
Su, M. et al.   1

Comparison of Different Subgrid-Scale Models of Large Eddy 
Simulation for Indoor Airflow Modeling 

 
Mingde Su 
Senior Post-Doctoral Fellow, Building Technology Program, Massachusetts Institute of 
Technology, Cambridge, MA 02139-4307 
 
Qingyan Chen* 
Associate Professor, Building Technology Program, Massachusetts Institute of Technology, 
Cambridge, MA 02139-4307, Phone: (617) 253-7714, Fax: (617) 253-6152, Email: 
qchen@mit.edu 
 
Che-Ming Chiang 
Professor 
Department of Architecture, National Cheng-Kung University, Tainan, 701, Taiwan 

 
 
The Smagorinsky subgrid-scale model, a dynamic subgrid-scale model, and a stimulated 
subgrid-scale model have been used in a large eddy simulation (LES) program to compute 
airflow in a room. A fast Fourier transformation (FFT) method and a conventional iteration 
method were used in solving the Poisson equation. The predicted distributions of indoor air 
velocity, temperature, and contaminant concentrations show that the three subgrid-scale 
models can produce acceptable results for indoor environment design. The dynamic and 
stimulated models performed slightly better than the Smagorinsky model. The use of FFT can 
significantly reduce the computing time. LES is a tool of the next generation of indoor air 
distribution design. 
 
1.  Introduction 
 

Computational Fluid Dynamics (CFD) can be used to determine turbulent fluid flow, 
heat transfer, and the transport of chemical species for indoor environment design, allowing 
for the determination of thermal comfort parameters and indoor air quality (Chen [1]). The 
numerical simulation of turbulent flow in an indoor space can be divided into three types: 
direct numerical simulation (DNS), Reynolds Averaged Navier-Stokes (RANS) equation 
modeling, and Large Eddy Simulation (LES). 

DNS solves the Navier–Stokes equations for flow motion numerically without using a 
turbulence model, producing a very reliable simulation. Turbulent flow consists of vortices 
with various scales, where the ratio between the largest scale and the smallest scale is 
approximately equal to 4/3Re  (Lesieur [2]). In order to describe the various scales of the 
vortices, the grid number used to solve turbulent flow should be larger than 4/9Re . Since the 
Reynolds number for a typical indoor airflow is 104, the grid number required is on the order 
of one billion. Currently, a super-computer is capable of handling a grid number of up to 108. 
If such a large-capacity computer necessary for modeling indoor airflow were to become 
available, the computing time required to reach a useful solution would be a few months. It is 
therefore impractical at the present time to use DNS as a tool for indoor environment design.  

Most of the current indoor airflow designs solve the RANS equations, because this 
numerical simulation can be performed on a PC. Since the RANS equations require a coarse 
grid system and calculate averaged flow properties (air velocity, temperature, and species 
concentrations, etc.), the computing time required is only a few hours for most indoor 
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environment designs. However, the RANS equations contain unknown Reynolds stresses that 
have to be modeled by a turbulence model. At present, no generic turbulence models are 
available. Most of the developed turbulence models, such as the mixing length theory, one-
equation models, two-equations models, and second moment models, may perform 
reasonably well in one case, but poorly in another [1]. Therefore, the accuracy of the 
numerical results is not guaranteed, and the designers have difficulties in choosing a suitable 
turbulence model. In addition, RANS equation modeling cannot provide instantaneous 
information concerning turbulent flows, which is important for thermal comfort design. 
Therefore, RANS modeling has severe limitations in building environmental design.  

LES divides flow motion into two parts: large-scale and small-scale motions. LES 
directly calculates large-scale motions. Small-scale motions, with sizes normally smaller than 
the numerical grid size, are modeled with subgrid scale models. When the grid size is 
sufficiently small, the impact from the subgrid scale models on the flow motion will be small. 
Furthermore, the subgrid scale models will become general, because the turbulent flow at 
very small scales is nearly isotropic. Therefore, the subgrid scale models generally contain 
fewer empirical coefficients and artificial factors than those used in the turbulence models of 
the RANS equations. Since the flow information at small scales may not be important for 
engineering applications, LES is becoming an important and powerful tool in studying 
turbulence (Piomelli [3], Lesieur and Metais [4]). However, questions still remain as to how 
accurate LES is, and how much computing time LES requires for indoor environment design. 
The accuracy is related to the approximations used in the subgrid scale models, while the 
computing time is influenced by the numerical technique used in solving the transport 
equations.  

Various subgrid scale models have been developed in the last twenty years. Most of 
them are eddy viscosity models, which use the Boussinesq hypothesis to calculate eddy 
viscosity. The most popular models used in engineering can be mainly divided into the 
Smagorinsky model and the dynamic models. Our study focuses on these two types of eddy-
viscosity subgrid scale models as well as on one non-eddy viscosity model. The Smagorinsky 
model uses a constant eddy viscosity coefficient for the entire flow domain. This model is not 
suitable for complex flows, where the coefficient may vary over time and location. The 
dynamic models calculate the eddy viscosity coefficient according to local flow 
characteristics. The dynamic models are more appropriate than the Smagorinsky model. On 
the other hand, Shah and Ferziger [5] developed a non-eddy viscosity model, the stimulated 
small-scale subgrid (SSSS) model, which calculates small-scale motion by using a stimulated 
method based on the operation. Since this model has a strong mathematical and physical 
background, it deserves further attention. However, performing LES needs more demanding 
time than RANS modeling. 

Among the computing time used by LES, solving the Poisson equation with the 
conventional iteration method would consume 90% of the time. In order to reduce the 
computing cost, the fast Fourier transformation (FFT) method is used. In the present paper, 
the FFT method is used for both periodic and Neumann boundary conditions.  

The effort of this investigation is to systematically examine the performance of the 
Smagorinsky sub-grid scale (SSGS) model (Smagorinsky [6]), the Dynamic Sub-Grid Scale 
(DSGS) model (Germano et al. [7]), and the SSSS model for indoor airflow simulation. This 
investigation also compares the computing time required by the conventional iteration 
method and by the FFT method to solve the Poisson equation.  
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2.  Governing Equations and Subgrid Scale Models 
 

Using a spatial filter, LES divides turbulence flow into large-scale and small-scale 
(grid-scale) motions. The filtered flow parameters for large-scale motions can be obtained by 
solving the following filtered Navier-Stokes equations: 
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where  

jijiji υυυυτ −=         (2) 

iiTi TTT υ−υ=         (3) 

iiiC υCCυD −=         (4) 
 
The variables, CjTjji Dand,T,τ , are unknown, and should be calculated by subgrid scale 
models. This study uses three subgrid scale models, the SSGS, DSGS, and SSSS models, in 
order to compare their performance for indoor airflow simulation. The following section 
discusses how jiτ  is modeled. The same concept can be applied to jCjT Dand,T . 
      2.1 Eddy-viscosity models.  The SSGS and DSGS models are eddy viscosity models that 
have a common form: 
 

( )j,iji,jijiTkk
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2
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3
δ
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The eddy-viscosity models are used to determine the eddy-viscosity, Tν . Using the 
equilibrium assumption (that the turbulence in a grid with small scale eddies is in 
equilibrium, and the dissipated energy is implemented from the large scale eddies), the 
following algebraic model can be used to calculate the eddy-viscosity:  
 

( )1/2
jijiji

2
MT SS2S,SSΔCν ==       (6) 

 
where Δ  is the grid scale and is equal to the cubic root of a cell volume, if the grid cell is 
anisotropic. MC  is a parameter in the model. The SSGS and DSGS models are separately 
discussed below. 

a) Smagorinsky subgrid-scale model (SSGS): The widely used Smagorinsky model is 
the simplest subgrid-scale model. The model uses 2

sM CC = , where sC is the Smagorinsky 
coefficient. Normally, Cs is a constant in the range of 0.12 – 0.2. This coefficient must be 
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decreased (Piomelli et al. [8]) for shear flows (e.g. flows near solid boundaries or transitional 
flows) by using the van Driest damping function or the intermittency function.  

b) Dynamic subgrid-scale model (DSGS): Although the ad hoc modification on the 
Smagorinsky coefficient can be used for transitional and turbulent flows, Germano et al. [7] 
concluded that it is impossible to find a single, universal constant for different flows. In some 
cases, the ad hoc modifications are far from desirable. In addition, the Smagorinsky model 
cannot account for the energy transfer from small-scale eddies to large-scale eddies 
(backscatter), which can be significant in many flows. The development of the DSGS model 
reflects significant progress in the subgrid-scale modeling of non-equilibrium flows. The 
DSGS model calculates the model coefficient from the energy of the smallest resolved scale, 
rather than by setting a priori parameters like the Smagorinsky model.  

The DSGS model defines a grid filtering scale, Δ , and a test filtering scale, Δ~  
(Germano et al. [7]). Two filtering functions, G~andG , are used overΔ  and Δ~ , respectively. 

By applying G
~

)GG~(= to the Navier-Stokes equations, the subgrid scale stresses on the test 
filter can be obtained as: 

 

jijiji υ~υ~υυT
~

−=                                                                                    (7) 
 
The first term on the right side of Eq. (7) cannot be directly determined, like the one in Eq. 
(2). However, by applying the basic assumptions of eddy viscosity models, the following is 
true: 
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where C is the same for both filters. As a result, the following is obtained: 
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Averaging the equation along a homogeneous or periodical direction of the flow produces 
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The symbol <> stands for an average over the homogeneous or periodical direction. 
Therefore, the model is only suitable for homogeneous turbulence. Lilly [9] suggested that 
the coefficient can be determined by the least square method. This method uses the following 
equation as an object function: 
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From this, the optimal coefficient becomes 
 

jiji

jiji
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C =                                                                                              (12) 

 
The DSGS model can be applied to various turbulent flows. For better numerical 

stability, it is necessary to smooth the C distribution (Zhang and Chen [10]), and set C to be 
greater than zero. Since the backscatter can only be described with a negative C, there is a 
contradiction between the backscatter and the numerical stability. 
            2.2 Non-eddy viscosity model. By filtering, LES divides unfiltered flow parameters, 
such as velocity, pressure, temperature, and species concentrations, into resolved (large-scale) 
parameters and unresolved (small-scale) parameters. A non-eddy viscosity model attempts to 
obtain the unresolved parameters by using mathematical and/or physical methods based on 
statistical theory or DNS data. With both the large-scale and small-scale velocities known, 
the Reynolds stress can be calculated. 

A simple method used to generate the unfiltered parameter distribution is the Taylor 
expansion series. By letting u* stand for )x(u  at ix , and )x(u)x(u)x('u −=  (refer to Figure 
1), the Taylor expansion produces 
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By neglecting the third-order and higher-order terms and replacing the derivatives with 
central differencing ones, this equation becomes  
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By filtering )x(u  over Δ2  through the use of a box-filter, the filtered velocity is: 
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For a non-uniform grid distribution, this equation becomes 
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with i1ii xxh −= + .  This can then be rewritten in a simple operator form: 
 

i
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For a three-dimensional case,  
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The Reynolds stresses can then be calculated from 
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This model is identical to the SSSS model developed by Shah and Ferziger [5]. This 

paper has mathematically explained the SSSS model. In addition, iCiT DandT can be 
determined with the same method. The procedure to calculate the Reynolds stresses and other 
second order correlations are as follows (let f and g be two variables where f can be a velocity 
component [u, v, or w] while g can be a velocity component, temperature, or species 
concentration): 

a) Calculate f* and g* from f  and g , respectively, at all interior cells by using Eq. (20). 
This procedure solves a series of tri-diagonal algebraic equation systems in the x-, y- 
and z-directions. Since, according to Eq. (18), the coefficients in every row satisfy a + 
b + c = 1, the tri-diagonal coefficient matrix of the operator Lx is non-singular, and 
there are no instability problems. 

b) Determine the product f*g* at all the interior cells.  
c) Compute **gf  by using Eq. (17). This is a series of simple algorithm operations. 

d) Calculate **** gfgf −  in order to obtain the Reynolds stresses and other correlations. 
 

In the implementation of the SSSS model, we solve a series of tri-diagonal equation 
systems and complete simple arithmetic operations. It does not demand more computing time 
than the DSGS models. 

    
3.  Numerical Method 
 

3.1 Difference scheme in time and space.  The present investigation studied indoor 
airflows, which have relatively low Reynolds numbers. The numerical oscillation or 
instability is not significant. However, this oscillation or instability can be problematic when 
simulating airflow around buildings. A solution to avoid this problem is the use of the third 
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order upwind scheme for the convection terms. Since numerical instability was not 
significant for this indoor airflow study, the second order Adams-Bashforth scheme was used. 

3.2 Projection method.  The equations that need to be solved numerically for indoor 
airflow are the continuity, momentum, energy, and species concentration equations. The 
indoor air can be considered to be incompressible. The buoyancy resulting from air density 
variations produced by a temperature difference is added to the momentum equation via the 
Boussinesq assumption. The continuity equation of incompressible flow has no derivative 
term over time and cannot be directly solved simultaneously with the momentum equation. In 
the projection method (Chorin [11]), however, the continuity and momentum equations can 
be related through pressure. The projection method is described below.  

The filtered Navier-Stokes equations are written in following form: 
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The projection method solves the momentum equation without the pressure term: 
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where *

iυ is the predicted velocity. The predicted velocity does not normally satisfy the 
continuity equation. However, by using a pressure correction, the predicted velocity can be 
modified to obtain the true velocity. A Poisson equation of pressure can be established by 
subtracting Eq. (25) from the momentum equation, Eq. (24). Then, by taking the divergence 
of both sides of the obtained equation, and by considering the continuity equation, we obtain 
a Poisson equation of pressure:  
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By solving this Poisson equation, we obtain the pressure p, which is used to modify 

the predicted velocity using the following equation: 
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This modified velocity now satisfies the continuity equation, and is therefore the true 
velocity.  

When applying the Fourier transformation to the Navier-Stokes equations, the 
pressure term is translated in the direction normal to the velocity plane. Therefore, ignoring 
the pressure term in the physical space is equivalent to projecting the Navier-Stokes 
equations onto the velocity plane in the spectral space. This is the reason this method is called 
the projection method (Lesieur [2]). 
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3.3 Differencing scheme.  In order to numerically solve the partial differential 
equations, the present study uses the staggered grid system and the second order central-
differencing scheme. For the time term, this investigation uses the second order Adams-
Bashforth scheme.  
 

3.4 Poisson equation and its solvers. If the Poisson equation were to be solved by 
the iteration method, it would consume about 90% of the overall computing time. Therefore, 
it is very important to develop an efficient solver for the Poisson equation. The present study 
uses FFT to improve the efficiency, accuracy, and speed of solving the Poisson equation.  

FFT is used in both periodic and Neumann boundary conditions. In the case of 
Neumann boundary conditions, the Gauss-Chebyshev transformation is found to be 
acceptable. After reorganizing the coefficients (Su [12]), FFT can also be used in place of the 
discrete Gauss-Chebyshev transformations without decreasing the accuracy and efficiency. In 
the presented numerical examples, a non-uniform grid system is allowed in only one direction 
when using the FFT method to solve the Poisson equation of pressure.  

Note that if all boundary conditions for the pressure are either periodic or 
homogeneous Neumann ones, the Poisson equation will have either no solution, or multiple 
solutions due to the singularity of the differencing-equation system. To ensure a unique 
solution, the sum of kj,i,q  in the differencing equations over i = 1, 2, …, IM, j = 1, 2, …, JM, 

and k = 1, 2, …, KM should be zero (or should have a numerical error less than 610− ). The 
pressure at a reference point or the average pressure in the whole flow domain should be set 
to zero.  

When the flow domain contains obstacles in a room, such as occupants, computers, 
and furniture, the above-mentioned methods cannot be directly used due to the no-flux 
conditions on the surfaces of these obstacles. Therefore, it is necessary to ensure that the 
normal velocity at the surfaces, nυ , be equal to zero. The present study introduces an 
additional term, || nnn υαυ−βυ− , into the momentum equation at the surfaces (McGrattan 
et al. [13], Peskin [14], Goldstein et al [15]): 
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Note that nnn
n

t
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∂
υ∂  is an ordinary differential equation. When solving this 

ordinary differential equation, nυ will quickly approach a small value if β > 0 and α > 0 (this 
study uses 0.8/Δt for β and 10 for α).  Therefore, the additional term seems to be a damping 
term and Eq. (34) can be approximated as: 
 

Diss
n
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∂
∂

−=                  (35) 

 
This approach is used at the obstacle surfaces for all three components of velocity. In fact, 
this method exploits the relatively small changes in pressure from one time step to the next in 
order to enforce the no-flux condition on the obstacle surfaces, because the pressure at the 
current time step is unknown until the Poisson equation is solved. 
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            Our experience shows that nυ  changes from 10-4 to 10-6 very quickly, and remains 
unchanged afterwards. Since nυ  is normally several orders smaller than the mean velocity in 
the flow domain, υn can be considered to be zero, which implies a successful simulation of a 
solid surface. This approximation method does not need to specify pressure boundary 
conditions on an obstacle surface, and the corresponding grids can be treated as a normal 
internal one. Therefore, the Poisson equation can still be solved by using the above-
mentioned FFT algorithm.  
 
 
4.   Results 
 

The above-mentioned subgrid scale models and numerical algorithms have been used 
to study indoor airflow. Indoor airflow consists of forced convection, natural convection, and 
mixed convection (which is a combination of forced and natural convection). This section 
will examine the performance of the subgrid scale models in predicting these three 
convection flows in a room.  

4.1 Forced Convection. This study used forced convection flow in a room with 
measured air velocity profiles from Restivo [16]. The room geometry is shown in Figure 2, 
where H = 3 m. The velocity at the inlet was uniform and equal to 0.455 m/s. The flow 
Reynolds number was 5000, based on the inlet height and air velocity. The inlet height was 
0.168 m. The air velocity was measured by a laser Doppler anemometer.  
     The computations used a uniform air velocity profile at the inlet, and a zero gradient 
condition for the air velocity at the outlet. Our computation applied a uniform mean velocity 
profile using six points across the jet. This was rather inconsistent with the experimental data. 
The experiment measured a small perturbation, which was neglected in the computation. All 
of these considerations were added in the revision. The log-law wall function was used for 
the walls (Wilcox [19]). The computational meshes employed were 66x18x34 and 66x34x34 
corresponding to the length (x), height (y), and width (z) directions. The grid distribution was 
uniform in the x and z directions, and non-uniform in the y direction. The numerical results 
show a very small difference between the two meshes as compared in Figure 4. The results in 
this paper are from the finer mesh, for t = 400 to 800 s. Figure 3 shows the computed airflow 
pattern. Aside from the large vortex in the center of the room, there was a small eddy in the 
upper right corner, which was observed in the experiment. 

The dimensionless time step used in this calculation was 01.0t =Δ  s, which was 
much larger than the 0.002 s time step normally used for the iteration method in solving the 
Poisson equation. Therefore, the high accuracy of the FFT algorithm greatly improved the 
numerical stability. 

Figure 4 compares the computed mean dimensionless air velocity (U=u/uin) and the 
computed dimensionless velocity fluctuation (ur = [mean square-root fluctuate velocity in x 
direction]/uin) with the corresponding experimental data from the middle section of the room 
at both x = H and 2H. The Smagorinsky coefficient used in the SSGS model was 0.16, which 
was recommended for indoor airflow by Murakami [17]. The results show that the DSGS and 
SSSS models performed slightly better than the SSGS model in calculating the mean air 
velocity. The under-prediction by the SSGS model may be attributed to the large viscosity 
computed. The calculated air velocities by the DSGS and the SSSS models are almost 
identical. The DSGS model calculated the turbulence viscosity coefficient according to the 
local flow type, and the SSSS model calculated the quasi-Reynolds stress by using the 
stimulated small-scale velocity. Therefore, these two models described the flow better than 
the SSGS model. For velocity fluctuations, none of the three models produced satisfactory 
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results. The SSGS model generally under-predicted the velocity fluctuation, while the other 
two models over-predicted this velocity fluctuation in the area near the air inlet. The 
discrepancies among the results of the three models are large in the area where there is a large 
gradient in mean velocity. The SSSS model computed the small-scale velocity according to 
the mean velocity gradient. The larger the mean velocity gradient is, the higher the stimulated 
small-scale velocity becomes. Therefore, the velocity fluctuation was also high. 

Table 1 compares the computational time used by the conventional iteration method 
with the time used by the FFT method for the case with a total grid number of 130x34x34. 
These computations were carried out on an Alpha workstation and a Cray-T90 supercomputer. 
The results produced from the Cray supercomputer show that the FFT method is ten times 
faster than the iteration method. When comparing the FFT method results between the Alpha 
workstation and the Cray supercomputer, the computing time per time step per grid cell was 
2x10-5 s on the workstation, and 8x10-6 s on the single-processor supercomputer.  However, 
for the iteration method results, it was 6x10-4 s on the workstation, and 8x10-5 s on the 
supercomputer. Since FFT uses double precision on the workstation, the computing speed of 
the FFT method is only three times faster than the iteration method. Since double precision is 
default on the supercomputer, computation with the FFT can reduce the computing time more 
significantly than that with the iteration method.  

4.2 Natural Convection.  This investigation also studied natural convection flow in a 
cavity, as shown in Figure 5. Cheesewright et al. [18] measured the air velocity, temperature, 
and turbulent energy in the cavity. Their experimental data were used to compare with our 
numerical results. The cavity was 2.5 m high, 0.5 m wide, and 0.5 m deep. The left wall was 
heated to 68.0°C, and the right wall was kept at 22.2°C. All the other walls were insulated. 
Cheesewright et al. [18] noted that the cavity was not well insulated.  

The computations used only one non-uniform grid distribution in the x-direction. This 
non-uniform grid distribution is very important in obtaining the correct results, due to the 
sharp temperature gradient near the hot and cold walls. However, a limited computer memory 
prevented the use of a uniform grid system in x-direction since this would require many grids. 
The smallest grid size close to the walls in the x-direction was only 0.005 m. The y- and z- 
directions used uniform grids, since the air velocity, temperature, and turbulent kinetic energy 
varied only slightly in these two directions, as shown in Figure 5. Periodic boundary 
conditions were applied in the z-direction. In addition, the computation used the Boussinesq 
approximation to consider the buoyancy effect. Surprisingly, two grid meshes (34x34x18 and 
66x66x34) used in the computations yielded the same results. Figure 5 shows the computed 
mean airflow pattern and air temperature distribution in the middle section of the cavity, 
using the finer grid mesh. The air temperature distribution is given for the dimensionless 
temperature, T, which is defined as )t)/(tt(tT chc −−= . In order to identify the impact of 
the grid scale and the wall function on the mean flow distribution, this investigation used two 
different wall functions: the one-layer log-law wall function (1L), and the two-layer wall 
function (2L) from Wilcox [19]. Our results do not show any significant difference between 
these two wall functions.  

Figure 6 compares the computed mean profiles of air velocity, turbulent kinetic 
energy, and air temperature with the measured data at the mid-height of the cavity. In Figure 
6, the units of velocity and turbulent kinetic energy are m/s and 22/sm , respectively. In the 
LES simulations with the DSGS model, both wall functions were used.  

The results confirm that the three models produced similar mean air velocity and 
temperature profiles. These results show that the wall functions had a small influence on the 
profiles of mean temperature and velocity. The notable difference was found in the vicinity of 
the walls, seen in the velocity and turbulent kinetic energy profiles of Figure 6. The mean 
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velocity values calculated in the vicinity of the hot and cold walls were much greater than the 
measured data, although the grid scale was very small, and the computations used both wall 
functions. It seems that there are some unknown reasons influencing the values of velocity in 
this region. Further investigation is therefore necessary. In addition, Figure 6(b) shows that 
the turbulent kinetic energy values obtained by the DSGS model in the vicinity of the wall 
were greater than the measured data. However, these values were closer to the measured data 
in all other regions than those results obtained by the SSGS and SSSS models. From these 
results, it can be concluded that the damping of the DSGS model is smaller than that of the 
SSGS and SSSS models. Therefore, the results of the DSGS model were the best among the 
three subgrid scale models. 

The computed mean air temperature was much higher than the experimental data. The 
reason for this discrepancy is that the poor insulation used in the cavity led to a significant 
heat loss in the experiment. This condition also induced the asymmetry of the measured mean 
air velocity. Therefore, the measured data was not asymmetric due to the poor insulation on 
the cavity, and it was incorrect. 

4.3 Mixed convection. The mixed convection study used a displacement ventilation 
case that supplied cold air through the diffuser in the lower part of a room, and exhausted 
warm air at the ceiling level, as shown in Figure 7. This is a practical case of ventilation 
system design for a room. The room was 5.16 m long, 3.65 m wide, and 2.43 m high. This 
case presents a real scenario of a two-person office with many heated and unheated objects, 
such as the occupants, lighting, computers, and furniture. Yuan et al. [20] measured the air 
temperature, air velocity, and tracer-gas (SF6) concentration for the case. The tracer-gas was 
used to simulate CO2 emissions from the two occupants. The temperature of the inlet airflow 
from the diffuser was tsup = 17.0ºC, and the ventilation rate was 183 m3/h. The total heat 
sources in the room were 636 W. The measured data were used here to validate the LES 
results.  

According to the studies of forced and natural convection cases, a very fine grid 
resolution did not provide more accurate results. The coarse grid distributions are acceptable 
for engineering applications. In addition, this mixed convection case had smaller temperature 
and velocity gradients in the flow domain so that it did not need a very fine grid resolution. 
Hence, the current study used a grid distribution of 66x46x34. The grid is quite coarse for 
such a complex geometry. The grid distribution is non-uniform in the y-direction, and 
uniform in the other two directions. The time step used was 0.005 s over a 300 s period. With 
such a grid resolution and time step, it is possible to calculate the mixed convection case on 
an Alpha workstation with a single 21264 processor. The total computing time was about 30 
hours.  

The boundary conditions used in the study were as follows. The log-law wall 
functions were used for all the solid surfaces. The thermal boundary conditions for the 
surfaces were set as either fixed temperatures or heat fluxes. At the air supply inlet, a uniform 
velocity and temperature profile was assumed and the turbulence intensity was estimated to 
be 10%. The boundary conditions for the exhaust were zero pressure and zero gradient for all 
other variables. 

      Figure 8 shows the mean and instantaneous airflow pattern at the middle section of 
the office. The cold air from the diffuser moved downwards rapidly along the floor due to the 
buoyancy effect. The mean airflow pattern showed a large and weak recirculation in the 
lower part of the room. In the upper part of the room, there were some areas of recirculation 
caused by the thermal plumes from the heated objects, such as the computers, occupants, and 
overhead lights. The airflow pattern computed was similar to that observed with the smoke 
visualization (Yuan et al. [20]).  

The computed results shown in Figure 8 illustrate a significant difference between the 
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mean and instantaneous flow patterns. The instantaneous flow is unstable, and the flow 
appears to be very chaotic. This phenomenon can be found in another cross section through 
the computer, as shown in Figure 9. Note that the velocity fluctuation in the office can be 
very high, even though the mean velocity is very small. This is especially evident in the upper 
part of the room. This information, which is normally not available from turbulence modeling, 
is very important for thermal comfort design.  

In addition, the experiment has also measured the mean air velocity with omni-
directional anemometers. Figure 10 compares the computed mean air velocity with the 
experimental data at five locations in the office. Y/H = 0 corresponds to the floor surface, and 
Y/H = 1 to the ceiling surface. The bottom right figure shows a floor plan where the five 
measuring locations are labeled. The experiment observed a low frequency oscillation (2-5 
minutes per cycle). The data were averaged in the measurements over a period of a few 
seconds. Therefore, the experimental data appears rather smooth. The three subgrid-scale 
models of LES predicted very similar velocity distributions, except in the area close to the 
floor at location 6. This difference can be attributed to the constant coefficient used in the 
Smagorinsky model. Since the anemometers are not suitable for low velocity measurements, 
the comparison is not conclusive. Nevertheless, the trend and the magnitude of the velocity 
distributions are the same between the computed results and the measured data.  

Figure 11 shows the profiles of the mean air temperature at the five positions in the 
room. All the computed results agree well with the experimental data. The differences among 
the three subgrid-scale models are generally small, although the SSSS model seems to 
perform the best. The SSSS model estimated the small-scale temperature from the heat fluxes 
and the temperature distribution. Since the temperature variation over time and location was 
found to be not significant, these results suggest that the air temperature is not very sensitive 
to the turbulence viscosity. 

One important objective in studying indoor airflow is to predict contaminant 
concentration distributions. Carbon dioxide is often considered to be a contaminant. The 
experiment conducted by Yuan et al. [20] used tracer-gas to simulate the carbon dioxide from 
the two occupants. Figure 12 presents the computed tracer-gas concentration distributions and 
the corresponding experimental data at five different positions in the room. The agreement 
between the experimental data and computational results is poor. This is because the 
diffusion process is very slow for this case. The average of the results should be made over a 
long period of time in order to obtain more accurate mean results. Our calculation for a total 
of 500 s is too short. Nevertheless, the three subgrid-scale models are able to predict the trend 
and magnitude of the concentration distributions.  
 
 
5. Conclusion 
 
This investigation used three subgrid-scale models of LES to study forced, natural, and mixed 
convection flows in a room. The three subgrid-scale models are the Smagorinsky (SSGS) 
model, a dynamic model (DSGS), and a stimulated small-scale SGS (SSSS) model (also 
referred to as the deconvolution model in some literature, such as [21]). The LES used fast 
Fourier transformation (FFT) as its numerical algorithm. The experimental data from the 
three cases are used to validate the numerical results. This study leads to the following 
conclusions: 

1) The SSGS, DSGS, and SSSS models can be used for the prediction of indoor airflow. 
The performance of the DSGS and SSSS models was slightly better than that of the 
SSGS model. The differences between the DSGS and SSSS models are small. For 
building design, the LES models produce results with reasonable accuracy. 
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2) Because the SSSS model has a solid mathematical and physical background, it 
deserves further attention. In the present paper, the use of this model has been 
extended through the LES calculation of temperature and concentration. 

3) The LES provides not only the mean flow parameters, but also instantaneous airflow 
information. The instantaneous flow information is an important thermal comfort 
parameter, and it cannot be easily obtained through turbulence modeling. Therefore, 
LES is a promising tool for the next generation of building environmental design.  

All results show that the computational profiles of velocity and turbulent kinetic energy in the 
vicinity of the wall are far different from the measured data. Therefore, further investigation 
of this problem is necessary. 
 
Nomenclature 
 
a coefficient in the difference 

Poisson equation  
 S source 

a,b,c coefficients of stimulated 
operator. See Eq. (18) 

 Q Object function  

C species concentration; 
coefficient of dynamic model 

 qc Source term of concentration 

CM parameter in the eddy-viscosity 
model 

 S tensor of deformation rate 

sC  Smagorinsky coefficient  Sij Component of S, ( )i,jj,i2
1

υ+υ=  

Conv  convection term in the 
momentum equation 

 T  dimensionless temperature 

jCD  
ii υCCυ − species concentration 

flux 

 TjT  
ii υTTυ −= heat flux 

Diss  dissipation term in the 
momentum equation 

 jiT  
jiji

~~~
υυ−υυ  

G filtering function  kkT  ∑
=

3

1i
iiT  

H height  t time; temperature 
hi i1i xx −= +   U dimensionless mean velocity 
h for the case of uniform grid   u a general flow parameter; 

component of velocity in x 
direction 

I Unit matrix  ur dimensionless fluctuate velocity 
IM,JM,KM total numbers of nodes in the x-,  

y-, and z-directions 
 )x(u  A function of x 

n normal direction  *
iu  value of )(xu  at ix  

i  1−   )x(u  filtered function of )(xu  

jiL  jiji τ~T −=   )x('u  )()( xuxu −=  

z

yx

L
;L;L
 

stimulated operator in the x-, y-, 
and z-directions 

 iu  value of )(xu  at ix  
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L  zyx LLL=   v component of velocity in y 
direction; 
scale of velocity 

jiL  jiji τ~T −=   iυ , jυ  velocity components in the xi- 
and xj-directions 

jiM  
ji

2
kk

ji
ji S

~
S
~

Δ
~

C2T
3
δ

T −=−=  
 j,iυ  ji x/∂υ∂=  

m See Eq. (18)  ix  x coordinate of i-th node; 
zxy;xx;x 321 ===  

jim  
ji

2
kk

ji
ji SSΔC2τ

3
δ

τ −=−=  
 x, y, z Cartesian coordinates 

p pressure    
     
     
 
Greek letters 
 

βα ,  selected parameters in Eq. (39)  cκ  species diffusivity 
Δ  grid scale, filtering scale  ρ  air density 

tΔ  time step  ν Kinetic viscosity of fluid 

jiδ  Kronecker symbol,  
if i=j, it is 1, else 0. 

 Tν  eddy-viscosity  

κ  thermal diffusivity  ijτ  Reynolds stresses 
 
Subscripts 
 
c cold wall  m,n indexes in the x-, y- phase 

space 
e environment  n normal component 
exh exhaust  s supply or source 
h hot wall    
i component in xi direction    
 
Superscripts 
 
* value of original function at 

node (see Figure 1.); 
imaginative velocity in 
projection method 

 ( ) ,

( )
~

 

filtered value with scale Δ  
and Δ~  

n  time level  (  )´ small scale value 
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Table 1. Computing time needed by different numerical schemes. 

Computer Alpha Workstation Cray T90 
(one Processor) 

Cray T90 
(14 Processors) 

Time steps 100 250 60,000 
Grid number 130x34x34 130x34x34 130x34x34 130x34x34 
Conventional 
iteration code 

796 s 1800 s 160 h  

FFT  code 240 s 600 s 16 h 1.5 h 
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Figure 1.   Relationship between the filtered and unfiltered velocities. 
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Figure 2. The schematic of the room with forced convection. 
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Figure3. Mean airflow pattern in the middle plane of the room. 
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Figure 4. Comparison of the computed mean and fluctuation velocity profiles with the 
experimental data at x=H and 2H sections. 

 
 

 
Figure 5. The mean airflow pattern and dimensionless air temperature distribution in the 

middle section of the cavity. (
ch

c

tt
tt

T
−
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= , where th and tc are the temperatures of the hot wall 

and cold wall, respectively). 
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 (a) 

 
(b) 

 
(c) 

 
Figure 6. The computed mean profiles of (a) mean air velocity, (b) turbulent kinetic energy, 
and (c) dimensionless temperature in the mid-height of the cavity and the corresponding 
experimental data. 



Su, M. et al.   23

 

 
Figure 7. The schematic of a two-person office with displacement ventilation. 
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(a) 

 
(b) 

 
Figure 8. The (a) mean and (b) instantaneous airflow patterns in the middle section of the 
office. 
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                                                                                 (a) 

 
                                                                           (b) 

Figure 9. The (a) mean and (b) instantaneous airflow patterns at the section near the side wall 
of the office.  
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Figure 10. Comparison of the computed mean air velocity profiles with the experimental data 
at five different locations in the room  (m/s). 
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Figure 11. Comparison of the computed mean air temperature with the experimental data at 

five different locations in the room (
sexh

s

tt
tt

T
−
−

= , ts=17.0ºC, texh=26.7ºC, where ts and texh are 

the temperatures of the supply and exhaust, respectively). 
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Figure 12. Comparison of the computed mean tracer-gas (SF6) concentration distributions 
with the experimental data at different locations in the room (ce=(c-cs)/(ce-cs), ce=0 ppm, 
cs=0.42 ppm, where cs and ce are the tracer gas concentrations of the source and environment, 
respectively).  


