ethidium bromide staining procedure. 

Materials and Methods: Bacterial colonization was attained in situ on bovine enamel slabs (n 

= 6 subjects). Five different live/dead assays were investigated (FDA/ PI, Syto 9/ PI 

[BacLight®], FDA/ Sytox red, Calcein AM/ Sytox red, CFDA/ Sytox red). After 120 min of 

oral exposure, analysis was performed with an epifluorescence microscope. Validation was 

carried out, using the colony forming units for quantification- and the transmission electron 

microscopy for visualisation after staining.  

Results: The average number of bacteria amounted to 2.9 ± 0.8 x 10
4
 cm

-2
. Quantification 

with Syto 9/ PI and Calcein AM/ Sytox red yielded an almost equal distribution of cells (Syto 

9/ PI: 45% viable, 55 % avital; Calcein AM/ Sytox red: 52% viable, 48% avital). The 

live/dead ratio of CFDA/ Sytox red and FDA/ Sytox red was 3:2. An aberrant dispersal was 

recorded with FDA/PI (viable: 34%, avital: 66%). The TEM analysis indicated that all 

staining procedures affect the structural integrity of the bacterial cells considerably. 

Conclusion: The following live/dead assays are reliable techniques for differentiation of 

viable and avital adherent bacteria: BacLight, FDA/ Sytox red, Calcein AM/ Sytox red and 

CFDA/ Sytox red. These fluorescence-based techniques are applicable alternatives to toxic 

and instable conventional assays, such as the staining procedure based on ethidium bromide. 

Clinical Relevance: Differentiation of viable and avital adherent bacteria offers the possibility 

for reliable evaluation of different mouth rinses, oral medication and disinfections. 

 

Keywords live/dead staining, viability, adherent bacteria, initial biofilm, CFU, TEM 
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Introduction 

Prior to bacterial biofilm formation a proteinaceous layer, known as the acquired pellicle, 

covers all oral tissues within seconds. Consisting of different salivary compounds, initial 

bacterial colonizers and different enzymes, the pellicle provides the base for biofilm 

formation in the oral cavity [1, 2]. It has been pointed out that the initial bioadhesion 

constitutes a focal point in basic science questions as well as in research areas of protein 

adsorption, mineralisation/demineralisation, bacterial adherence and antimicrobial activity  

[3- 5]. Therefore the investigation of the characteristics of the acquired pellicle and the initial 

bacterial adherence is of great relevance and reveals options how to influence and ultimately 

reduce biofilm formation on oral surfaces [6, 7]. 

Besides the common bacterial culturing techniques for the detection of single bacteria and 

bacterial aggregates, studies have been performed to visualize the adherent microorganisms 

with fluorogenic dyes. Disadvantages of the viable plate count and culture-based techniques 

are the selection for certain bacteria. Moreover the preparation for the culturing techniques to 

detect bacteria in the biofilm requires desorption procedures and dispersion onto the agar 

plates, which may influence the results considerably [1]. Over 50% of the oral bacterial flora 

is not culturable [8]. Therefore, simple methods for direct visualization and quantification of 

bacteria in their physiological adherent state are more convenient. This is possible with 

fluorescence staining techniques followed by fluorescence microscopic analysis [9, 10]. 

While fluorescence microscopic methods such as FISH or DAPI offer the opportunity to mark 

selected bacterial species or to stain all cells, there are furthermore techniques, which allow 

the differentiation of viable and dead bacteria [11-14]. This differentiation, based either on 

membrane permeability or metabolic activity, offers the possibility to compare the 

percentaged live/dead distribution of the bacteria before and after treatment with different 

rinses or other adverse environmental conditions [15-17].  

One of the first dyes used for the detection of viable cells was fluorescein diacetate (FDA), 

the uncoloured precursor of fluorescein. This dye develops its fluorescence after intracellular 

metabolism and accumulates in the cell, emitting green light after excitation with 490 nm  

[18-21]. 

Requiring the enzymatic metabolism by esterase, only viable cells show fluorescence. In 

comparison, carboxyfluorescein diacetate (CFDA) shows a longer intracellular accumulation, 

due to its negative charge [12, 19, 22]. Calcein AM, another fluorescing dye for vital cells, is 

readily cleaved by intracellular esterases into the fluorescent calcein. Once turned into this 

fluorescing state, it distributes throughout the whole cell, nuclei and mitochondria included 
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with green colour (emission peak 520 nm) [23]. Other live/dead stains such as SYTO 17 or 

Syto 9 green are based on the intercalation into DNA or RNA [24]. These dyes have the 

ability to penetrate intact membranes and contrasting cell nuclei and chromatin for live cell 

fluorescence microscopy [24].  

One of the first staining assays for the detection of dead bacteria was ethidium bromide 

(Etbr). After the transport of the huge ethidium bromide molecules via passive diffusion 

processes into dead cells with permeable membranes, the molecules intercalate into DNA and 

show an enhancement of fluorescence [25-27]. 

However, safety data sheets of several manufacturers and the positive Ames test suggest the 

mutagenicity of ethidium bromide [28]. Alternatives are offered by membrane-impermeable 

nucleic acid SYTOX® dead cell stains. These stains are non-fluorescent in aqueous solutions 

and exhibit up to a 100-fold increase in fluorescence upon nucleic acid binding. Sytox red, for 

example, is a high-affinity nucleic acid stain that easily penetrates cells with compromised 

membranes, while uncompromised cell membranes are excluded [29]. 

Propidium iodide (PI) also penetrates damaged membranes of dead cells only. Loss of the 

permeability barrier of stained cells represents irreparable damage and thus cell death.  

The wide range of fluorescence-based dyes, differing in their target area and way of cell 

penetration, makes it difficult to obtain the overview and apply adequate materials. Besides 

the differences in excitation and emission spectrum the dyes also seem to lead to differently 

percentaged distributions of viable and dead bacteria due to the smooth transition of the 

viability states [12, 30, 31]. 

Hence, the aim of the present in situ study was the investigation of different live/dead staining 

techniques for adequate visualisation and quantification of microorganisms during the first 

phase of oral bioadhesion to enamel and to establish reliable alternatives to the ethidium 

bromide staining procedure.  
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Material and methods 

Subjects and specimens  

Six healthy volunteers participated in this study. A prior anamnesis and visual oral 

examination ensured that the subjects were free of gingivitis, caries and general diseases. The 

study was approved by the Ethics Committee of the University of Freiburg (proposals 222/08, 

239/08). Cylindrical enamel slabs (diameter 5 mm, 19.63 mm
2
 surface area, height 1.5 mm) 

were prepared from labial surfaces of bovine incisors of BSE-negative cattle. The enamel 

surfaces of all samples were polished by wet grinding with abrasive paper up to 4000 grit. 

One day before the oral exposure, cleaning and disinfection of the slabs was carried out by 

ultrasonication in different solutions: after treatment in NaOCl (3%) for 2 min to remove the 

superficial smear layer, 3- and 10-min min ultrasonications  in ethanol (70%) and aqua 

bidest., respectively, were performed. To ensure the formation of a hydration layer, the 

enamel slabs were stored in aqua bidest. for at least 24 h. The slabs were fixed in the 2
nd

 

premolar and 1
st
 and 2

nd
 molar regions on the buccal sites of individual upper jaw splints with 

a polysiloxane impression material (Aquasil Ultra, Dentsply DeTray GmbH, Konstanz, 

Germany). The enamel surface was embedded on the splint with the margin completely 

covered by the impression material. Covering the margin was necessary to ensure the 

exposure of the surface solely. Altogether, a total of five different live/dead assays and CFU 

(colony forming units) were investigated, using two enamel slabs for each method. For 

reproducibility of the slab location on the splint, two throughputs were performed by the 

subjects, respectively. The specimens were exposed in the oral cavity for 120 min. 

Afterwards, the specimens were rinsed for 10 s with sterile 0.9% saline solution. 

Subsequently, adherent bacteria were visualized and quantified by the different staining 

techniques and the CFU.  

 

Live/Dead Staining 

Ten different live/dead assays were evaluated in a preliminary test to detect and to quantify 

oral bacteria in the initial biofilm (tab. 1). For main experiments, the following five staining 

combinations were selected: fluorescein diacetate (FDA)/ Sytox red, FDA/ Propidium iodide 

(PI), Syto 9/ PI, carboxyfluorescein diacetate (CFDA)/ Sytox red, Calcein AM/ Sytox red. 

The fluorescent agents were dissolved in a 0.9% saline solution. The final concentrations 

adopted for the staining materials were FDA/ Sytox red: 25 µl ml
-1

 / 5 nmol ml
-1

; FDA/ PI: 25 

µl ml
-1

 / 2.5 µl ml
-1

; Syto 9/ PI: 2 nmol ml
-1

/ 20 nmol ml
-1

; CFDA/ Sytox red: 25 µl ml
-1

 / 5 

nmol ml
-1

; Calcein AM/ Sytox red: 25 µl ml
-1

 / 5 nmol ml
-1

; FDA/ ethidium bromide (Etbr): 
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25 µl ml
-1

 / 2.5 µl ml
-1

; CFDA/ PI: 25 µl ml
-1

 / 2.5 µl ml
-1

; TFDA/ PI: 25 µl ml
-1

 / 2.5 µl ml
-1

; 

Syto 9/ Sytox red: 5 nmol ml
-1

 / 5 nmol ml
-1

; Calcein AM/ PI: 25 µl ml
-1

 / 2.5 µl ml
-1

. 

After oral exposition for 120 min, specimens were transferred to the staining procedures 

immediately. Subsequently to the preparation with saline solution, the specimens were 

mounted with soft silicone (Gammasil Tec A 85 base) on the slide. The margins of the 

exposed enamel slabs were coated by the silicone impression material. A volume of 10 µl of 

the previously described fluorescence dyes was pipetted onto the prepared slabs on the slides 

and covered with the coverslips immediately. Micoscopic analysis followed directly 

afterwards. Only in the case of Syto 9/ PI (Baclight) the specimens were firstly incubated in 

the staining solution in a dark chamber for 10 min at room temperature. Afterwards, the slabs 

were mounted on the slide using superglue (Loctite 401, Loctite Deutschland GmbH, 

München, Germany). 

After the staining procedures all specimens were analysed by epifluorescence microscopy. 

The analysis was conducted at 1000-fold magnification (Axioskop II, Zeiss; Oberkochen, 

Germany). The number of cells was counted in 10 randomized microscopic ocular grid fields 

(0,0156 cm
2
 grid area). Two different light filters were used for discrimination of dead and 

viable cells (Etbr-filter for the visualisation of dead cells: BP 546/12; FT 580, LP 590; FDA-

filter for vital cells: BP 450-490, FT 510 LP 515). 

 

Colony forming units 

After oral exposure the samples were removed from the splints and rinsed with 0.9% saline 

solution and transferred into sterile tubes with 1 ml 0.9% saline solution. Desorption of 

microorganisms was achieved by ultrasonication on ice for 1 min. The dispersed material was 

diluted up to 10
3 
in saline solution and vortexed. A total of 100 µl of the diluted samples were 

plated out on Columbia blood agar (CBA, aerobic bacteria) and 100 µl on yeast-cysteine-

blood agar, respectively (HCB, anaerobic bacteria). CBA plates were incubated for 2 days 

under aerobic conditions. HCB plates were placed in anaerobic candle jars at 37 °C using 

CO2-Paks (BBL GasPak Anaerobic System Envelopes) for 5 d. After each incubation 

procedure the cultured colonies were counted. Low dilutions were determined using Quantity 

One 4.5 GelDoc EQ Universal Hood (BioRadLife Science Group, Hercules, USA). In order 

to obtain the number of bacteria per cm
2
, the determined colonies of each plate were divided 

by the surface of the initial sample (0.196 cm
2
). 
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Transmission electron microscopy 

For each of the five different live/dead assays transmission electron microscopic analysis was 

performed. After oral exposure samples were incubated with the fluorogenic dyes. A control 

group was incubated after oral exposure but without the staining procedure in sterile NaCl-

solution only. Rinsing with 1 ml phosphate buffer followed for all samples five times in 

succession for 10 min. Prior to analysis dehydration of the samples was performed using an 

ascending series of ethanol. Subsequently, the specimens were fixed in 4% paraformaldehyde 

/ 0.1% glutaraldehyde for 2 h at 4°C. Before embedding in LR-White resin (London Resin 

company, Theale, Berks, UK) dehydration took place in an ascending series of ethanol. The 

enamel part of the embedded specimens was removed by decalcification using 1 M HCl. The 

remaining space was refilled with Araldite CY 212 (Serva, Heidelberg, Germany). A 

Mikrostar 45° diamond knife (Mikrotechnik, Bensheim, Germany) fixed in an Ultracut E 

microtome (Reichert, Heidelberg, Germany) was used to cut ultrathin sections in series. The 

ultrathin sections were mounted on 300 mesh nickel grids (Plano, Wetzlar, Germany). 

The TEM-analysis was performed in an EM 902 microscope (Zeiss, Oberkochen, Germany) 

at an 80,000 fold magnification. 

	  

Statistics 

Statistical evaluation was performed by ANOVA (p ≤ 0.05) and the Tukey-test, enabling a 

pairwise comparison of the methods. In addition, the Kuskal-Wallis-test was carried out. All 

statistical evaluations were performed with the PASW Statistics 18 software.  
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Results 

Live/Dead Staining 

Basically, ten different staining techniques were evaluated (tab. 2), regarding different 

parameters such as the stability of staining, the differentiability of viable and dead bacteria, 

the general advantages and the disadvantages. Most of the staining combinations allowed a 

quantification of the cells immediately after the staining procedure but were characterized by 

a rapid fading of the fluorescence after 15 to 20 min. Only for Calcein AM/ Sytox red an 

incubation time for approximately 5 min after staining seemed to be necessary prior to 

quantification. Using the different filters for epifluorescence microscopic analysis, only with 

five assays clear differentiation of viable and avital bacteria was possible (FDA/ Sytox red, 

FDA/ PI, Syto 9/ PI, CFDA/ Sytox red, Calcein AM/ Sytox red). Detection of dead bacteria 

under both filters (FDA-filter and Etbr-filter) was achieved with the staining combination 

FDA/ PI (fig. 1). Analysis with the further combinations was inefficient due to lacking 

differentiability of viable and dead bacteria (CFDA/ PI, TFDA/ PI, Calcein AM/ PI and Syto 

9/ Sytox red).  

Based on these findings further investigation was performed using only five of the tested 

combinations (FDA/ Sytox red, FDA/ PI, Syto 9/ PI, CFDA/ Sytox red, Calcein AM/ Sytox 

red). Irrespective of the different stainings, the visualisation using the epifluorescence 

microscope showed randomly distributed adherent microorganisms on the enamel surface 

(fig. 1). Single cells, small aggregates and accumulation of cells could be visualized in an 

irregular manner. Vital and avital cells could be distinguished after staining, using two 

different microscope filters (Etbr-filter for the visualisation of dead cells: BP 546/12; FT 510, 

LP 515; FDA-filter for vital cells: BP 450-490, FT 510 LP 515). A differentiation between 

different bacterial species was not possible.  

Quantification of all bacteria disregarding the different staining techniques and cell vitality 

yielded an average of 2.9 ± 0.8 x 10
4
 bacteria/cm². Viable cells and avital cells showed an 

equal distribution. Statistically, there were no significant differences between the number of 

viable bacteria (ANOVA: p = 0,338) and avital bacteria (ANOVA: p = 0,413). A maximum 

number of viable bacteria, 14.3 x 10
4
 bacteria/cm², was ascertained using the staining 

combination FDA/ Sytox red (tab. 3). The same technique showed the minimum number of 

viable cells 0.8 x 10
4
 bacteria/cm². The maximum of avital bacteria, 14 x 10

4
 bacteria/cm², 

was detected with FDA/ PI. The minimum of avital cells, 0,5 x 10
4
/cm² bacteria, was 

ascertained with Syto 9/ PI (tab. 3). 
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The five different live/dead assays for staining resulted in a wide range regarding the ratio of 

viable and avital cells (tab. 4). Based on the results, the assays were divided into three groups: 

quantification with Syto 9/ PI and Calcein AM/ Sytox red yielded an almost equal distribution 

of viable and avital bacteria. In the CFDA/ Sytox red and FDA/ Sytox red assays the 

monitored live/dead distribution was approximately 3:2. An aberrant dispersion was detected 

with FDA/ PI only (tab. 4). However, the differences between the techniques were not 

statistically significant (vital Tukey-test: p = 0,335; avital Tukey-test: 0,295). The additional 

Kruskal-Wallis-test showed no significant differences between the methods either (vital p = 

0,530; avital p = 0,712). 

 

Colony forming units 

CFU showed a high interindividual and intraindividual variability. Comparing the mean 

number of aerobic and anaerobic bacteria, both groups are represented equally (aerobic: 89 ± 

138.4 x 10
4
 cm

-
²; anaerobic: 99.1 ± 154.3 x 10

4
 cm

-
²). A correlation between the number of 

bacteria detected with CFU and the number of viable bacteria, detected with the staining 

techniques, could not be observed. The detected bacteria differed by 30 (total of detected 

viable bacteria using staining techniques: 2.9 ± 0.8 x 10
4
 cm

-
²). 

 

Transmission electron microscopy 

The electron-microscopic micrographs of specimens fixed after adoption of the different 

stains showed lysis and destruction of the adherent bacteria. Several types of destruction were 

visible as well as accumulation of the stains; no intact bacteria were found. However, TEM-

micrographs of the unstained controls fixed in the native state showed intact bacteria. 

Accordingly, the different viability dyes lead to a destruction of the bacteria or the bacterial 

cell walls and cell membranes, respectively (fig. 2).  
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Discussion 

Biofilms, consisting of extracellular polymeric substances (EPS) and bacteria, initialize oral 

infections such as caries and periodontopathy. However, little is known about the live/dead 

distribution during the initial process of bioadhesion in the oral cavity on dental hard tissues.  

Serving as a general pilot study, different live/dead assays were investigated. Smoothed 

bovine enamel specimens were used like in previous studies on bioadhesion and pellicle 

formation, an in situ approach based on upper jaw splints was chosen [1,32, 33]. Many studies 

are based on in vitro models to focus on special topics of biofilm formation, but bioadhesion 

in vivo and in vitro differ considerably [32]. In situ studies seem to be ideal if investigating 

physiological biodhesion with elaborate methods. Furthermore, bacteria in biofilms show 

twice to 1000 times higher resistance than planktonic bacteria indicating the necessity of 

studies on the viability of adherent bacteria in the oral environment [34]. 

 

Applying modern live/dead techniques, viable and dead bacteria were differentiated by their 

viability. But even though live/dead assays divide bacterial viability stages into dead and 

viable, there is still no standardized definition for a classification of the different bacterial 

states of viability [12]. Regarding the classical cultivation of microorganisms on agar plates, 

for example, only culturable bacteria, able to form colonies, are detected. Several bacterial 

non-sporulating species decrease under starvation conditions [35]. Furthermore, it has to be 

kept in mind that only 50 % of the bacterial strains present in the oral cavity are culturable 

[8]. Colwell et al. [36] describe these cells as ‘viable but non-culturable cells’ (VBNC), 

characterized by metabolic activity but loss of growth. The bacteria seem to pause in a state of 

‘dormancy’, representing a reversible intermediate state as a kind of survival strategy, which 

can lead to active metabolism, death or lysis [30, 31]. Considering the fluorescence two-

colour assays, the staining capacity of the dyes seems to correlate with the physiological state 

of the bacteria [37]: bacteria with active metabolism and high growth rate fluoresce more than 

dormant cells. Dormant cells may exhibit higher resistance und less fluorescing capacities 

because of a hindered cell penetration [38, 39]. Overall, 2 main principles for live/dead 

staining are presently used: impermeability of the membrane to nucleic acid dyes on one hand 

and presence of metabolic activity, on the other. It is questionable how cells in a stationary 

and therewith metabolic less active state interact in-depth with those reagents, based on the 

metabolic activity. Future studies are necessary to evaluate the principal interaction of the 

dyes with the bacteria, which was not the objective of the present study. 
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In this study, CFU were determined to validate the number of viable bacteria detected with 

the live/dead assays. Using CFU and the fluorescence based assays, it was shown, that a 

comparison of these methods seems not reasonable. Generated CFU data differed 

considerably from the number of stained viable cells. These findings were described in other 

studies before [1]. The desorption of adherent bacteria clusters from the enamel surface by 

ultrasonication could lead to a separation of aggregated cells and thus to a higher number of 

colonies. Also, the difference between the cultivability determined by CFU-method and the 

viability defined by fluorescence staining assays should be kept in mind. For further studies of 

the single stains, quantification of cells could be verified separately to the live/dead assays by 

other fluorescence-based methods, such as DAPI or FISH. The different techniques provide 

different information as vitality and bacterial identification of species. Furthermore, spatial 

analysis of biofilms could be analysed by confocal microscopy. 

Even though most of the fluorescence based dyes detect viable cells by taking advantage of 

their metabolism, it was postulated that stained cells lose their viability shortly after 

intercalation of the dyes [24]. This hypothesis was confirmed by the TEM-analysis in the 

current study (fig. 2). The images showed immense lysis and destruction of the adherent cells 

as well as clustered stain throughout the surface induced by the different staining dyes 

indicating considerable aggressiveness of the adopted reagents. In contrast, the electron-

microscopic micrographs of unstained controls showed intact adherent bacteria. This 

observation has to be kept in mind when interpreting the results of live/dead staining. All 

stained cells appear destroyed in equal manner regardless of their prior  state of viability. 

Still, it seems quite plausible that only viable bacteria can accumulate dyes, which depend on 

membrane permeability or metabolic activity, indicating former viability of the respective 

bacterial cell. It can therefore be assumed, that the differentiation of viable and dead bacteria 

is possible, using different live/dead stainings. The analysis represents the viability state 

during the staining procedure. After dye-accumulation inside the cells, the bacteria indeed 

lose their viability. To quote an example, fluorescein diacetate only emits green light after 

intracellular metabolism and accumulation in the cell. On the other hand dead cell stains 

depend on damaged membranes for cell penetration. Staining with Propidium iodide, for 

example, requires loss of an intact membrane due to damage and thus cell death [40]. 

Accordingly, the effects observed with TEM offer a plausible explanation for the fading of 

the stained vital cells and the spreading of the dyes indicating dead bacteria, a phenomenon 

observed with several staining protocols in a different extent and velocity. Examining 
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ethidium bromide stained samples under the fluorescence microscope, for example, a rapid 

boost of deceased cells can be noticed. This dye particularly requires fast analysis. 

 

Regarding the chosen fluorescing dyes and microscopic filter, respectively, only two different 

filters were used for all stains to visualize the viable and dead bacteria. Due to similar 

excitation and emission data of the different dyes, other optimised filters could have improved 

the visualisation after staining- but would most likely not influence the results. It can be 

assumed, that other filter would only result in a deeper intensity of the fluorescence. The used 

FDA-microscopic filter had a convenient side effect of also visualizing some of the 

fluorescence dyes for the avital bacteria, for example Propidium iodide.  This effect could be 

used as an additional control for the differentiation of viable and dead cells, too. 

Even though autofluorescence of the enamel surface existed, bacteria could be detected 

clearly. 

A number of five assays were considered in the main experiments yielding different shares of 

viable and dead bacteria. Still, a certain variance between the different combinations of dyes 

seems characteristically. Altogether, distribution of viable vs. dead bacteria of the 

fluorescence assays resulted in three groups: equal distribution (Baclight and Calcein AM/ 

Sytox red); more dead bacteria vs. viable (FDA/ PI); more viable vs. dead bacteria (CFDA/ 

Sytox red and FDA/ Sytox red).  The almost equal distribution of viable and avital bacteria 

was found, using BacLight (Syto 9/ PI) and Calcein AM/ Sytox red. While Calcein AM/ 

Sytox red staining are based on metabolic activity for the viable bacteria and impermeability 

for the avital cells, BacLight staining is characterized by the same staining principle of its 

combined dyes: both are based on membrane permeability. Syto 9 penetrates all viable and 

avital cells, PI only penetrates those cells with higher permeability of cell membrane. A 

remarkably high amount of dead bacteria was recorded with FDA/ PI indicating destructive 

properties of this combination. Also with the other dyes, 40 to 50 % dead bacteria were found. 

There are two possible explanations for this phenomenon. On the one hand dead bacteria 

might adhere, on the other hand lysozyme immobilised in the pellicle layer in an active 

conformation can destroy the cell membrane of some bacterial species. In general, 

combinations of dyes not overestimating the dead bacteria are preferable [1, 33]. Even though 

the high variability of the live/ dead distribution and of the CFU data points out the challenges 

of in situ biofilm models. The data gained with the different fluorescence-based assays, 

indicated distinct differences between each single staining combination as much as between 

each subject.  
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One possibility to overcome these inconstancies could be the application of an in vitro biofilm 

model, instead of the in situ model, used in the present study. Advantages of in vitro biofilm 

models are described in several previous studies, implying predictable reproducibility to a 

certain extent and specific composition of bacteria species [9, 40, 41]. However, defining the 

bacterial composition of the plaque model also leads away from the natural bioadhesion 

occurring in situ/ in vivo and thus might cause different biofilm characteristics. Also, 

repeatability of in vitro biofilm formations was investigated after more than 40 hours, while 

unity of the initial bacterial adherence remains still a challenge.  

Anyhow, recent studies indicate that there is a subpopulation of cells that can take up PI 

during and immediately following exposure to stress but that a short incubation allows repair 

of the membrane damage. Davey and Hexley [42] showed that irrespective of the stress 

applied, approximately 7% of cells (Saccharomyces cerevisiae) exhibited the ability to repair. 

These results also underline the smooth transition between different viability states of 

bacteria.  

 

All in all some of the tested live/ dead stainings are applicable for evaluation of the initial oral 

biofilm. Thereby the special characteristics of the respective assay are to be considered, 

adoption of other methods such as TEM are recommended in addition. Furthermore, the 

present data indicated clearly that viability assays performed with bacteria in the adherent 

state and the CFU-method after desorption yield completely different results and cannot be 

compared. Both offer different information.  
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Conclusions 

The present study demonstrates adequate fluorescence-based techniques for the visualization 

and quantification of viable and dead cells, particularly of the initial bacterial adherence on in 

situ exposed enamel slabs (BacLight, FDA/ Sytox red, Calcein AM/ Sytox red and CFDA/ 

Sytox red). The methods tested are applicable alternatives to toxic and instable conventional 

assays. However, the disruptive effects of the dyes on the integrity of the bacterial membranes 

are to be considered. 
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