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Abstract. Six different theoretical equations are compared in the present paper with experimental 
data, measured for 28 binary liquid metallic systems. General conclusions are drawn on the ability 
of the different theoretical models to describe the concentration and temperature dependence of the 
viscosity of liquid alloys. A new equation is derived, being able to predict the viscosity in multi-
components alloy even if the viscosities of the pure components are not known.   
 
Introduction 
 

Viscosity of binary and multi-component liquid alloys is one of their basic physical 
properties, being also important for the design of materials technologies. Six different models have 
been published so far to describe the concentration dependence of the viscosity of liquid alloys 
through their thermodynamic properties [1-7]. In recent years, one, or another model was chosen 
(with no explanation of its choice) to estimate the viscosity of some metallic systems [8-15]. 
However, the six existing models were compared to experimental data systematically only in a few 
cases: for the Ag-Sb [16], Ag-Cu [17], Ag-In and In-Sb [18] systems. The aim of this paper is to 
collect reliable experimental data for a large number of systems and to compare them with the 
existing models. The systems will be grouped and analyzed according to their phase diagrams [19].  

Only those literature models are considered here, which can be applied without knowing the 
actual value of the viscosity at any composition of the binary alloy. The models are divided into two 
groups. First, all models will be considered, which use the known viscosity values of the pure 
components as initial parameters. Second, the models without this initial information will be 
discussed. A new model will be developed for this latter case.  
 
Models with known viscosities of pure components, as initial parameters 
 

The Moelwyn-Hughes (MH) equation [1] was the first to take into account that the viscous 
flow becomes more difficult when the cohesion energy of the alloy is increased: 
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where  η and ηi - dynamic viscosity of the alloy and of pure phase i (i = 1, 2), (Pas), xi – mole 
fraction of component i, R = 8.315 J/molK, the universal gas constant, T – absolute temperature 
(K), Ω - the mixing enthalpy parameter of the alloy (ΔH = x1 x2Ω), (J/mol). 

 
The Iida-Ueda-Morita (IUM) equation [2, 3] in addition to excess thermodynamic terms 

takes into account the influence of the differences in atomic mass (mi, kg/atom) and size (di, the 
double of Pauling’s ionic radius of the ions, m) of the components: 
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Δ - is the thermodynamic correction, defined in two different ways [2, 3]:  
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where ΔGE = ΔH-TΔSE, i.e. the integral excess Gibbs energy, expressed through the heat of mixing 
(ΔH) and excess entropy of mixing (ΔSE). 
 

The Kozlov-Romanov-Petrov (KRP) equation [4] is derived in a theoretical way, and finds 
the correlation in semi-logarithmic coordinates: 
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The Seetharaman-Du Sichen (SDS) equation [6] is based on the Eyring equation, with 

describing the activation energy of the alloy by the semi-empirical Eq.(4.a): 
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where h – is the Planck constant (6.626 10 –34 J s), NAv – is the Avogadro number (6.022 1023 
1/mol), ΔG* - the Gibbs energy of activation of the viscous flow (J/mol) defined as [6]: 
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 ΔGi

* – the Gibbs energy of activation of the viscous flow in pure component i, calculated from the 
measured viscosity of the pure component at the given temperature (see Eq.(4)): 
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The Kaptay (K) equation [7] is a modification of Eq.(4), taking into account the theoretical 

relationship between the cohesion energy of the alloy and the activation energy of viscous flow, 
leading to the following value of parameter α = 0.155 ± 0.015:   
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where ΔVE – the excess molar volume upon alloy formation (m3/mol), which can be neglected for 
simplicity, when experimental data are not available.  
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Models with un-known viscosities of pure components 
 

This group of equations provides a possibility to calculate the viscosity of alloys even in the 
case, when the viscosity of one, or more components are not known in their pure state at the 
temperature of interest. It is clear, however, that this strength of such models is also their weakness, 
as in some cases even the viscosity of the pure metal is predicted with a relatively high uncertainty.  

 
The Hirai (H) equation [5] is a semi-empirical extrapolation of Andrade’s equation, suggested 

originally for pure liquid metals: 
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where ρ - density of the alloy (kg/m3), M – average atomic weight of the alloy (kg/mol), Tm – 
melting point, i.e. the liquidus temperature of the alloy (K). Thus, in order to apply the Hirai 
equation, the liquidus surface (temperature) should be known as function of composition, what is 
not always the case for multi-component alloys. It should also be mentioned that the Hirai equation 
leads to unreasonable discontinuities on the viscosity versus composition curve at eutectic and 
monotectic compositions. Moreover, it cannot be used above the miscibility gaps in monotectic 
systems, as the liquidus temperature is not known.  
 

The combination of the unified equation with any of the equations (1-5). The following 
unified equation has been elaborated recently [40], to describe the viscosity of all pure liquid metals 
as a function of temperature with an uncertainty of ±20 %: 
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with ηi (Pas), Mi (kg/mol), Vi (m3/mol), Tm,i(K) being the dynamic viscosity, atomic mass, molar 
volume and melting point of the given metal i. The above equation was tested on 101 measured 
points of 15 selected liquid metals, and the average values of the generally valid parameters were 
found as: A = (1.80 ± 0.39) . 10-8 (J/Kmol1/3)1/2, B = 2.34 ± 0.20. Parameter B in Eq.(7) has been 
theoretically defined as [40]:  
 

Z
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where q is a semi-empirical parameter (q ≅ 25.4 ± 2 [41]), ΔZ is the number of broken bonds during 
viscous flow (ΔZ ≈ 1), Z is the average coordination number in liquid metals (Z ≈ 11). The physical 
sense of parameter q is related to the cohesion energy in pure liquid metals, defined as [41]: 
 

imic TRqU ,⋅⋅−=Δ                                                  (7.b) 
 

If the viscosity of one or more pure components of a multi-component system are not known 
at the temperature of interest, Eq.(7) can be used to estimate the un-known values, and the estimated 
values can be used in the combination with any of the Eq-s (1-5) to calculate the concentration 
dependence.  
 
 A new equation has been derived by us (called later as Budai-Benkő-Kaptay (BBK) 
model), being a binary- and multi-component extension of Eq.(7). The molar mass, the molar 
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volume and the cohesion energy of pure liquid metals i in Eq.(7) were extended to multi-component 
alloys by the following obvious relationships:  
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where the excess molar volume (ΔVE) and the integral heat of mixing (ΔH) are concentration and 
temperature dependent quantities, to be found from independent experiments or theories. 
Substituting Eq-s (8.a-c) into Eq.(7), the following unified equation for the viscosity of multi-
component liquid alloys can be found:  
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Description of the experimental data and the method of comparison 
 

Altogether experimental data for 28 binary liquid alloy systems have been found in the 
literature, which describe the concentration dependence of a given liquid alloy in the whole 
concentration region. The phase diagrams and thermodynamic properties of the alloys were taken 
from [19-20]. The viscosities for pure metals were taken from the same original papers on the 
viscosity of the binary alloys. The molar volume (or density) of pure liquid metals were taken from 
[25]. The excess molar volumes of all systems were taken as zero, for simplicity. The systems are 
grouped according to their phase diagram types in Table 1. In Table 1 the maximum deviation 
between experimental and theoretical values are indicated in relative %. At the end of each sub-
table, the average deviation, the average of the absolute deviations, and the ranking of different 
methods (based on the average of the absolute deviations) are given. The average absolute 
deviations are summarized in Table 2. The final ranking is found using the weight factor, according 
to the number of the systems of the same type.  
 
Table 1. Maximum deviation of model calculations from experimental data (%) at given 
temperature. Abbreviations: MH = Moelwyn-Hughes model [1], IUM = Iida-Ueda-Morita model 
[2,3], KRP = Kozlov-Romanov-Petrov model [4], SDS= Seetharaman-Du Sichen model [6], K = 
Kaptay model [7], H = Hirai model [5], BBK = Budai-Benkő-Kaptay model (this paper) 

Table 1.a. Systems with solid solutions 
System T [K] MH IUM KRP SDS K H BBK 

Ag-Au [21] 1373 +80 -5 -5 -10 +1 -5 +12 
Au-Cu [2] 1473 +67 +2 0 -37 0 -24 +22 
Bi-Sb [2] 973 -10 +2 +2 +15 +2 +68 +87 

Co-Fe [33] 1873 +29 -6 -5 +3 +5 -26 -10 
Average  42 -2 -2 -7 2 3 28 

Abs. average  47 4 3 16 2 31 33 
Ranking  7 3 2 4 1 5 6 
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Table 1.b. Eutectic systems 
System T [K] MH IUM KRP SDS K H BBK 

Ag-Cu [22] 1373 -75 +5 +5 +10 +2 -32 +14 
Ag-Cu [22] 1473 -70 -5 0 +7 +2 -33 +16 
Ag-Cu [22] 1573 -67 -6 -2 +5 -2 -32 +13 
Al-Zn [27] 973 -50 +30 +25 +35 +26 -30 +55 
Bi-Cu [28] 1416 -72 +76 +18 +23 +9 +95 +61 
Bi-Sn [25] 673 -15 -11 -13 -10 -13 +34 +50 
Cd-Pb [32] +623 -100 +28 +23 +35 +21 -12 +30 
Pb-Sb [38] 973 +9 -1 +7 +13 +7 +73 +94 
Pb-Sn [38] 673 -47 -7 -12 -11 -11 -30 -10 
Pb-Sn [38] 773 -39 -1 -9 -6 -7 -28 -7 
Pb-Sn [38] 873 -35 -4 -10 -8 -8 -25 -6 
Sn-Zn [32]  723 -100 +70 51 +67 +44 -35 +50 

Average  -55 15 7 13 5 -5 30 
Abs. average  57 20 15 19 13 38 34 

Ranking  7 4 2 3 1 6 5 
 

Table 1.c. Monotectic systems 
System T [K] MH IUM KRP SDS K H* BBK 

Bi-Zn [31] 873 -140 +60 +40 +51 +34 +120 +40 
Bi-Zn [31] 923 -130 +48 +38 +50 +30 +112 +37 
Average  -135 54 39 51 32 116 39 

Abs. average  135 54 39 51 32 116 39 
Ranking  7 4 2 3 1 6 5 

*the temperature along the miscibility gap was taken into account, as the liquidus T is unknown 
 

Table 1.d. Systems with congruently melting compound(s) 
System T [K] MH IUM KRP SDS K H BBK 

Al-Cu [4] 1473 +90 -46 -45 -50 -46 -47 -29 
Bi-In [29] 573 +72 +5 +9 -9 +5 +40 +53 
Bi-In [29] 623 +72 +5 +10 -9 +5 +36 +50 
Bi-In [29] 673 +68 +6 +11 -9 +6 +33 +45 
Bi-In [29] 723 +65 +7 +12 -9 +7 +30 +42 
Bi-Tl [30] 623 +165 +9 +18 +7 +14 +35 +54 
Bi-Tl [30] 673 +165 +8 +18 +7 +15 +35 +51 
Bi-Tl [30] 723 +158 +9 +20 +9 +16 +30 +51 
Cu-Sb [25] 1373 +185 +78 +45 +35 +31 +50 +95 
Hg-Na [2] 643 +200 -38 -9 -69 -47 -19 -55 

Mg-Pb [37] 973 +230 +15 +30 -15 +17 +20 +56 
Mg-Pb [37] 1073 +205 +12 +29 -20 +13 +20 +56 
Mg-Pb [37] 1173 +180 +14 +24 -26 -15 +20 +54 

Average  143 6 13 -12 2 22 40 
Abs. average  143 19 22 21 18 32 53 

Ranking  7 2 4 3 1 5 6 
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Table 1.e. Systems with compound(s), dissociating by a peritectic reaction 
System T [K] MH IUM KRP SDS K H BBK 

Ag-In [23] 1250 +190 +31 +14 +8 +12 -20 +4 
Ag-Sb [24] 1273 +100 +30 +50 +65 +62 +68 +110 
Ag-Sb [25] 1273 +150 +60 +70 +76 +67 +65 +110 
Ag-Sn [26] 1273 +130 +40 +40 +45 +40 -18 +43 
Ag-Sn [26] 1373 +110 +30 +36 +40 +32 -20 +37 
Ag-Sn [26] 1473 +100 -23 +32 +35 +27 -22 +34 
Cd-Sn [32] 623 -53 +41 +40 +45 +38 +9 +46 
Cd-Sn [39] 623 -60 +29 +23 +36 +22 -16 +19 
Cu-Sn [34] 1373 +86 +18 -14 -25 -19 -41 -22 
Cu-Sn [34] 1473 +76 +30 -11 -22 -16 -40 -20 
Cu-Sn [34] 1573 +74 +28 +10 -20 -15 -40 -21 
In-Pb [35] 623 -31 -4 -4 +5 -2 -9 +10 
In-Pb [35] 673 -31 +5 -2 +5 -2 -10 +7 
In-Pb [35] 723 -29 +1 -5 +2 -4 -10 +6 
In-Pb [35] 773 -28 +1 -7 -4 -7 -13 +5 
In-Sn [29] 523 +38 +28 +28 +30 +29 +20 +47 
In-Sn [29] 573 +35 +26 +26 +28 +26 +15 +38 
In-Sn [29] 623 +33 +20 +25 +27 +25 +14 +37 
In-Sn [29] 673 +32 +23 +25 +29 +25 +15 +33 
In-Sn [29] 723 +31 +22 +25 +28 +24 +15 -31 
K-Na [36] 376,3 -39 -18 -8 +6 0 -37 -9 
K-Na [36] 394,5 -37 -20 -10 +7 0 -34 -8 
K-Na [36] 420,1 -34 -25 -11 +6 -1 -31 -5 
K-Na [36] 440,4 -32 -28 -12 +5 0 -29 -5 
K-Na [36] 466 -30 -31 -13 +5 0 -27 -5 
Sn-Tl [30] 673 -30 -7 -13 -8 -12 -30 -12 
Sn-Tl [30] 623 -32 -7 -10 -7 -10 -29 -12 
Sn-Tl [30] 723 -28 -9 -10 -8 -10 -29 -10 
Average  25 10 11 16 12 -10 15 

Abs. average  60 23 21 22 19 26 27 
Ranking  7 4 2 3 1 5 6 

 
 
Table 2. Average absolute deviation of different models for predicting the viscosity of binary liquid 

alloys of different phase diagram types (abbreviations see above Fig-s 1) 
System type n MH IUM KRP SDS K H BBK

Solid solution 4 47 4 3 16 2 31 33 
Eutectic 12 57 20 15 19 13 38 14 

Monotectic 2 135 54 39 51 32 116 38 
Peritectic compound 28 60 23 21 22 19 26 27 
Congruent compound 13 143 19 22 21 18 32 53 

Weighed average   79 21 19 22 17 33 31 
Ranking  7 3 2 4 1 6 5 
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Conclusions 
 
i. Among the models with known viscosities of pure components as initial parameters, the MH 

model provides unreasonable predictions in most of the cases, so it should not be used. The 
models SDS, IUM, KRP and K provide similar results. As the closest agreement between 
experiments and predictions for all types of phase diagrams is reached using the K-model, this 
model should be preferred when an unknown system is modeled (see Eq-s.(5, 4b)).  

ii. Among the models with un-known viscosities of pure components as initial parameters, the H 
and BBK models provide similar results. However, the H-model provides unreasonable 
discontinuities at eutectic compositions, and cannot be used in principle for monotectic 
systems. That is why, the BBK model is suggested by us to be used when the viscosities of 
none of the pure components are known. Alternatively, Eq.(7) is suggested to be used to 
predict the unknown viscosities of pure components. These predicted values should be 
combined with known viscosities of other pure components, and finally the K-model (Eq-s (5, 
4.b)) should be used to obtain the concentration dependence of viscosity of binary and multi-
component alloys.   

iii. The performance of the most preferred models is the best for systems with relatively simple 
phase diagrams, showing a relatively small deviation from ideality (solid solution type and 
eutectic type), while the agreement becomes worse when the system deviates more from 
ideality both into positive (monotectic systems) and negative (systems with compounds) 
directions.  

iv. The disagreement in certain cases becomes unacceptable for systems with congruently melting 
compound(s) in the phase diagram. This indicates the existence of associates (complexes, 
molecules) in the liquid alloy, which change all physical properties of the alloy in a hardly 
predictable manner. For systems with congruently melting compounds none of the existing 
models can be recommended for reliable predictions. Instead, the following procedure is 
suggested. First, the viscosity of the “pure” associate can be estimated using Eq.(7), if the 
molar volume and the congruent melting point of the associate is known. Then, the associate 
model [42-46] should be used to find the mole fractions of un-associated atoms and that of the 
associates. These model mole fractions and the viscosity of the associate from Eq.(7) should 
be combined with the viscosities of pure components into Eq.(5). This algorithm is expected 
to provide a better estimation for systems with stable associates, usually showing a large 
positive deviation from the linear composition dependence of  viscosity (see especially the Al-
Cu and Hg-Na systems in Table 1.d).  

v. The next generation of models to predict the viscosity of multi-component liquid alloys as 
function of temperature and concentration should take into account: i). the heat of mixing of 
the alloy (see Eq.5), ii). the inner segregation of the components into the sliding planes of the 
alloy (see [16]), iii). the excess molar volume of the alloy (see Eq.6 and the free volume 
theory), iv). and the formation of associates in the liquid alloy.  
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