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In recent years, moment-closure approximations (MAs) of the chemical master equation have become

a popular method for the study of stochastic effects in chemical reaction systems. Several different

MA methods have been proposed and applied in the literature, but it remains unclear how they

perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and

central-moment-neglect MAs by applying them to understand the stochastic properties of chemical

systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and

oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied

MAs. In particular, we found that (i) the size of the region of parameter space where a closure

gives physically meaningful results, e.g., positive mean and variance, is considerably larger for

the normal closure than for the other three closures, (ii) the accuracy of the predictions of the

four closures (relative to simulations using the stochastic simulation algorithm) is comparable in

those regions of parameter space where all closures give physically meaningful results, and (iii) the

Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in

molecule numbers. We also describe the new software package MOCA which enables the automated

numerical analysis of various MA methods in a graphical user interface and which was used to

perform the comparative analysis presented in this paper. MOCA allows the user to develop novel

closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity

functions, thus being applicable to virtually any chemical reaction system. C 2015 Author(s). All

article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0

Unported License. [http://dx.doi.org/10.1063/1.4934990]

I. INTRODUCTION

Biochemical reaction systems frequently comprise

species with low copy numbers of molecules which leads

to strong stochastic effects.1 Under well-mixed and dilute

conditions, the chemical master equation (CME) is the

accepted description of the dynamics of such systems.2

For all but the most simple systems, however, no analytic

solutions of the CME are known. The standard approach

in this case is to use the stochastic simulation algorithm

(SSA3), a popular Monte Carlo method that samples from the

solution of the CME. However, the SSA is computationally

expensive and becomes infeasible for all but the smallest

systems, in particular if some of the species occur in high

molecule numbers with many reactions happening per unit

time. While the derivation of a reduced CME enforcing

time scale separation may help in some cases,4,5 analytical

approximations are still an important alternative for the

exploration of chemical systems.

Using the CME, one can derive ordinary differential

equations for the moments of the numbers of molecules of

each species in the system. In general, the equation for a given

moment is coupled to the equations of higher order moments

giving rise to an infinite hierarchy of equations which cannot

be solved.6 A popular method to approximate the moments

of the CME is moment-closure approximations (MAs).7–11

The latter usually express moments above a certain order in

terms of lower order moments, thereby closing the moment

equations which can then be solved either analytically or

numerically. Several different moment-closure methods have

been proposed in the literature. The most popular is the

normal MA (also called “cumulant neglect MA”), which sets

all cumulants above a certain order to zero, thus corresponding

to a normal distribution.7–11 If all cumulants above order M are

set to zero, we speak of the “normal MA of order M .” Several

other MAs have been proposed to close the moment equations;

some common types are the Poisson MA,12 the log-normal

MA,13 and the central-moment-neglect MA (CMN-MA).14

The purpose of this paper is twofold: (i) an empirical

comparison of the predictions of different types of MAs when

applied to chemical reaction systems and (ii) the presentation

of a new user-friendly software package which enables the

automatic derivation and analysis of MAs.

MAs are an ad hoc approximation and there is no

straightforward way to predict their accuracy. While several

different MA methods have been proposed8–10,12,13,15 and

successfully applied16,17 in the literature, there are few studies

analysing and comparing their performance.37 In Ref. 18,

the log-normal MA was found to be more accurate than the

normal MA for a gene cascade network for one parameter

set. In Ref. 7, the accuracy of the normal MA has been

investigated for general monostable systems in the limit of

0021-9606/2015/143(18)/185101/17 143, 185101-1 © Author(s) 2015
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large volumes using the system size expansion. However, the

accuracy of MAs for small to intermediate volumes remains

unknown and in particular how different MA methods perform

with respect to each other. Moreover, it is unknown under

which conditions MAs give physically meaningful results.

In an empirical study Ref. 19, formulated a set of validity

conditions guaranteeing MAs to give physically meaningful

approximations to the moments of the CME. We will adopt

these validity conditions here. Specifically, whenever the CME

has a stationary solution, we require the MAs to have a single

positive and globally attractive fixed point, and their time

trajectories to stay non-negative and finite for all times and all

initial conditions. In Ref. 19 it was found that the normal MA

fails to satisfy these validity conditions for certain systems

and parameter regimes. It was shown that the normal MA

can give rise to unphysical behaviour outside of this regime,

such as negative mean values or variances, divergent time

trajectories, unphysical oscillations, and unphysical bistability,

thus not allowing for a physical interpretation in these cases.

It remains unclear if this is also the case for other moment-

closure schemes and how their ranges in parameter space

for which they are valid (if they exist) compare to each

other.

In this article, we apply the normal, Poisson, log-normal,

and CMN-MAs to several chemical reaction systems. We

confine our analysis to MAs of second order, since these are the

most used in practice. We study their qualitative behaviour in

the sense of the validity conditions stated before and compare

their quantitative accuracy with exact stochastic simulations.3

It should be stressed that “validity” and “accuracy” are not

unrelated properties, since one can only speak of a method’s

accuracy when it gives physically valid results. Yet, physically

meaningful results can be quantitatively highly inaccurate.

Therefore, “validity” is a necessary but not sufficient condition

for “accuracy.” In this study, we first use the different MA

methods to study stochasticity in a system whose large volume

limit is deterministically bistable. Next, we investigate how

well the MA methods can capture the influence of noise in

a protein-phosphorylation system whose deterministic system

shows ultrasensitivity. And finally, we use the MAs to study the

role of stochasticity in a system whose deterministic system is

oscillating and which becomes entrained by an external force

for a finite time interval.

The derivation of the moment equations from the

CME and the subsequent application of moment-closures

is conceptually a straightforward task. Practically, however,

it becomes extremely cumbersome if more than one species

is involved and if one considers higher-order MAs. Suppose,

for example, a system of three species for which we want

to compute the fourth-order normal MA equations. Taking

symmetries into account, this leads to 34 moment equations

which have to be derived from the CME. These will have to

be closed, and several fifth-order moments (and potentially

higher-order moments) will have to be replaced in terms of

lower-order moments. Obviously, this task quickly becomes

unfeasible to do manually. Moreover, the numerical analysis

of MA equations is not straightforward, and there is no

user-friendly software package available allowing non-expert

users to derive and analyse MAs.

To our knowledge, there are three software packages

available in the literature for moment-closures: the Matlab

toolbox StochDynTools20 which allows the derivation of

MA equations using several different closure schemes for

mass-action chemical systems, i.e., those with polynomial

propensity functions, the Python package MomentClosure21

which allows the same but only using the normal moment

closure and has the facility to export the MA equations

to a Maple file for further analysis, and a Matlab toolbox

presented in Ref. 22 which allows to use normal moment

closure to second order for mass-action chemical systems.

For the application of all three packages, the user needs to be

familiar with the respective programming language and the

numerical analysis is not automated.

In this article, we present the Mathematica package

MOCA (moment-closure analysis) which was used for the

presented numerical analysis. MOCA significantly extends

the applicability and functionality of the two software

packages StochDynTools and MomentClosure20,21 as well as

the software package presented in Ref. 22. It allows the non-

expert user to apply and compare different moment-closure

schemes in a graphical user interface (GUI) without any coding

necessary. It implements the normal, Poisson, log-normal, and

CMN-MA and in addition allows the user to define his own

novel moment-closure schemes. It extends the applicability

to reaction systems with non-polynomial or time-dependent

propensity functions. These can either be functions in time

or given by discrete time points, for example, obtained from

experiments. All functions are available either in a GUI or as

code version for more experienced users, making the usage of

MOCA maximally flexible. MOCA can perform steady state

analysis with parameter scans, numerically integrate the MA

equations in time, and allow to export tables and figures to

various commonly used formats.

This paper is structured as follows. Section II introduces

the theoretical background for general moment-closure

schemes and defines the particular MA methods analysed

in this work. The numerical analysis of the various MAs

is then presented in Section III. Next, we introduce the

software package MOCA in Section IV. We explain the user

input format and demonstrate its capabilities. We finish by

summarising our results and concluding in Section V.

II. BACKGROUND

A. The chemical master equation
and moment-closure approximations

Consider a chemical reaction system with species Xi

(i = 1, . . . ,N) and R chemical reactions,

N


i=1

si jXi

k j
−−−−−−→

N


i=1

ri jXi, j = 1, . . . ,R. (1)

Here, k j is the rate constant of reaction j. We define the

elements of the stoichiometric matrix S as

Si j = ri j − si j . (2)
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Under well-mixed and dilute conditions, the dynamics of the

system is governed by the CME,2

∂tP(n, t) =

R


r=1

fr(n − Sr)P(n − Sr , t) −

R


r=1

fr(n)P(n, t).

(3)

Here, P(n, t) is the joint probability distribution at time t,

where n = (n1, . . . ,nN) is the state vector of the system and ni

is the number of molecules of species Xi. Sr is the rth column

vector of the matrix S and fr(n) is the propensity function of

reaction r . For reactions described by the law of mass-action,

the propensity is polynomial and defined as23

fr(n) = krV

N


k=1

nk!

(nk − sk j)!V
sk j

. (4)

Here, V denotes the volume of the compartment in which the

reaction occurs. If in addition
N

i=1 si j ≤ 2, which basically

means that not more than two molecules react which each

other in a single reaction (at most a second-order reaction),

we call reaction j an “elementary reaction.” Higher-order

reactions do not really occur under conditions found in living

cells and although they can often give a useful description

of a system, they should really be interpreted as an effective

approximate description of a set of elementary reactions, valid

only under certain conditions.

Multiplying (3) with ni . . . nl and summing over all

ni (i = 1, . . . ,N) leads to the time evolution equation of the

moment ⟨ni . . . nl⟩,

∂t⟨ni . . . nl⟩ =

R


r=1

⟨(ni + Sir) . . . (nl + Slr) fr(n)⟩

−

R


r=1

⟨ni . . . nl fr(n)⟩. (5)

Here, ⟨·⟩ denotes the expectation with respect to P(n,t).

Accordingly, the first two moments obey

∂t⟨ni⟩ =

R


r=1

Sir⟨ fr(n)⟩, (6)

∂t⟨nin j⟩ =

R


r=1

�
Sjr⟨ni fr(n)⟩ + Sir⟨ fr(n)n j⟩

+ SirSjr⟨ fr(n)⟩
�
. (7)

We see that, unless all fr(n) are a zeroth or first-order

polynomial in n, the evolution equation of a certain moment

depends on higher order moments, i.e., the equations are not

closed.

The idea underlying the class of moment-closure

approximations studied in this work is to express all moments

above a certain order M as functions of lower-order moments.

The latter is typically done by assuming the distribution

of the system to have a particular functional form, for

example, a normal distribution. This decouples the equations

of the moments up to order M from higher-order moments,

which then allows one to numerically integrate the moment

equations. We refer to such a moment-closure as “MA of

order M .” Let

yi1, ..., ik = ⟨ni1 . . . nik
⟩, (8)

zi1, ..., ik =

⟨(ni1 − yi1) . . . (nik

− yik)⟩ if k ≥ 2,

yi1 if k = 1,
(9)

ci1, ..., ik = ∂si1
. . . ∂sik

g(s1, . . . , sN)|s1, ...,sN=0, (10)

denote the raw or “normal” moments, central moments,

and cumulants of order k of the system, respectively.

We call yi1, ..., ik a “diagonal moment” if il = im for all

l,m ∈ {1, . . . , k}, and a “mixed moment” otherwise, and

similarly for central moments and cumulants. In Eq. (10),

g(s) is the cumulant generating function defined as

g(s1, . . . , sN) = log⟨exp(s1n1 + · · · + sNnN)⟩. (11)

We note that all three types of moments are respectively

invariant under permutations of their indices. Therefore, only

one representative combination of each permutation class

has to be considered. Taking this symmetry into account

significantly reduces the number of variables and moment

equations. We adopt here the convention that the indices are

ordered from small to large, i.e., for a moment yi1, ..., ik, we have

i1 ≤ i2 ≤ · · · ≤ ik. Expressing the moment-closure functions

in terms of cumulants rather than raw moments often gives

shorter expressions. The equations for the cumulants can then

be rearranged to give equations for the raw moments. We

consider here the following MA methods:

• “Normal moment-closure” (also called “cumulant

neglect moment-closure” in the literature): all cumu-

lants above order M are set to zero, i.e.,

ci1, ..., ik = 0, for k > M. (12)

• “Poisson moment-closure”: the cumulants of a one-

dimensional Poisson distribution are all equal to

the mean value. We assume here the multi-variate

distribution to be a product of uni-variate Poisson

distributions. Accordingly, for the Poisson MA of order

M , we set all diagonal cumulants to the corresponding

mean and all mixed cumulants to zero, i.e.,

ci1, ..., ik = yi, for k > M and

i1, . . . , ik = i, for some i ∈ {1, . . . ,N}, (13)

ci1, ..., ik = 0, for k > M and

im , in for some m,n ∈ {1, . . . ,N}. (14)

• “Log-normal moment-closure”: let m and S be the

mean vector and covariance matrix of a multi-

dimensional normal random variable. Then, the

logarithm of the latter has a multivariate log-normal

distribution and its moments can be expressed in terms

of m and S as24

yi1, ..., ik = exp

(

vTm +
1

2
vTSv

)

, for k > M,

(15)

where v = (g1, . . . , gN), where gm is the number of i j’s

having the value m. This allows to express m and S

in terms of the first two moments yi and yi, j which

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.215.250.95 On: Thu, 17 Dec 2015 16:23:50



185101-4 Schnoerr, Sanguinetti, and Grima J. Chem. Phys. 143, 185101 (2015)

then in turn allows to express higher-order moments in

terms of the latter, too.

• “CMN moment-closure”: all central moments above

order M are set to zero,

zi1, ..., ik = 0, for k > M. (16)

Each of the equations can then be used to express the raw

moments above order M in terms of lower order moments

and thus close the moment equations according to the

corresponding MA. We note that the normal MA, Poisson

MA, and CMN-MA can be equivalent depending on the

reaction system (see later for examples of such systems).

The normal moment-closure has been used in the field of

biochemical reactions, for example, in Ref. 10 and is probably

the most commonly used one. It has been considered together

with the Poisson and log-normal MA for the one-dimensional

stochastic logistic model in Ref. 12. The log-normal moment-

closure technique has been proposed in Ref. 13. In Ref. 15,

it has been shown that the assumption of a log-normal

distribution is equivalent to a “derivative matching” closure.

The CMN-MA has also been called a “low dispersion moment-

closure” in Ref. 14.

B. Example

As an example, consider a reaction system of the

Michaelis Menten type,

∅

k1
−−−−−−→ S, S + E

k2
−−−−−−→ SE

k3
−−−−−−→ E + X, (17)

where E is the free enzyme, S is the substrate, SE is the

enzyme-substrate complex, and X the product. The sum of the

numbers of E and SE molecules is constant at all times since

each enzyme is either in the free E or complex SE state. Let

e0 denote the total number of enzyme molecules. Assuming

mass-action kinetics, the propensity vector is given by

f(n1,n2) = (V k1,
k2

V
n1n2, k3(e0 − n2))

= (c1,c2n1n2,c3(e0 − n2)), (18)

where V is the volume of the system and we have defined

c1 = V k1,c2 = k2/V , and c3 = k3. Here, n1 and n2 denote the

copy number of substrate S and free enzymes E, respectively,

and we have used the fact that the number of complex

molecules SE is e0 − n2 to eliminate the corresponding

variable. The stoichiometric matrix is defined in Eq. (2)

and reads for system (17)

S = *
,

1 −1 0

0 −1 1
+
- . (19)

The corresponding CME is obtained by substituting Eqs. (18)

and (19) in Eq. (3) leading to

∂tP(n1,n2, t) = c1P(n1 − 1,n2, t)

+ c2(n1 + 1)(n2 + 1)P(n1 + 1,n2 + 1, t) (20)

+ c3(e0 − n2 + 1)P(n1,n2 − 1, t)

− (c1 + c2n1n2 + c3(e0 − n2))P(n1,n2, t). (21)

Multiplying with n1,n2,n
2
1
,n1n2, and n2

2
and summing over

all n1 and n2 gives the following equations for the first two

moments:

∂t y1 = ∂t⟨n1⟩ = c1 − c2y1,2, (22)

∂t y2 = ∂t⟨n2⟩ = −c2y1,2 + c3(e0 − y2), (23)

∂t y1,1 = ∂t⟨n
2
1⟩ = c1 + 2c1y1 + c2y1,2 − 2c2y1,1,2, (24)

∂t y1,2 = ∂t⟨n1n2⟩ = c3e0y1 + c1y2

+ (c2 − c3)y1,2 − c2y1,1,2 − c2y1,2,2, (25)

∂t y2,2 = ∂t⟨n
2
2⟩ = c3e0 + (2c3e0 − c3)y2

+ c2y1,2 − 2c3y2,2 − 2c2y1,2,2. (26)

Recall that the moments are invariant under index permu-

tations and thus y2,1 = y1,2 does not have to be considered

explicitly. We see that the equations of the mean y1 and

y2 depend on the second moment y1,2. The equation of the

latter depends on the third moments y1,1,2 and y1,2,2 and

similarly the equations for y1,1 and y2,2. It can easily be seen

that this applies also to all higher order moments, i.e., the

time-evolution equation of a moment of order k depends on

moments of order k + 1. Therefore, the system of equations

is not closed and cannot be solved directly.

Now, consider the normal MA which sets all cumulants

above a certain order to zero. If we aim at closing the equations

to second-order, we have to set the third-order cumulants to

zero,

ci, j,k = 0, for i, j, k = 1,2. (27)

Expressing the cumulants in terms of raw moments, this allows

one to find expressions of the third-order moments in terms of

first and second-order moments. For y1,1,2, for example, this

reads

y1,1,2 = 2y1y1,2 + y2y1,1 − 2y2y
2
1 , (28)

and similarly for the other third-order moments. Replacing the

third-order moments accordingly in Eqs. (22)–(26) closes the

equations. We give here the resulting equations transformed

to central moments,

∂tz1 = c1 − c2(z1,2 + z1z2), (29)

∂tz2 = −c2(z1,2 + z1z2) + c3(e0 − z2), (30)

∂tz1,1 = c1 + c2(z1,2 + z1z2) − 2c2(z2z1,1 + z1z1,2), (31)

∂tz1,2 = c2z2(z1 − z1,1 − z1,2)

− c2z1(z1,2 + z2,2) + (c2 − c3)z1,2, (32)

∂tz2,2 = c3(e0 − z2 − 2z2,2)

+ c2z2(z1 − 2z1,2) + c2z1,2 − 2c2z1z2,2. (33)

III. NUMERICAL ANALYSIS

A. Validity conditions

We recently formulated validity conditions guaranteeing

physically meaningful predictions of MA approximations19

and analysed the validity of the normal MA for several

example systems. We briefly review these conditions here.

For a system for which the CME has a stationary solution, the

exact moments of the system converge to a single steady-state

in the limit of long times. Therefore, for the MAs to be valid

moment approximations, we require convergence to a single
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FIG. 1. Number of positive stable fixed

points as a function of the volume V

on log-scale obtained from steady-state

analysis for the bistable reaction sys-

tem in Eqs. (34)-(36) for the parameters

k0= 1, k1= 1, k2= 5, k3= 0.2, and k4

= 5. We shift the points slightly to make

coinciding points distinguishable. We

find that all three MAs give a physical

result of a single positive stable fixed

point only on an intermediate range

of volumes. The latter is significantly

smaller for the log-normal MA than for

the normal and Poisson MAs.

steady-state in the limit of long times too. Moreover, the

trajectories should preserve a positive mean and even central

moments in the molecule numbers for all times and for all

sensible initial conditions. Note that this is also the case for

deterministic bistable systems and deterministic oscillatory

systems. If the CME converges to a stationary solution, the

resulting moments are unique, even if the deterministic rate

equations are bistable. Moreover, while single SSA trajectories

oscillate for a deterministic oscillatory system, the moments

of the CME converge to fixed points because single SSA

trajectories get out of phase over time.

In the following, we analyse different MAs with respect

to these validity conditions and compare their quantitative

accuracy with SSA simulations.

B. A deterministic bistable system

In Ref. 19, it has been shown that for the deterministic

bistable Schlögl model,25 the normal MA gives physically

meaningful results only for an intermediate range of

volumes. For smaller volumes, it shows negative or diverging

trajectories, while it becomes bistable for larger ones. The

SSA, in contrast, has a globally attractive positive fixed point

and non-negative time trajectories for all volumes. Here, we

study the stochastic properties of the minimal elementary

reaction system whose rate equations show bistability,26

∅

k0
−−−−−−→ X, Y

k1
−−−−−−→ 2X, (34)

2X
k2

−−−−−−→ X + Y, X + Y
k3

−−−−−−→ Y, (35)

X
k4

−−−−−−→ ∅. (36)

We added the first reaction to the ones given in Ref. 26

to prevent the stochastic system from having an absorbing

state for zero molecule numbers. Depending on the parameter

values, the deterministic rate equations become bistable for

this system. All parameter sets used in this section are

chosen such that this is the case. We assume mass-action

kinetics here. Since the reactions in Eqs. (34)-(36) are of

order two or lower, their rate functions are polynomials up

to order two in the species variables. This means that the

time evolution equations of the second-moments depend on

the third-order moments, but not on higher-order moments.

We thus have to express the third-order moments in terms

of first and second-order moments to close the equations

to second order. Recall that the second-order normal and

CMN-MAs set all cumulants and central moments above

order two to zero, respectively (cf. Eqs. (12) and (16)). Since

the third-order cumulant and third-order central moment are

identical, the second-order normal MA and CMN-MA are

thus equivalent for the reaction system in Eq. (34). This is of

course a general result, i.e., for chemical reaction systems with

elementary reactions and mass-action kinetics (i.e., reactions

up to order two and polynomial propensity functions), the

second-order normal MA and second-order CMN-MA are

identical.

We thus analyse the normal, Poisson, and log-normal MA

here.

1. Validity

Qualitatively, we find a similar behaviour for the three

different MA methods. As for the bistable system analysed

in Ref. 19 using the normal MA, we find that there exists an

intermediate regime of volumes for the three MAs to be valid,

i.e., they have a single globally attractive positive fixed point,

and we find that the moments become bistable (and hence

physically meaningless) above this regime. Interestingly,

however, we find that when increasing the volume further

all three MAs become tristable, i.e., have three positive stable

fixed points, see Figure 1. This means the MAs have more

positive stable fixed points than the rate equations here, the

latter being bistable independent of the volume, and thus the

MAs have no physical interpretation anymore whatsoever. In

Ref. 7, it has been shown that for monostable systems, the

normal MA becomes equivalent to the rate equations for the

means in the limit of large volumes. One can easily show that

the result also applies to the Poisson, log-normal, and CMN-

MA. Here, we find numerically that the tristability remains

for volumes up to 1010, which suggests that the convergence

of the MAs to the REs in the limit of large volumes does not

hold for deterministic bistable systems. Figure 2 shows the

time trajectories for the MAs for different volumes, verifying

that the MAs can indeed have one, two, or three positive stable

fixed points depending on the volume.
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FIG. 2. Time trajectories for the bistable reaction system in Eqs. (34)-(36) for different volumes V and different initial conditions for the parameters

k0= 1, k1= 1, k2= 5, k3= 0.2, and k4= 5. The dashed and dotted lines indicate the respective positive and stable fixed points of species X and Y . Depending on

the volume, the MAs have one, two, or three positive stable fixed points.

The table in Figure 3 lists the endpoints of the validity

interval for the MAs for ten different parameter sets on

logarithmic scale. Fig. 3 visualises these. We observe that the

log-normal MA has a much smaller validity range than the

other two MAs. The normal and Poisson MA most of the

time have a similar upper bound while the lower bound is

generally smaller for the Poisson MA. We thus find that in

terms of validity, the log-normal MA performs significantly

worse than the other two MA schemes for the reaction system

studied here.

2. Accuracy

We next compare the prediction of the different MA

schemes and of the rate equations for the mean copy numbers

of species X and species Y in steady state with results

obtained from exact stochastic simulations using the SSA.

The latter have been performed using the software package

iNA.27 Figure 4 shows the mean values of species X as a

function of the volume for the ten parameter sets used in

Figure 3. The corresponding figures for species Y look very

similar and are not shown here. The result is divided by

the corresponding SSA result. The range of volumes shown

corresponds roughly to the validity range of the normal and

Poisson MA. We observe here again that the MAs become

bistable for larger volumes and that the validity interval of the

log-normal MA is significantly smaller than the one of the

normal and Poisson MA.

We find that the MAs overestimate the mean copy

numbers and that the deviation from the SSA result increases

for decreasing volumes. Where two or all three MAs are

valid and thus comparable, the accuracy is similar with the

log-normal MA being slightly more accurate than the other

two and the normal MA being slightly more inaccurate than

the Poisson MA. Note, however, that for most parameter sets,

the log-normal MA’s range of validity is significantly smaller

than that of the other MAs.

For large volumes, the MAs have two positive stable

fixed points converging to the two positive stable fixed points

of the rate equations. The exact result obtained from SSA

simulations agrees with the larger of these two fixed points.

The third fixed point of the MAs for large volumes seems to

always lie between the two of the rate equations. While it lies

exactly in the middle for the normal and Poisson MA, it is

very close to the lower one for the log-normal MA. We find

the same behaviour for all parameter sets. Note though that

this cannot be seen for all parameter sets in Figure 4 due to

the small plot range.

C. A deterministic ultrasensitive system

Next, we study an enzyme catalysed protein-

phosphorylation system with the reactions

P + E1

a1
−−−−−−−⇀↽−−−−−−−

d1

E1P
k1

−−−−−−→ P∗ + E1, (37)

P∗ + E2

a2
−−−−−−−⇀↽−−−−−−−

d2

E2P∗
k2

−−−−−−→ P + E2. (38)

This system shows ultrasensitivity for certain parameter

values,28 namely, when the enzymes are saturated, i.e., most

enzymes are on average in the complex state. Here, P and

P∗ denote the non-phosphorylated and phosphorylated forms

of the protein, respectively, E1 and E2 the phosphorylating

and de-phosphorylating enzymes, respectively, and E1P and

E2P∗ the respective protein-enzyme-complexes. In Ref. 28, the

authors studied the dependence of the ratio of phosphorylated

to non-phosphorylated proteins as a function of w1/w2 with

w1 = k1E t
1

and w2 = k2E t
2

in a deterministic system, where
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FIG. 3. Top: Range of validity in the volume V on logarithmic scale for different parameter sets for the bistable reaction system in Eqs. (34)-(36). V1 and V2

denote the left and right end of the validity interval, respectively. We have only checked for fixed points down to a volume of e−11. The term “<−11” thus

indicates that the lower boundary of the corresponding validity interval is smaller than e−11. Bottom: Visualisation of the validity interval on logarithmic scale

in the volume for the same ten parameter sets as used in the table. For a lower bound smaller than e−11, the lines have an arrow pointing to the left. We find that

the log-normal MA’s range of validity is significantly smaller than that of the normal and Poisson MAs.

E t
1

and E t
2

are the conserved total numbers of the respective

enzymes in the system. Assuming a Hill-type response curve,

the corresponding Hill coefficient is often used to quantify

the steepness of the response. The authors here speak of an

“ultrasensitive response” whenever the response is steeper

than a Michaelis-Menten response, i.e., has a Hill coefficient

of larger than unity.

We study here the effect of noise on the ultrasensitive

response and again compare moment-closure results with SSA

simulations. The latter have been performed using the software

package iNA.27 First, however, we describe a surprising non-

uniqueness of the Poisson and log-normal MA and study the

validity of the different MA schemes. As we have explained

below Eq. (36), the second-order normal and second-order

CMM-MA are identical for elementary reaction systems with

mass-action kinetics. Since this is the case here, we study the

normal, Poisson, and log-normal MAs in the following.

1. Non-uniqueness for reduced systems

The studied reaction system in Eqs. (37) and (38) has six

species: P,P∗,E1,E2,E1P,E2P∗, and three conservation laws:

the total number of proteins and the total numbers of the

respective enzymes, i.e., P + P∗ + E1P + E2P∗, E1 + E1P, and

E2 + E2P∗ are conserved, where we use the symbol for the

species also as the corresponding molecule number variable

in a slight abuse of notation. The conservation laws allow one

to reduce the system to three variables, which is obviously
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FIG. 4. Mean value of species X in steady state obtained from moment-closures and rate equations as a function of volume V on logarithmic scale for the

bistable reaction system in Eqs. (34)-(36). The parameter sets are the same as in the table in Figure 3. The values are divided by the corresponding result

obtained from stochastic simulations using the SSA. The horizontal dashed line thus indicates the exact value. For the SSA result, 104 samples were simulated

for each point.

of computational advantage. There are two ways of obtaining

the reduced moment-closure equations: arguably, the standard

approach would be to start from the reduced CME, compute

the reduced moment equations, and subsequently apply the

moment closure. Alternatively, one may start from the full

CME, compute the moment-closure equations, and afterwards

reduce the equations by taking the conservation laws into

account. One may expect, or require, the two approaches

for a sensible moment-closure scheme to be equivalent. It is

easy to show that this is indeed the case for the normal and

CMN moment-closures. However, we find here that this is

not the case for the Poisson and log-normal MA. We thus

conclude that the Poisson and log-normal MAs are generally

not uniquely defined if one reduces a system according to

conservation laws in molecule numbers, a clear flaw of

these methods. The reason for the non-uniqueness of the

MA equations is that while the moment-equations depend on

diagonal higher-order moments if one starts from a reduced

CME, no such dependence is found if the MA equations are

derived from the full CME. While the normal and CMN-MAs

treat diagonal and non-diagonal moments equivalently, the

Poisson and log-normal MAs do not do so, thus leading to the

issue of non-uniqueness. We explain this in more detail in the

Appendix.

One consequence of this non-uniqueness is that certain

symmetries of the system are broken. Looking at the reaction

system in Eqs. (37) and (38), one sees that the system

is symmetric under exchanging species labels and reaction

constants, P ↔ P∗ and E1↔ E2 and a1↔ a2,d1↔ d2, and

k1↔ k2. This means that for a1 = a2,d1 = d2, and k1 = k2, the

mean values of P and P∗, E1 and E2, as well as E1P and E2P∗

should be, respectively, equal. We find that this is indeed the

case for the normal and CMN moment-closure, and also for

the Poisson and log-normal MAs if one derives the equations

starting from the full CME. If one applies the Poisson and

log-normal MAs to the reduced CME, however, they do break

the symmetry.

We conclude that one should be careful when using the

Poisson or log-normal MA for systems with conservation

laws. In case the MAs are non-unique, it is favourable to first

derive the MAs before applying the conservation laws. In the

following, we will study the opposite cases, i.e., if the Poisson

and log-normal MA are applied to the reduced CME, which

would be normally the standard approach.

2. Validity

As in Ref. 28, we define w1 = k1E t
1

and w2 = k2E t
2
. The

authors in Ref. 28 studied the dependence of the fraction of

the protein number in the phosphorylated state as a function

of w1/w2 using deterministic rate equations. The authors

call this response “ultrasensitive” whenever it is steeper than

Michaelis-Menten response, meaning a Hill-coefficient larger

than one. Here, we would like to study the effect of noise on

the response and investigate how different moment-closures

perform for this system. To this end, we compute the mean

value of the phosphorylated protein P∗ in steady state using

the different methods of the protein on a grid in w1/w2 with

all the other parameters fixed and fit a Hill function (w1/w2)
nH/

(Kd + (w1/w2)
nH) to the result, where Kd and nH are the

dissociation constant and the Hill-coefficient, respectively.

We find that the normal MA and rate equations are valid

for all w1/w2 for all chosen parameter sets, whereas the Poisson

and log-normal MA are not for certain parameter regimes,

i.e., they do not always have a positive stable fixed point.

Figure 5 visualises the fitting procedure for one parameter set.

While the rate equations and normal MA are stable on the

whole considered response region in w1/w2, the Poisson and
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FIG. 5. Fraction of mean phosphorylated protein in

steady state as a function of w1/w2 for the protein phos-

phorylation system in Eqs. (37) and (38). The blue and

orange curves are Hill-functions fitted to the points of the

RE and normal MA, respectively. The Poisson and log-

normal MAs have only few positive stable fixed points

in the response region making a sensible fit impossible.

The used parameters are a1= a2= 5,d1= d2= 1, k1=

k2= 1,V = 1,E t
1
= E t

2
= 7, and Pt = 15, where E t

1
,E t

2
,

and Pt are the total number of enzyme E1, the total num-

ber of enzyme E2, and the total number of proteins in

the system, respectively. For the SSA result, 104 samples

were simulated for each point.

log-normal MAs are unstable for the major part of the region.

We obtain only one and two values in the response region,

respectively. The Poisson and log-normal MAs thus do not

allow a sensible estimate of the response-steepness via a fit of

a Hill-function.

Figure 6 visualises the validity of the rate equations,

normal, Poisson and log-normal MAs as a function of the total

enzyme number and w1/w2 for five different parameter sets.

The figure indicates where the methods have a positive stable

fixed point and where not. In addition, when a positive stable

fixed point exists, we solve the time-dependent MAs with the

initial condition being the fixed point of the rate equations

for the corresponding parameters, and the figure indicates

the regions where these diverge despite the existence of a

FIG. 6. Validity of different MAs as a function of the total enzyme numbers E t
1
= E t

2
= E t and of w1/w2 for the protein phosphorylation system in Eqs. (37) and

(38) for five different parameter sets. If we write (a,d, k,Pt,V ) with a1= a2= a, d1= d2= d, and k1= k2= k , where Pt is the total protein number and V is

the volume, the parameter sets are given by Set 1= (1,1,1,25,0.3), Set 2= (5,1,1,15,1), Set 3= (5,2,2,25,1), Set 4= (10,1,1,25,1), and Set 5= (1,1,1,20,1).

The blue regions indicate that the methods have no positive stable fixed point. The yellow regions indicate where a positive stable fixed points exists and the

time trajectories converge with initial condition being the fixed point of the rate equations. The green regions show where the time trajectories diverge despite

the existence of a positive stable fixed point, which means that the fixed point is only locally attractive.
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positive stable fixed point. This thus indicates the sensitivity

of the different methods to initial conditions. While the rate

equations and normal MA are stable and the time trajectories

converge everywhere, the Poisson and log-normal MA do so

only in subregions of the parameter space. Note that we do

not make any statements about unstable fixed points here

since we investigated the convergence of time-trajectories

only for one fixed initial condition. The divergence of the

time-trajectories in the green region suggests that there exists

an unstable positive fixed point, but the same might be true

in some parts of the yellow region despite the convergence of

time-trajectories.

In conclusion, we find that the normal MA performs

significantly better than the Poisson and log-normal MA for

the studied system in terms of validity.

3. Accuracy

Next, we compare the Hill coefficient obtained from

the different methods with the results obtained from SSA

simulations as a function of the total enzyme number E t for

the five parameter sets defined in the caption of Figure 6.

The SSA simulations were performed using the software

package iNA.27 If a method did not allow to estimate a Hill

coefficient for some E t, we set the corresponding value to

zero. Figure 7 illustrates the results. First of all, we find that

the rate equations overestimate the Hill coefficient for all E t,

with a larger deviation for small E t, which means that the

noise in the system significantly reduces the steepness of the

response. For small E t, the Hill coefficient estimated from the

rate equations becomes up to four times larger then the SSA

result (Set 4 in Figure 7). Whenever they allow to estimate

a Hill coefficient, the moment-closure approximations are

more accurate than the rate equations. While the normal and

Poisson MAs underestimate the response, i.e., overestimate the

influence of noise, the log-normal overestimates the response.

Accuracy-wise, the three methods perform very similarly,

the Poisson MA perhaps being slightly more accurate than

the other two. However, this slightly higher accuracy of the

Poisson MA does not overcome its disadvantage of instability

described in Section III C 2.

D. A deterministic oscillatory system

Next, we study the Brusselator, a well known determin-

istic oscillating chemical system given by29,30

2X + Y
c1

−−−−−−→ 3X, X
c2

−−−−−−→ Y, ∅
c3

−−−−−−⇀↽−−−−−−
c4

X. (39)

Depending on the parameter values, the deterministic rate

equations show sustained oscillations, damped oscillations, or

overdamped oscillations. Single SSA trajectories may show

sustained oscillations, while ensemble averages of the SSA

always show damped or overdamped oscillations due to the

dephasing of independent trajectories. Therefore, a MA can

only be interpreted as a valid moment approximation if its

trajectories show damped or no oscillations. In Ref. 19, it has

been shown that for a parameter set for which the system in

Eq. (39) is a deterministic oscillator, the normal MA is valid

only for an intermediate range of volumes, with unphysical

sustained oscillatory trajectories for larger volumes and either

oscillatory or otherwise unphysical trajectories (i.e., divergent

or negative trajectories) for smaller volumes. Here, we want

to first study the validity of the different MA methods for

different parameter sets, and then analyse their behaviour if

the system becomes entrained by an external force. Note

that the first reaction in (39) is trimolecular, which means

that the corresponding propensity function is of third order

FIG. 7. The Hill coefficient as a function of total enzyme number for the five different parameter sets introduced in Figure 6 for the protein phosphorylation

system in Eqs. (37) and (38). The SSA result is shown as a solid black line. As explained in the main text, for some parameter values, the Poisson and log-normal

MA do not allow to estimate a Hill function due to instability. In such cases, we set the Hill coefficient to zero. For the SSA result 104 samples were simulated

for each point.
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FIG. 8. Time trajectories of the moments of species X (blue line) andY (orange line) for several volumes for the Brusselator system in Eq. (39) for the parameters

(c1,c2,c3,c4)= (0.9,2,1,1). The blue and red curves denote the mean of species X and species Y , respectively. While the normal, Poisson, and CMN-MAs give

physically meaningful results, i.e., damped oscillations, for an intermediate range of volumes, the log-normal MA fails to do so for all volumes. To minimise

the possibility of numerical effects, we computed the shown results using the ODE integration methods “Adams,” “Backward Differentiation Formula,” “explicit

Runge Kutta,” “implicit Runge Kutta,” “explicit midpoint,” and “stiffness switching” and varied the step sizes over several orders or magnitude, all giving the

same results.

in the molecule numbers (cf. Eq. (4)). The time-evolution

equation of the second-order moments thus depends on the

third and fourth-order moments (cf. Eq. (7)). Therefore, since

the fourth-order central moments and fourth-order cumulants

are not identical (in contrast to the third-order ones), the

normal and CMN-MAs are not equivalent for the reaction

system in (39) and we thus analyse all four MAs separately in

the following.

1. Validity

We study here the validity of the MAs for three different

parameter sets defined in the caption of Figure 9. Similar

to the findings in Ref. 19, we find that all four MAs are

only valid on an intermediate regime of volumes. However,

unexpectedly, for the log-normal MA, we cannot find such a

regime. Figure 8 shows the time trajectories of the moments

for the different MAs for four different volumes for one fixed

parameter set. While the normal, Poisson, and CMN-MAs

diverge for small volumes, are monostable for intermediate

volumes, and show sustained oscillations for large volumes,

the log-normal switches directly from divergent to oscillatory

behaviour. We estimated the range of validity for the three

different parameter sets for fixed initial conditions of unity for

the mean values of both species and zero variance. Figure 9

shows the ranges of validity on logarithmic scale in the

volume. While the Poisson and normal MA have a finite range

of volumes where they lead to physically meaningful results

for all parameter sets, the CMN-MA has a vanishing one for

one parameter set and the log-normal for all parameter sets.

FIG. 9. Range of validity for the Brusselator system in Eq. (39) for three different parameter sets as a function of the volume V in logarithmic scale. The used

parameters for (c1,c2,c3,c4) are Set 1= (1,3,0.9,1), Set 2= (0.9,2,1,1), and Set 3= (1,2,1,1.5). If the range of validity has length zero, we plot a single point at

zero. By “range of validity” we mean the range of volumes for which the MAs give physically meaningful (i.e., non-negative and converging) time-trajectories.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.215.250.95 On: Thu, 17 Dec 2015 16:23:50



185101-12 Schnoerr, Sanguinetti, and Grima J. Chem. Phys. 143, 185101 (2015)

FIG. 10. Time trajectories for the Brusselator system in Eq. (39) for the three parameter sets defined in the caption of Figure 9 with entrainment for two different

volumes for each parameter set. The blue and orange lines denote the mean values of species X and Y , respectively. The external input gets switched on at time

t = 0 and switched off after ten oscillation periods of the deterministic system (which depends on the given parameter set). While the normal and Poisson MAs

give physically meaningful results (i.e., non-negative and converging time-trajectories) for an intermediate range of volumes, the log-normal and CMN-MAs

fail to do so for all volumes. For the Extrande result, we simulated 105 samples for Set 1 and 104 samples for Set 2 and Set 3, respectively.

2. System with entrainment

In systems biology, it is frequently of interest to

study systems where one or several propensity functions

are time-dependent. For example, circadian oscillators are

often modelled by a deterministic oscillatory system with an

imposed periodic propensity function modelling the influence

of an external light input.31–33 Here, we want to study the

performance of the different MA schemes for such a system

in the stochastic setting. To this end, we modify the rate

constant c2 of the second reaction in Eq. (39) such that it

varies over time from 0.5 to 1.5 times the chosen mean value

in a sinusoidal way, i.e., c2(t) = c0
2
× (1 + 1

2
sin(ωt)), where

c0
2

is the fixed mean value of c2 and the frequency ω of

the sine curve is chosen to be the oscillation frequency of

the deterministic system. After ten periods, we switch off

the time dependence and fix c2 to its mean value. Since

we have a time-dependent propensity function here, we

cannot use the SSA to simulate the system. We therefore

use Extrande, a recently developed exact MC method to

sample from the solution of CMEs with time-dependent rate

functions.34

Figure 10 shows the time trajectories for the rate

equations, Extrande simulations, and the different MA

methods. We find that the rate equations show sustained

oscillations after entrainment, while the Extrande results show

damped or overdamped oscillations. The normal and Poisson

MA behave qualitatively the same way as the Extrande

and are thus valid moment approximations for the chosen

parameter values. Quantitatively they differ quite significantly

from the Extrande result, however. They underestimate the

mean values and show oscillations with larger amplitudes

during entrainment and a weaker damping after entrainment.

Looking at Figure 10, one finds that these effects are stronger

for the respective smaller volume for each parameter set. The

normal and Poisson MA thus underestimate the influence of

noise here. The log-normal and CMN-MAs fail everywhere

to provide a physical result. For the former, this may be

expected, since it also failed to do so in the case without

entrainment. Interestingly, however, the CMN-MA is invalid

even for parameters for which it is valid in the case without

external input. Overall, the normal and Poisson MA seem to

perform significantly better for this system than the log-normal

and CMN-MA.
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IV. MOCA

The Mathematica package MOCA implements the

investigated four moment-closure approximations, as well as

deterministic rate equations, in a graphical user interface and

is freely available in the supplementary material.35 In contrast

to other available moment-closure software packages,20–22

MOCA does not only derive the closure equations but also

automatically performs numerical analysis of the derived

equations, making the methods available to non-expert users.

The results are automatically visualised and can be exported

to various formats.

A. Applicability

MOCA extends the applicability over existing moment-

closure packages to the following:

• non-polynomial propensity functions;

• time-dependent propensities functions;

• propensities defined on discrete time points (e.g., meas-

ured fluctuating external parameter).

Note that while non-polynomial propensities can often give a

useful description of a system, they should really be interpreted

as an effective approximate description of a set of elementary

reactions, valid only under certain conditions.36 For these

types of propensities, the software applies a Taylor expansion

of the propensity around the mean value to a specified order

as proposed in Ref. 11. These different features make MOCA

applicable to virtually any reaction system with arbitrary

propensity functions.

In addition to the different moment-closure methods

described above, MOCA allows the user to define his own

moment-closure method, providing an easy way to develop

novel moment-closure schemes.

B. User input

To use the package, the file MOCA.m needs to be

placed in the same folder as the Mathematica notebook

that will be used for the analysis. Figure 11 shows an

example input for the corresponding notebook for the reaction

system defined in (17). The first two lines, which set the

path and load the package, respectively, have to be executed

without any modification. Next, the number of species and

the stoichiometric matrix have to be specified and assigned to

the variables nS and stochMatrix, respectively, as depicted in

the third and fourth lines in Figure 11. The propensity vector

and stoichiometric matrix are given in Eqs. (18) and (19),

respectively. The number of species nS has to be equal to the

number of rows of stochMatrix. Next, the parameter vector

parameters and the propensity vector called propensity need

to be specified, as done in the fifth and sixth input lines in

Figure 11.

The species variables have to be denoted by an “x” with

the species index as a subscript. All terms in the propensity

function that are not species variables or numerical values

have to be listed as parameter in parameters. This is all

the input needed if dealing with time-independent propensity

FIG. 11. MOCA input for time-independent propensity functions for the

example system in (17). The first two lines do not need to be modified. They

set the directory of the file and load the package MOCA.m. The following

lines define the number of species, stoichiometric matrix, parameters, and

propensity functions of the system, respectively. Note that we have absorbed

the dependence of the rate functions on the volume V and the rate constants

ki into the parameters ci as defined below Eq. (18).

functions and when using the GUI. Note that the propensities

do not need to be of mass-action, i.e., polynomial type, they

can have any analytical form.

For using the coding version of MOCA, deterministic rate

equations, and time-dependent propensity functions, as well as

for the definition of moment-closures, see the corresponding

tutorial files in the supplementary material.35

C. Analysis — The graphical user interface

There are four functions available to be used within a

GUI. They simply need to be typed into the notebook and

evaluated to open the corresponding GUI:

• DeriveEquations: derives the MA equations for central

moments for general parameters and allows to assign

numerical values to the parameters.

• SteadyState: numerically searches for positive and

stable fixed points of the MA equations.

• SteadyStateVaryParameter: same as SteadyState but

with one parameter varied over a grid specified by the

user. The resulting table can be exported into a “CSV”

(“Comma-separated values”) file.

• TimeTrajectory: solves MA equations numerically

in time for numerical parameter values and plots the

result. The result can be exported as a figure to various

formats or evaluated on a grid in time and stored in a

“CSV” file.

Figure 12 shows the GUI that appears after typing and

evaluating DeriveEquations. The user can interactively

choose a moment-closure method, the closure order as well

as the expansion order. By “expansion order” we mean the

expansion of the propensity functions around the mean value

as proposed in Ref. 11. This is only necessary for non-

polynomial rate functions. For exclusively polynomial rate

functions, the expansion does not make a difference as

long as its order is equal to or higher than the maximum

order of the propensity polynomials. Finally, it is possible

to assign numerical values to the parameters. The equations

only become updated when the small “update bottom” in the

top right corner is clicked. This is also true for the functions

described in the following, i.e., changes in the input are only

applied after clicking the “update bottom.”
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FIG. 12. GUI for deriving MA equations with MOCA for the reaction system in (17). After defining the system as in Figure 11, the command SteadyState has

to be evaluated in the notebook for the GUI to appear. The user can choose the closure method, closure order, expansion order, and specify parameter values.

For changes to apply, the user needs to press the little “update button” in the top right corner.

The function SteadyState allows to numerically compute

positive stable fixed points of the MA equations. It has

the same input parameters as the function DeriveEquations

described before, with the difference that the parameters have

an initial numerical value. For some parameter values, the

method cannot find a positive and stable fixed point. However,

this does not necessarily mean that the numerical algorithm

fails. In Ref. 19, it has recently been shown that MA equations

can indeed have no positive and stable fixed point for certain

bimolecular reaction systems (even though the SSA and rate

equations do have positive stable fixed points). The authors

also showed that MAs can have more than one positive stable

fixed point, in which case SteadyState function may give

more than one result.

The function SteadyStateVaryParameter also searches

for positive stable fixed points but varies a user specified

parameter over a user specified grid. The corresponding GUI

is shown in Figure 13. The resulting table can be exported

to a text file in “CSV” format to the same folder where the

notebook is located.

The final function TimeTrajectory solves the MA

equations numerically in time and plots the result. Figure 14

shows the corresponding GUI. In addition to method

specifications and values for parameters, the user can

specify initial conditions for the mean values of the species

(higher order central moments are set to zero initially,

i.e., deterministic initial conditions), the final time point

and the plot order specifying up to which order moments

should be plotted. The result can either be exported as a

figure to various formats or into a “CSV” text file where the

solution is evaluated on a time grid with user specified time

spacing dt.

FIG. 13. GUI corresponding to the command SteadyStateVaryParameter in MOCA for the reaction system in (17). The table shows positive stable fixed

points obtained by varying one parameter over a specified grid.
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FIG. 14. GUI for solving and visualising the MA equations numerically in time using the TimeTrajectory command of MOCA. In addition to the method

specifications, the user can specify initial conditions for the mean values, the final time point as well as up to which order moments should be plotted. The result

can be exported as a figure or into a “CSV” file evaluated on a time grid.

D. Coding commands

The GUI commands described above are also available

as Mathematica functions allowing more experienced

Mathematica users a more flexible application of the methods.

See the example files in the supplementary material35 for

details on how to use these functions.

V. SUMMARY AND CONCLUSION

In this paper, we compared the second-order normal,

Poisson, log-normal, and CMN-MAs for several reaction

systems with respect to their qualitative behaviour (if they

give physically meaningful results) and their quantitative

accuracy (how well they approximate results obtained from

exact stochastic simulations) whenever they give physically

meaningful results. While we found no significant difference

in quantitative accuracy between the four MAs, the ranges

in parameter space for which the MAs gave physically

meaningful results were significantly larger for the normal

MA suggesting that the normal MA is favourable over the

other studied MAs. We emphasise that the presented results

are exclusively based on numerical analysis and although we

confirmed the results for a wide range of parameter sets and

several example systems, we cannot expect them to hold in

general for all parameter sets or chemical reaction systems. In

Ref. 18, for example, it has been found for a single parameter

set for one chemical reaction system that the log-normal MA

is significantly more accurate than the normal MA. However,

for non-linear systems, our results suggest that the MAs give

physically meaningful results only above a certain critical

volume if the system is deterministically monostable, and only

for intermediate volumes if the system is not deterministically

monostable.

By “physically meaningful” we mean the validity

conditions proposed in Ref. 19 which are the following:

(i) the mean values and even central moments of a system

should stay non-negative and finite for all times and they

should converge to a steady state whenever the CME has a

steady state solution, (ii) the moments are unique in the sense

that the same steady-state moments can be reached from

all initial conditions, and (iii) the moments do not exhibit

sustained oscillations in the limit of long times (unless there

is an external time-dependent input). In Ref. 19, it has been

found that the normal MA does not satisfy (i) for small

volumes for several non-linear reaction systems, and that it

does not satisfy conditions (ii) and (iii) for large volumes

for deterministic bistable and oscillatory chemical systems,

respectively.

Here, we performed a similar analysis for four different

MA methods. We first studied a deterministically bistable

system, i.e., a system whose rate equations have two positive

stable fixed points. Interestingly, we find that the MAs have

three positive stable fixed points for large volumes, thus
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allowing no physical interpretation. Surprisingly, we found

that, for an enzyme-catalysed reaction, the Poisson and log-

normal MAs were not uniquely defined. Our analysis suggests

that this may indeed be generally the case for systems with

conservation laws, a flaw not shared by the other two MAs.

Finally, we studied a deterministically oscillatory system with

and without an external periodic input. In both cases, we

found that the normal and Poisson MAs are valid only for an

intermediate range of volumes, becoming unstable for smaller

volumes and undergoing unphysical sustained oscillations

for larger volumes. Curiously, the CMN-MA behaves like

this only for some of the studied parameter sets, and the

log-normal for none of these, i.e., there is no range of

volumes where the latter two MAs give physically meaningful

results.

In conclusion, our results taken together do not favour

one MA over the others in terms of accuracy, but suggest that

the normal MA is favourable over the other MAs, in the sense

that the range of parameter space where it gives physically

meaningful results is considerably larger than that of the other

MAs.

Finally, we presented the software package MOCA which

was used for the numerical analysis of the various MAs.

MOCA allows one to derive and analyse moment-closure

approximations for systems with polynomial, non-polynomial

as well as time-dependent propensities. MOCA implements

the “normal” or “cumulant-neglect,” the “Poisson,” the “log-

normal,” and the “CMN” closures as well as user-defined

moment-closure schemes and automatises the numerical

analysis. It allows non-expert users to apply moment-closure

methods in a user-friendly graphical user interface.
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APPENDIX: NON-UNIQUENESS FOR CHEMICAL
SYSTEMS WITH CONSERVATION LAWS

Here, we investigate in detail, the non-uniqueness of the

Poisson and log-normal MAs for systems with conservation

laws. To this end, we consider the simple reversible reaction

system,

A + B
k1

−−−−−−⇀↽−−−−−−
k2

C. (A1)

We now compute the MA equations by applying the

conservation laws of the system once after, and once before

closing the equations.

1. Closing the equations first

This approach involves obtaining the moment equations

from the CME and subsequently imposing the conservation

laws on the resulting moment equations. The stoichiometric

matrix S and propensity functions f1 and f2 of the two

elementary reactions for this system read (cf. Eq. (3))

S =
*...
,

−1 1

−1 1

1 −1

+///
-
, (A2)

f1(n1,n2,n3) =
k1

V
n1n2, (A3)

f2(n1,n2,n3) = k2n3, (A4)

where n1, n2, and n3 denote the copy numbers of species

A, B, and C, respectively. The corresponding time-evolution

equations for the first and second-order moments can be

obtained from Eqs. (6) and (7). For y1 = ⟨n1⟩ and y1,1 = ⟨n2
1
⟩,

for example, they read

∂t y1 = −
k1

V
y1,2 + k2y3, (A5)

∂t y1,1 = −2
k1

V
y1,1,2 + 2k2y1,3 +

k1

V
y1,2 + k2y3. (A6)

Note that due to the term n1n2 in f1, the equation for

y1,1 depends on the third-order moment y1,1,2, but not on

any diagonal third-order moment, i.e., not on y1,1,1, y2,2,2,

or y3,3,3. The same is of course true for the equations

of the other second-order moments: they do not depend

on a diagonal third-order moment. This means that the

second-order normal and Poisson MAs are equivalent, since

they differ only in their expressions for diagonal moments

(cf. Eqs. (12)-(14)). The corresponding second-order normal

and Poisson MAs for y1 and y1,1 are obtained by setting the

corresponding third-order cumulant c1,1,2 to zero which leads

to y1,1,2 = 2y1y1,2 + y2y1,1 − 2y2
1
y2 and thus gives

∂t y1 = −
k1

V
y1,2 + k2y3, (A7)

∂t y1,1 = −4
k1

V
y1y1,2 − 2

k1

V
y2y1,1 + 4

k1

V
y2

1 y2

+ 2k2y1,3 +
k1

V
y1,2 + k2y3, (A8)

and similarly for the other first and second-order moments.

Note that the system has two conservation laws,

n1 + n3 = At = const., (A9)

n2 + n3 = Bt = const. (A10)

To simplify the following equations, let us assume At = Bt,

which implies n1 = n2. The system of moment equations of

three variables can thus be reduced to a system with only

one variable, since all moments of first and second order can

be expressed in terms of y1 and y1,1 using Eqs. (A9) and

(A10). For example, we have y3 = ⟨n3⟩ = ⟨At
− n1⟩ = At

− y1

and y1,2 = ⟨n1n2⟩ = ⟨n1n1⟩ = y1,1 and similarly for the other

first and second-order moments. The resulting equations for

y1 and y1,1 are thus closed and read

∂t y1 = −
k1

V
y1,1 + k2(A

t
− y1), (A11)

∂t y1,1 = −6
k1

V
y1y1,1 + 4

k1

V
y3

1 + 2k2(A
t y1 − y1,1)

+
k1

V
y1,1 + k2(A

t
− y1). (A12)

Note that these are the resulting second-order MA equations

for both the normal and the Poisson MA.
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2. Applying the conservation laws first

Alternatively, we can start from the reduced CME with

species B and C eliminated, whose stoichiometric matrix and

propensity functions are given by

S =
(

−1 1
)

, (A13)

f1(n1) =
k1

V
n2

1, (A14)

f2(n1) = k2(A
t
− n1). (A15)

Note that due to the term n2
1
, the time-evolution equation

for the second-order moment y1,1 depends on the diagonal

third-order moment y1,1,1 (all moments are diagonal here of

course, since we deal with a system with only one variable).

The corresponding equations for the first two moments can be

obtained using Eqs. (6) and (7) and read

∂t y1 = −
k1

V
y1,1 + k2(A

t
− y1), (A16)

∂t y1,1 = −2
k1

V
y1,1,1 + 2k2(A

t y1 − y1,1)

+
k1

V
y1,1 + k2(A

t
− y1). (A17)

For closing these equations to second order, we need to express

y1,1,1 in terms of y1 and y1,1. The corresponding expression

is now not the same anymore for the normal and Poisson

MAs. For the normal MA, we have y1,1,1 = 3y1y1,1 − 2y3
1
.

Inserting the latter into Eq. (A17), one obtains the same result

as in Eqs. (A11) and (A12) which we obtained by applying the

conservation laws after closing the equations. In contrast, if we

apply the Poisson MA, which sets y1,1,1 = 3y1y1,1 − 2y3
1
+ y1,

the resulting equation for y1,1 is not equal to Eq. (A12). The

reason for this is that the Poisson MA does not treat diagonal

and non-diagonal moments equivalently. Here, this means that

the replacements of y1,1,1 and y1,1,2 differ from each other if

one sets the index 2 to 1 in the expression for y1,1,2. Since

the same is true for the log-normal MA, the latter also gives

differing results depending if the equations are closed before

or after the conservation laws are applied. Since the normal

and CMN-MA do treat diagonal and non-diagonal moments

equivalently (so the expressions for y1,1,1 and y1,1,2 are the

same after setting 2 to 1), these MAs do not suffer from this

flaw.
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